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Time  Delay  Estimation  Via  Cross-Correlation in the 
Presence of Large  Estimation  Errors 

JOHN P. IANNIELLO 

Abstract-The  estimate of the  difference  in  time of arrival of a  com- 
mon  random signal received at two sensors,  each of which also receives 
uncorrelated  noise, is examined  for  both small and large estimation 
errors. I t  is shown  that  as  the  post-integration signal-to-noise ratio 
decreases,  the  correlator  exhibits  a  thresholding  effect;  that  is,  the 
probability of a large error (an anomalous  estimate) increases rapidly. 
Approximate  theoretical  results  for  the  probability of an  anomaly  are 
presented  and  are  verified  experimentally.  The  variance of the  time 
delay  estimate  is  examined  for  both  a  gated  mode, in which the  time 
delay  corresponding to the  correlation  peak  closest to the  true  time de- 
lay is  used as the  estimate of time  delay,and  an  ungated  mode, in which 
the  time  delay  corresponding to the largest peak over the full range of 
the  correlator  delay  times is used as the  estimate.  The observed variance 
for  both  modes is compared  with  the  theoretical  variance  based on a 
small error analysis. For  the  gated  modes,  the signal-to-noise ratio  be- 
low  which the observed variance begins to differ significantly from  the 
small error  theory  can  be  reliably  predicted  from  a  linearity  criterion. 
I t  is shown,  however, that  the  expected variance for  the  ungated  mode 
can  depart  from  the small error  theory at a higher signal-to-noise  ratio 
than  for  the  gated modes;  thus the  variance  due to anomalies  can  be  the 
most  important  factor  in  determining  the region of applicability of the 
small error analysis. 

I.  INTRODUCTION 
HE estimate of the difference in  the  time  of arrival of  a 
common  random signal received at  two  or  more sensors, 

each  of  which also  receives uncorrelated  noise, is a  problem of 
considerable  practical  interest  in  underwater  acoustics.  One 
common  method  for estimating the  time of arrival difference 
is to cross-correlate the  two signals and to select the peak  of 
the correlogram as the  estimate  of  the  time difference. The 
variance  of the resulting  time  delay  estimate  has  been derived 
by several authors [ I ]  , [2] . As  discussed in [ 11 these  results 
require that  the  estimation  errors be  sufficiently small for  the 
estimate to remain  within the linear region  of the derivative of 
the signal autocorrelation  function. It is  also  well established 
that  the cross-correlator,  with  proper  filtering, is the  optimum 
time delay  estimator  in  the sense that  the variance  of its esti- 
mate reaches the absolute  minimum variance-the Cramer-Rao 
lower bound (CRLB) [ 11 -[3] . Again the  correlator is opti- 
mum  only  for small estimation  errors.  This  may  be  seen  by 
noting  that  the cross-correlator,  with  proper  filtering, is a 
maximum  likelihood  estimator of time delay [2] ; maximum 
likelihood  estimators,  however,  only  reach  the CRLB for  non- 
linear  estimation  problems  such as the  one we consider here, 
when  estimation  errors  are small [4, p.  711.  Recent experi- 
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mental  studies have  verified some of these  theoretical  con- 
clusions [ 51 , [6] . 

Time  delay  estimation  in the presence of  large estimation 
errors  has  not been  thoroughly  examined.  In  particular it is 
not  known  under  what  conditions  the variance of  the  time 
delay  estimate begins to depart  significantly  from that given 
by the small error analysis. A rule of  thumb is that  when  the 
standard  deviation  of the  estimate is on  the  order of the  in- 
verse signal bandwidth,  for low-pass signals, or  the inverse ten- 
ter  frequency  for  narrow-band signals, then  typical  estimates 
surely  exceed the linear region of  the derivative  of the signal 
autocorrelation  function,  thus  the  assumption  required to 
derive the variance expression is violated,  implying that  the 
errors will be larger than  predicted. A related discussion con- 
cerning the applicability of the CRLB is  given in [4, p. 701. 
This  argