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FIR Filter  Design  Over a Discrete  Powers-of-Two 
Coefficient Space 

Abstract-FIR digital fiiters with discrete  coefficient values selected 
from the  powers-of-two  coefficient space are designed using the metb- 
ods of integer programming. The frequency responses obtained are 
shown to be superior to those  obtained by simply rounding the  coeffi- 
cients. Both the weighted minimax and the weighted least square 
error  criteria  are considered. Using a weighted least square  error ai- 
terion, it is shown that it is possible to predict the improvement that 
can be  expected when integer quadratic programming is used instead of 
simple  coefficient rounding. 

I. INTRODUCTION 

R ECENTLY, there  has  been  much discussion regarding the 
use of  integer  programming to design FIR digital filters 

with  discrete  coefficients [ I ]  - [6] , [ 11 ] , [I 21 . The  discrete 
coefficient  space discussed in [ l ]  - [4] is the “integer  space” 
or  the “finite  word  length  space”  where  each  coefficient value 
is represented  by  a  finite  number  of  bits.  The  ability to  pro- 
duce  an  optimum  finite  word  length  solution  has led to  the 
use of  integer  programming for  the design of FIR filters. 
However,  integer  programming  suffers  from the following 
disadvantages. 

1 j The  optimum  finite  word  length  solution  obtained  by 
using integer  programming saves only a few bits  in  coefficient 
word  length  when  compared to  the solution  obtained  by 
simple  coefficient  rounding. 

2) The  high  computing  cost  required by integer  program- 
ming  limits the  maximum size of the filter that  can be designed 
optimally to a  length  of  about 40. Computing  cost  increases 
exponentially  with  filter  length. 

On the  other  hand, integer  programming  becomes  eminently 
useful when  the discrete  coefficient space is the powers-of-two 
space. A first attempt  at using integer  programming to design 
FIR  filters whose  coefficients  are  integer  powers  of 2 has  been 
reported  in [SI . Although the  methods used in  [5]  are  rather 
elementary  and  suboptimal,  the  results  obtained  are  dramatic. 
The  fundamental principle of integer  programming is appli- 
cable for designing filters  with  either the integer or the powers- 
of-two  coefficient  space.  However,  there  are  significant  dif- 
ferences  between the  two. These  differences  render  most 
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general-purpose  integer  programming packages unsuitable  for 
designing filters  with  powers-of-two  coefficierit  space. 

In  Sections I1 and 111, we  discuss the  methods  of integer 
programming  with  reference to integer  linear  programming 
and  integer  quadratic  programming.  Special attention is 
placed on transforming the filter design problem  into a  suit- 
able  mathematical  programming  problem,  and on  adapting 
general-purpose  linear  programming and  quadratic  program- 
ming packages to  the design of  filters  with  powers-of-two 
coefficient values. 

In  Section IV, we compare the performance  of  filters  de- 
signed  using integer  programming to those designed by simple 
rounding  of coefficient values. In  each  case, the discrete 
coefficient  space is the powers-of-two  space.  The  criteria 
of  comparison  are the weighted  minimax  criteria and  the 
weighted  least  square  criteria. 

We also introduce  the  concept  of discrete  optimizability 
which serves as a  measure of how  much  can  be gained by 
performing  discrete  optimization  compared to simple  coeffi- 
cient  rounding. A problem is  said to have  a  high  discrete 
optimizability if much  can be  gained from  the use of  discrete 
space optimization  techniques.  In  Section  V,  it is shown  that 
there  exists  a  set  of eigenvalues and eigenvectors  which  provide 
valuable information as to  the discrete  optimizability  of  a 
design when the criterion  for  optimization is in the least 
square sense: In  the minimax  sense, a priori knowledge  of 
the discrete  optimizability is difficult to obtain. However, 
in  Section  VI, we present  some  insight  into  the discrete 
optimizability  for the  latter case. 

11. LINEAR PHASE FIR FILTER DESIGN 

QUADRATIC  PROGRAMMING 
USING LINEAR PROGRAMMING AND 

The  frequency  response H(w) of  an  FIR linear  phase  filter 
of  length N may  be  expressed  as  a  trigonometric function  of 
frequency w.  Omitting the linear  phase  factor e-j(N-1/2)w, the 
frequency  response  of  a  symmetrical  impulse  response  filter 
with N odd is given by 

(N-1)/2 
H(wj = a(0) + 2 a(n) cos on. (1) 

n = l  

The impulse  response h(n) is related to a@) by 
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The  relationship  between the frequency  response  and the 
impulse  response for  antisymmetrical  impulse  response  filters 
may  be  found  in  standard  texts [ 7 ] .  The filter design problem 
is one of  obtaining  a  set  of  coefficients a(n) such  that H(o) is 
the best approximation to  some desired function D(w), over 
a given frequency  range,  with  respect to some  optimality cri- 
terion.  The  frequency  band  in which H(w) may  take on any 
value  is the transition  band.  The  optimality  criterion  defines 
the class of  mathematical programming  problem  which  must 
be solved. 

In the minimax sense, the value of H(w) is subject to  the 
constraints 

H ( 0 )  < D (0) -t 6k(w) 

H ( 0 )  > D(0) - 6k(0)  (3 1 
where 6k(o) is the ripple to be minimized.  Evaluating (3) 
on a  dense  frequency  grid  allows the optimization to be 
formulated  as  a  linear  programming  problem [SI, [9]. If only 
a  finite  number  of  bits Q are  allowed for  each  coefficient 
value, the  optimization  problem reduces to determining the set 
of integer values for a(n) which  meet the following  conditions: 

H ( 0 )  < 2QD(W) -t k ( 0 )  6 

H ( 0 )  > 2QD(0)  - k ( 0 )  6 (4) 

with  a  minimum value of 6. This is an integer  linear  program- 
ming  problem [ 9 ] ,  [lo] and  may  be solved by any  good 
general-purpose  integer  linear  programming  package. The 
solution  of (4) is a  dual  feasible but  degenerate  problem,  and 
the integer  linear  programming  package  should anticipate  its 
dual  degeneracy.  Experiences in using integer  linear  program- 
ming packages to solve (4) have been  reported  in [l] - [4]. 
The reason the  finite coefficient  word  length design problem 
may  be cast into  the  form  of (4) is that  by scaling by 2-Q, the 
integer values of a(n) obtained  in  the  optimization process 
become  finite  word  lengths. This follows  because both  the 
integer  space and  the  finite  word  length space are evenly 
distributed.  If the discrete space of a(n) is nonuniformly 
distributed,  such as 

a(n) = 2-g(4 (5 1 
(where g(n) is an  integer), the optimization  problem  cannot 
be cast in  the  form  of (4). Any  attempt to scale the  non- 
uniformly  distributed  space  of (5) into  the integer  space is 
doomed to failure.  Thus,  general-purpose  integer  linear pro- 
gramming packages are not  suitable  for solving the problem 
unless specially  modified. We defer the discussion of  these 
modifications to Section 111. 

Another possible criterion  for  optimizing a(n) is to reduce 
the  output error  power of Fig. 1 to a  minimum.  In Fig. 1 ,  
u(n) and e(n) are  the  input signal and  error signal, respectively. 
V(w) and E(w) are the frequency  spectrum  of u(n) and e@), 
respectively.  It  can be  shown  that 

JE(4)2 = j V(4j2  - H ( 4 ) 2 .  (6) 

Since 

H(o) 

v ( n ) + V ( w )  e ( n ) s E ( w )  

D ( w )  

Fig. 1. D(w)  and H ( w )  are  the  frequency  responsekof  the ideal  filter 
and  actual  filter, respectively. Minimizing zn=o e(n)2 may be 
achieved by minimizing lo(w)12 ID(w) - H(w)I2 dw. 

minimizing the  output  error  power  thus implies the minimi- 
zation  of 

where W(o) = I V(a)I2. The  factors ID(o) - H(w)I2 and W(w) 
may be interpreted as the frequency  response  error  square  and 
the frequency  response  error  weighting  function,  respectively. 
W(o) can  be  used to weigh the relative  importance  of the 
ripples  in the passbands and  attenuation bands. The integral 
of (8) may  be  approximated  by a  summation as follows: 

J = W ( q )  ID(0j) - H(Oi>12. (9) 
i 

In (9), the  constant of proportionality in approximating the 
integral by a  summation is dropped  for  simplicity. Rewriting 
(1) in vector form, 

H(w) = C(0)TU (10) 

where 

C(0)T = 1 2 cos 0 2 cos 2 0 .  . * 2 cos __. [ N - l  0] 
2 

Substituting (10) into (9) yields 

J = {W(W~) D(o# - 2 W ( ~ i )  D ( w ~ )  C ( O ~ ) ~ U  
1 

+ W(oj)aTC(oj) c(wi)Tu). (1 1) 

The  minimization  of J ,  subject to linear  constraints on  the 
elements of u, is a  quadratic  programming  problem.  If the 
discrete  coefficient  space  of a(n) can be  converted to  the 
integer  space by a  linear scaling, then a  general-purpose  integer 
quadratic  programming package may be used for  the  solution; 
otherwise, special treatment as discussed in  Section I11 is 
necessary. 
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111. DISCRETE PROGRAMMING USING A 
SIMPLEX-BASED GENERAL-PURPOSE 

MATHEMATICAL PROGRAMMING PACKAGE 
Linear  programming and  quadratic programming  algorithms 

are  suitable  for  minimizing  or  maximizing  a  linear  objective 
function (linear  programming)  or  a  quadratic  objective func- 
tion  (quadratic programming)  subject to linear  constraints. 
Coupling  these  mathematical  programming packages with  a 
suitable  branch-and-bound  algorithm [ lo]  enables  one to 
design filters  with any discrete  coefficient  space. In  this 
section,  we  discuss  the  basic  principles  of  branch  and  bound 
algorithms, and present two useful  variants  for the filter 
design. 

The first  step  in a branch-and-bound  algorithm is to  obtain 
a  continuous coefficient (i.e., infinite  precision  coefficient 
value) design by using an  appropriate  general-purpose mathe- 
matical  programming  package, We designate  this  problem 
as Po.  The  next  step is to  select  a  coefficient  whose  value is 
not  a desired  discrete value. Let  this  coefficient  be a(n). 
If la{n)l and [a@)] are  two consecutive  discrete levels such 
that 

la(n>l < < Mn>l  J (1 2) 

then, since the discrete value of a(n) cannot  fall  between 
[a(n)j and [a(n)l, two mathematical  programming  problems 
P1 and P2 may  be generated by adding the  constraints 

l@)l (13a) 

d n )  2 la(n)l 3 (13b) 

respectively, to  the original  problem Po as shown  in  Fig. 2. 
P1 and P2 are solved individually.  Further  branching may  be 
performed on P1 and P2 to produce  the  subproblems P 3 ,  P4, 
P5, and P 6 .  The branching  process  of Fig. 2  may  be  continued 
until  the problem  is.completely  solved.  Further  details  may be 
found  in [9] and [ lo]  . The  number  of  branchings  required 
can be reduced  substantially by removing  those  subproblems 
for  which it can  be  predicted that an  improved  solution cannot 
be obtained.  Two  useful  variants  of  the  foregoing  are  now 
presented.  A  flowchart is shown in Fig. 3.  

1) The  isocost  branch-and-bound  search  finds the  optimum 
discrete  solution  by solving a minimum  number of  subprob- 
lems.  After solving P I  and Pz, they are  compared and  the 
better  one is selected  for  branching. If P, is the better  one, 
then  after solving for P3 and P4 ; P 3 ,  P4, and P2 are  compared 
and  the best one is selected  for  branching.  The  procedure con- 
tinues  by always  selecting the best  subproblem  for further 
branching. 

2)  The  depth-first  brawh-and-bound search  approach  finds 
a series of  suboptimum discrete  solutions  with  improving 
quality  until  the  optimum  solution is obtained.  The  algorithm 
is as  follows.  After solving Po, speculate on P1 and P 2 .  If a 
decision is made  to solve P I ,  then P2 is saved for  solution  later. 
After solving P I ,  speculate on P3 and P4; solve one  of  them 
and save the  other. This  procedure  continues  until  a  sub- 
optimum discrete  solution is obtained-hence the term  “depth- 

Fig. 2. A branch and bound tree. 

first.”  After  obtaining  a  discrete  solution,  reinitiate  the 
depth-first  search  process  from  an  unsolved  subproblem. 
This  process  continues  until the  entire problem is solved. 
Often, some methods are  incorporated  to  forecast the pos- 
sible result of pursuing  a  branch.  Unpromising  branches  are 
fathomed (i.e., terminated) to  save computing  cost. Compared 
to  the isocost  search, the depth-first  search solves substantially 
more  subproblems to  obtain  the  optimum  solution. 

At first  glance, it appears as though  the isocost  search is 
preferred to  the  depth-first search  for designing high-order 
filters.  However, the  depth-first search is often  preferred  for 
high-order  filter design because the  computing  cost for the 
optimum design of  a  high-order  filter is excessive. The depth- 
first  search  has the  ability of producing  a  first  suboptimal  dis- 
crete  solution quickly and  then improving on the suboptimal 
solution  with  additional  investment  of  computing  resources. 
In  practical  cases, it is better  to have a  good  suboptimal 
discrete  solution  rather than having no solution  at all. 

The  computing cost  required  for  discrete  optimization 
depends on several factors  including the following. 

1) The efficiency  of the linear  programming and  quadratic 
programming  packages.  This is important as they are the 
optimization  tool. 

2) The strategy  for  selecting an a(n) for  branching. The 
strategies used here  are  the general-purpose  strategies  reported 
in  standard  texts of integer  programming. 

3) The  strategy used to  speculate on  the subproblems in a 
depth-first  search  procedure  and  the  ability to forecast un- 
promising  branches. 

4) The  quality  of  the  suboptimal design if a  suboptimal 
solution is acceptable. 

5) The  particular  problem  at hand. Computing  cost re- 
quired  for designing two filters  of the same  filter  length, but 
with  slightly  different  sets of specifications  may  sometimes 
differ by as much as an  order  of  magnitude. 

IV. EXAMPLES 
Fig. 4 presents  a  comparison  of  22  low-pass  filters,  11  of 

which  are optimum discrete  minimax  designs, while the re- 
maining  11  are  obtained by rounding  the  coefficients  of  the 
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Se t  Z = - 
Compute the  new subproblems'  costs. 

discrete s o l u t i o n  
generated discrete s o l u t i o n  

KO + 
The ver tex  of t h e  new 

fathomed. s o l u t i o n .  
It discrete  s o l u t i o n  is  I( 1 new d i sc re t e  

Z = cos t  of the  

Subproblem whose costs 

the lowest cost (isocost search) o r  
t h e  subproblem a t  the deepest p o i n t  
of t h e  tree ( d e p t h  f i rs t  search) . 

Fig. 3. A tree  search  flowchart. 

-161 1. i- Wlthout discrete optimization 

- 4 8  j gi(n) : Integer 

- 5 2  i ,O ; y z  -: I , , , 
I1 13 15 17 19 21 2 3  25   27  29 31 

Fil ter  length ( N )  

I 

Pig. 4. A comparison  between  filters  designed using integer  program- 
ming and  those  obtained by rounding  the  coefficient values of the 
corresponding  infinite  wordlength design. The  normalized  peak 
weighted.ripple 6/b is  used as the  performance  criterion. Each of 
the  coefficient values is expressed as a sum or difference  of  two 
powers-of-two. 

corresponding  infinite  word  length design. The passband and 
stopband have the same  ripple weighting and  the normalized 
cutoff frequencies  are 0.15 and 0.25, respectively. 6 is the 
peak  weighted  ripple.  The  passband gain denoted by b is fixed 
at  the mean value of the passband  ripple.  The  normalized 
peak  weighted  ripple 6/b is  used as the  performance measure 
criterion.  Each  of  the  coefficient values h(n) is expressed  as  a 
sum or  difference  of  two  powers-of-two, which allows for  a 
simple  multiplierless  implementation. 

h(n) = si (n)  x 2g'@) 
i = l  

&(n)= - I , O ,  1 (1 4) 
where gi(n) is an  integer  with 0 >gi(n) 2 -9. In Fig. 3, for a 
filter  length N = 31, the integer  programming design is 17 dB 
better  than  that  obtained  by rounding the infinite  word  length 
design. 

Discrete  space  optimization is particularly useful when  there 
is a  frequency  response  specification  with given tolerance to 
be met.  For purposes of  comparison,  an  infinite word  length 
FIR linear phase filter,  which  meets  a PCM channel CCITT 
specification  with N = 35 and  no  flexibility for discrete  space 
design,  as  used in [l 11 , is considered. Fig. 5 shows  a design 
meeting the specification by using integer  linear  programming 
with N = 36, and  each  coefficient value  expressed as a  sum or 
difference of two-powers-of-two.  Thus,  for  nonmultiplex 
parallel arithmetic, each multiplier  can be replaced  by  an 
adder  (shifting  may  be achieved by wiring in  a  hardware  imple- 
mentation). Fig. 6  shows the  frequency response  of  a  filter 
with N = 36 obtained by  rounding the coefficient values of 
the  infinite  word  length design to a  sum  or  difference of 
two  powers-of-two. Obviously, this design fails to meet the 
specification. This specification  cannot be met  with  this 
coefficient grid without  discrete  optimization  for  an  arbi- 
trarily large filter  length. 

In the above designs, the  computer  time  on  a CDC 6400 
ranged from  a few seconds to  a few hundred sec.onds. 
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m 

m -  
- 0  - Optirnlzed  dlscrete solution - 
\ .  

- 1 0 -  
...~ Optmnzed conlmuour s o l u t ~ o n  

g - 2 0  - a -  

F r e q u e n c y  / kHz , ( f ,=SZkHz) 

(b) 

Filter length , N = 36 

Passband gam = 664 9 

Impulse response 
h( 0) = Z 3  -2' = h(35) hi 9) = 2' + 2 '  = h(26) 
h( 1) = 2' = h(34) h(10) = 4 - 2 '  = h(25) 
h( 2)  = -2'-Z1 = h(33) h ( l1 )  = - Z 5 + 2 '  = h(24) 
h( 3) = 4 - 2 '  = h(32) h(12) = - z 5 + Z 0  = h(23) 
h( 4 )  = -9 = h(31) h(13) = -2 '+2 '  = h(22) 
h( 5 )  = -2' = h(30) h(14) = 2 ' + a 3  = h(21) 
h( 6 )  = Z3 = h(29) h(15) = 2'+2' = h(20) 
h( 7) = T - 2 '  = h(28) h(16) = 8' = h(19) 
h( 8) = 2' = h(27) h(17) = Z 7 + 2 '  = h(16) 

In) 

coefficient  filter is a  nonlinear  process  requiring excessive com- 
puting  resources, even for small  designs. We now  present  a 
suboptimal  alternate  method  which uses moderate  computing 
resources. We shall  assume that  two  discrete  coefficient  filters 
F1 and F2 , with  frequency  responses Hl(o) and H2 (0) and 
lengths N 1 ,  and N 2 ,  respectively,  are to be  cascaded. The 
resulting  frequency  response 

H(0) = Hl(0) H2 (0) (1 5) 

is required to meet  a given specification  within  a given 
tolerance.  There  are no specific  rules  for  choosing N l  and 
N 2 ,  and so they  must be obtained  by  the  trial-and-error 
method. If Nmin is the length  of the minimum  length  infinite 
word  length  filter  required to meet  a given specification  within 
a given tolerance, then a  starting  value  of N 1  and N2 may  be 

N1 = N ,  = +N,i,. 

Utilizing the fact  that  the  optimization  of H 2 ( 0 )  for a given 
Hl(w), so that H ( 0 )  is a  best approximation  to a  desired func- 
tion D(o), is a  linear  optimization  process, the following 
algorithm is presented. 

Step I :  Design F1 so that H,(w) best  approximates D(o). 
Step 2: Design F2 so that H(w) = H l ( o )  H,(o) best  ap- 

Step 3: Stop if possible. 
Step 4: Redesign F1 so that H(w) best approximates D(w). 
Step 5: Stop if necessary. 
Step 6: Go to Step  2. 
The  stopping  criterion of  the above  algorithm is flexible, 

depending on  the computing  resources  of the designer. The 

proximates D(u). 

\ b J  above  algorithm may  be  repeated  for several sets  of N 1  and 
Fig. 5. The  frequency response of a  discrete coefficient filter optimized N,, and  the best  result is selected. ~ i ~ .  7 shows the frequency 

using integer  programming as well as  an infinite wordlength  filter  with 
length N = 36 satisfying  a PCM channel CCITT specification. Note reSpOnSe  Of a  cascaded  filter  whose  coefficient values are 
the coefficient values shown have been scaled such that  they consist expressed as a  power-of-two  meeting the Same specification. 

coefficient values may, of course, be scaled by any integer  powers- 
of positive powers-of-two; a gain of 664.9 is defined  as 0 dB. The F ~ ~ .  8 ,shows a comparison of 12 bandpass designs using a 
of-two. weighted  least  square  response  error  criterion [see ( 8 ) ]  , six of 

2 4 6 8 IO 12 1 4  I 6  

F r e q u e n c y  / kHz , ( fS=32kHz)  

Fig. 6.  The  frequency response  of an  unoptimized discrete  coefficient 
filter  with  length N = 36 obtained  by  rounding  the  coefficient values 
of the  infinite wordlength design. Each of the coefficient values is 
expressed  as  a sum or difference of two powers-of-two. The allowed 
range of the powers-of-two is the same as in Fig. 5. Obviously, the 
response  does not  meet  the specification. 

In  order to meet  the specification  with  a  filter  whose  coeffi- 
cient values are  an exact integer power-of-two, a  cascaded  de- 
sign is considered.  The  optimum design  of a  cascaded  discrete 

which  are  optimized  (suboptimal  results obtained  by  partial 
tree search)  in the discrete  coefficient  space, and  the remaining 
six are  obtained  by rounding the corresponding  infinite  word 
length  coefficient values. The specification  in  normalized 
frequency is  as follows. 

Band I :  D(o) = 0, W(o) = 1, band edges = 0 and 0.05. 
Band2: D(o) = 1, W(o) = 10, band edges = 0.1 and 0.3. 
Band 3: D(o) = 0, W(o) = 1, band edges = 0 3 5  and 0.5. 
Each  coefficient value h(n) is  expressed  as  a sum  or  differ- 

ence  of  two  powers-of-two as in (14), with the  exception  that 
the range of g j  (n) is such  that 

-1 > gi(n) Z -14. (1 6) 

It is evident from Fig. 8 that  an integer  programming design 
(even when  suboptimal)  produces significant improvement 
in  performance over  simple rounding of coefficient values. 
The  computer  time required to design the filter with  length 
N = 95 was 10 s on  an IBM 3033 computer using a  special- 
purpose  program  recently  developed  for  high-order  discrete 
coefficient FIR filter designs [ 121 . 
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c . 4 ,  

F r e q u e n c y  / kHz , ( fS=32kHz) 

(a) 

F r e q u e n c y  / kHz , (f,=SZkHz) 

0 )  
Filter lenglhs , N i  = 24 , N, = 22  

Passband gain = 38210 

Impulse response of F1 

h(  1)  = -a5  = h(22) 
h(  0 )  = 2' = h(23) 

h(  2)  = Z 3  = h(21) 
h (  3) = Z 5  = h(2O) 
h(  4) = Z 5  = h(19j 
h (  5 )  = -2' = h( l8)  
h(  6) = -2 = h(17) 
h(   7 )  = - Z 5  = h(16) 
h( 8) = 2' = h(15) 
h( 9 )  = Z 5  = h(14) 
h(10) = Z6 = h(13) 
h ( l l )  = Z6 = h ( l 2 j  

Impulse response of F2 

h (  1)  = 2' = h(20) 
h( 0) = 2' = h(21) 

h(  3) = -2' = h(l8) 
h (  2) = -2' = h(19) 

h(  4)  = -2' = h(17) 
h( 5) = - Z 3  = h(16) 
h(  6 )  = 2' = h(15) 
h (  7 )  = z 3  = h(14) 

h(  9) = Z 5  = h(12) 
h (  8)  = 2' = h(13) 

h(10) = Z 5  = h(l1) 

(c) 

Fig. 7. Two  filters F1 and F2 of length N1 and N 2 ,  respectively,  are 
cascaded to meet the PCM channel specification. The coefficient 
values of F1 and F2 may be scaled by any  powers-of-two. The pass- 
band gain is then scaled by the  product of the scaling factors  for 
F l  and F2. 

o - Without discrete optlmlzatlon 

*i X 

10-5 J i5 
55 65 75 85 95 

Filter  length [NI 

Fig. 8. A comparison  between  filters designed by integer programming 
and those obtained by rounding  the  coefficient values of the  infinite 
wordlength design. The criteria  of  performance is the mean square 
error W(w) (H(w) - D ( w ) ) ~  dm. Each of the coefficient values is 
expressed as a sum or difference  of two powers of 2. Note rounding 
the  coefficient values does not  guarantee a design with  a longer filter 
length to be at  least as good as one with  a shorter filter length. 

V. DISCRETE OPTIMIZABILITY OF A WEIGHTED 
LEAST SQUARE DESIGN 

In  this  section, we present  a method  for predicting how 
much can  be gained by performing  discrete optimization over 
simple  coefficient  rounding.  The basic principle is as  follows. 
After the  continuous coefficient design is obtained, fix  a 
coefficient at some other value away from  its  optimum value. 
This will cause  an  increase in  the  error measure.  Reoptimize 
all the  other coefficient values to compensate  for the effect 
of fixing the above  coefficient value away from  its  optimum 
value. The  error  measure will decrease by  an  amount, which 
is a  measure  of the discrete  optimizability.  Unfortunately, 
this  change  in the error  measure cannot be  obtained  without 
performing  discrete  optimization. However, a  measure of the 
change  in the  other  coefficient values, in  order to compensate 
for  fixing  some  coefficient value away  from its  optimal value, 
can  be obtained  without performing  discrete  optimization. 
We shall use this  change to serve as  a  measure on the discrete 
optimizability.  Let 

a =aopt t 8 (1 7a) 

where aopt is the  optimum set  of a which  minimizes (1 1). 
aopt satisfies the equation 

[  ai) c(ai)  at) aopt = c w(ai> c(ai>  ai) 
I i  

(1 7b) 
and 

Jopt = W(Wi> D2(0i) 
1 

- azpt  [  ai) c(ai> c~(ai)] aopt. (1 7c) 
i 

Jopt is the value of J when a = aopt. Let 

c = CC(0i) C(0j)T W(Wj). (1 8) 
i 

C is a  symmetrical positive definite  matrix.  Substituting 
(17a)-(17c)  and (18) into (11) and  noting  that aTptCB= 
8'CuTpt yields 

J = Jopt + 0TC8.  (1 9) 

The basic principle of  obtaining  the discrete  optimizability 
of a  filter design problem can be illustrated by using a two- 
coefficient  example.  Let 

a = [a(O) a ( ] ) ]=  (20a) 

aopt = bopt(0) a o p t ( ~ ) l T -  (20b) 

Substituting (20) into (19), the  contour  for a given  value o f J  
is an ellipse as shown  in Fig. 9  where J2  > J , .  Consider  Fig. 
9(a). Moving the value of a ( ] )  from aopt(l) to a'(1) while 
keeping a(0) fixed at aopt(0) increases J from Jopt to J 2 .  If 
a(1) is  fixed at a'(l) ,  an  optimization process  will move the 
value of a(0) from aOpt(O) to a'(0) to minimize J .  Now consider 
Fig. 9(b) and (c).  Moving the value of a(1) from aopt( l )  to 
a'(]) increases J to J 2 .  Fixing the value of  a(1)  at a'( l ) ,  it  can 
be seen that  no  optimization process is able to select another 
value of a(0) to reduce the value of J because the  optimum 
value of a(0) for  any value of a(1) is aopt(0). The effect  of 
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I I 
I 

0 
' - a ( 1 )  

aopt(1)  a' (1) 

(C) 
Fig. 9. Elliptical  contours of J .  

moving the value of a(1) from  its  optimum value cannot  be 
partially compensated  by changing the value of a(O)! From 
the observation  of Fig. 9, we draw the conclusion that  a  filter 
design problem  has low discrete  optimizability if 

1) the principal  axes of the elliptical contours  of J have 
roughly  equal  length  or if 

2) the principal  axes  of the ellipse  are  almost  parallel to  the 
axes of a(0) and a(1). 

In  general, (19)  may be written as 

J = Jopt + OTMSMTB. (21) 

S is the spectral  matrix (a diagonal  matrix  whose  elements 
are the eigenvalues of C )  and Y is the normalized  modal 
matrix (a matrix whose  columns  are the normalized  eigen- 
vectors  of C). Equation  (21) shows that  the square  roots  of the 
eigenvalues of C are the lengths  of the principal  axes of  the 
multidimensional  ellipsoid.  The  elements  of the normalized 
eigenvectors  of C are the  direction cosines  of the principal 
axes.  Hence,  we  can  draw  a  general  conclusion that  the filter 
design problem  has  low  discrete  optimizability if 

1) the eigenvalues of Care roughly  equal or if 
2) a large portion  of  the elements  of M are  either  almost 

A special case of the filter design problem is 
zero or almost  1. 

W ( 0 )  = 1. (2   2 )  

In  this  special  case, C is a  diagonal matrix  and  the values of all 
of  the  elements  of M a r e  either  1  or 0. This  means that  the 
principal  axes of  the ellipsoid  are  parallel to  the axes of a, and 
hence, the discrete  optimum  solution is the  rounded coefficient 
solution. 

VI. DISCRETE OPTIMIZABILITY OF A MINIMAX DESIGN 
The basis of  the filter design depends upon  how  much  the 

cost function [8] -[lo] and  the  coefficients will change  in 
the next  iteration  when  one  of  the  coefficient values is  incre- 
mented.  Experience has shown that  this  information is 
insufficient  for  determining (even qualitatively) the discrete 
optimizability  of the filter design problem.  However,  our 
experience  has  shown that if the discrete  coefficient  space is 
the powers-of-two  space,  then  the  problem  has  high  discrete 
optimizability. 

In the minimax  sense,  there  are no general contours of 
ellipsoids  such as those  shown in Fig. 9.  The  contours are 
multidimensional  polygons  specific to each  filter design 
problem.  To  present  an  idea  of the shape  of  these  polygons, 
we  choose a simplified  problem  whose  specifications  are 
shown  below. 

Filter type: low-pass;  symmetrical  impulse  response;  length 
= 3 .  

Band  edges: band  1 : ' 0 and 0.1 normalized 
band 2:  0.3  and 0.5 1 frequency. 

Peak  passband ripple = peak stopband  ripple = 6. 
Objective: minimize 6 .  
From the above  specifications, the frequency  response H(o) 

is given by 

H(o) = a(0) + 2a(l)  cos a. 

A set of inequalities  suitable  for  solution  by  linear  program- 
ming may  be  formulated  on  a  dense  grid  of  frequencies.  For 
simplicity,  we  shall  consider the inequalities on  the following 
four grid points. 

0 0  = o  
0 1  = O . l X 2 X n  

0 2 = 0 . 3 X 2 X n  

0 3  =n. 

The optimum  solution is 

a(0) = 0.3618 

a(1) = 0.2764 

6 ~ 0 . 1 9 1 0  =tiopt. 

The contours  for  the given values of 6 are  shown  in  Fig. 10. 
If the value of a(1) is moved to 0.4, without  further  optimi- 
zation 6 becomes 0.4382. Fixing a ( l ) = 0 . 4 ,  an  optimizing 
algorithm will move the value ofa(0)  to 0.5, reducing 6 to  0.3. 

In the weighted  least  square  sense, the  contour of J for 
J >  Jopt is an ellipse  whose  principal  axes  bear a fixed  ratio 
and have  a  constant  direction  cosine  independent  of  the value 
of J .  In the  minimax sense, the  contours  of 6 do  not have a 
fixed  geometrical  shape.  The  particular  geometry of  the 
contour of 6 depends on  the value of 6. Fig. 11 shows a few 
contours of 6 for  the example of Fig. 10. It  can be seen  from 
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Fig. 10.  Polygonal contours of 6. 
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quadratic programming  are  particularly  useful for designing Dr. i i m  is a member of Eta Kappa Nu. 

Fig. 11. Contours of 6 for  the example  of Fig. 10. The  contour is a 
triangle for 6,pt < 6 < 0.2639. It i s  a  quadrangle for S > 0.2639. 

Fig. 11 that  the  contour changes from a  triangle to a quad- 
rangle when 6 crosses the value 0.2639. 

VII. CONCLUSION 
The  methods  of integer  linear  programming  and  integer 

FIR filters with  the  powers-of-two  coefficient grid. The result 
obtained is significant  when  compared to simple  rounding of 
coefficient values. The  computing cost for  the  optimu’m 
design of  a  high-order  discrete  coefficient  filter is  generally 
very high.  However,  good  suboptimal  results  may be  obtained 
with  affordable  computing  cost by coupling  a  suitable  linear 
programming  algorithm or  quadratic programming  algorithm 
with  a  depth-first  search  algorithm.  The  construction  of  a 
high-efficiency  optimization  algorithm  for designing  high- 
order  discrete  coefficient  filters is an area for  future research. 
The eigenvalues and eigenvectors of C [see (1 l)] provide 
useful a priori knowledge as to  how  much  can  be  gained by 
using discrete  optimization  techniques over  simple rounding 
of coefficient values. In the minimax  case,  there is no easy 
a priori approach  for determining  optimizability. 
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Deconvolution of Nonstationary  Seismic Data 
Using  Adaptive  Lattice  Filters 

AbStract-This paper examines the results of the application Of two 
lattice algorithms to the problem of adaptive deconvdution on non- 
stationary seismic data. A comparative study of thz  deconvolution 
performance of the recently  proposed gradient  lattice &d least-squares 
lattice algorithm$ is made  with  the  help  of experimeflts on simulated 
and real seismic data. We show that the gradient  lattice algorithm is 
computationally superior, but it suffers  from a possiljle slow rate of 
convergence, while the least-squares lattice  has  better convergence 
properties  and is more  robust numerically. We also show that  both 
algorithms can yield  equally good  deconvolution results  with  a  moder- 
ate amount of amputation. Finally; we indicate that a modified de- 
convolved output, derived as a linear  combination of the forward  and 
backward residuds, improves the performance  withofit involving any 
additional  computational burden. 

D 
I. INTRODUCTION 

ECONVOLUTION of seismic data  with  a  time varying 
operator  has  been  shown to be very effective  in  removing 

multiples  and  reverberations  which  render  the seismic trace 
nonstationary. Griffiths,  Smolka,  and  Trembly [ 11 have ap- 
plied a  modified  form  of  the LMS adaptive  fdter  originally 
developed by Widrow et al. [4], while Prasad and Mahalanabis 
[2] have studied  and  compared  the  performance of  the LMS 
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adaptive  filter,  the  adaptive  lattice  filter,  and  the  adaptive 
Kalman  filter  identifier.  A  comparative  study  of  these 
methods  [2]  indicates  that  the  adaptive  lattice  filter  has  the 
same  order  of  computational  complexity as the  adaptive 
LMS filter, but  ihat  it has a faster  convergence d e .  The  rate 
of convergence has a direct  bearing  on  the  effectiveness  of 
deconvolution  for  time varying or  nonstatiorlary seismic 
data. AS discussed in [2],  the reason for  the slow convergence 
of  the LMS algorithm lies in the  typically large eigenvalue 
spread of  the signal correlation  matrix. On the  other  hand, 
the convergence of  the  adaptive  gradient  lattice  fdter is inde- 
pendent  of  the eigenvalue spread.  This  happens  due to  the 
fact that  the  lattice  configuration (Fig. 1) carries out  an 
approximate  mge-by-stage  orthogonaiization of the  input 
data,  which  permits an independent  choice fo1 the  adapta- 
tion  constant fo1  each  stage. 

The  above-mentioned  adaptive  lattice  algorithm,  however, 
still  suffers from an arbitrariness in  the  choice  of  a suitable 
value for  the  displacement  constant.  This  choice is dictated  by 
the  contradictory  requirements  of  a fast  convergence  rate  on 
the  one  hand  apd  a low maladjustment noise (in the  steady 
state)  on  the  other. We consider  here  the use of a recursive 
least-squares  algorithm [5]  for  updating  the  lattice  filter 
coefficients,  which avoids the  need  for  choosing an arbitrary 
displacement  constant. This algorithm is mathematically 
equivalent to the  adaptive  Kalman  algorithm  and  requires 
computations of the  order  of N .  Thus,  it  combines  the  de- 
sirable computational  and  numerical  advantages  of  the gra- 
dient  lattice  with  the convergence properties  of  the  adaptive 
Kalman  algorithm.  The  convergence  rate,  the  computational 


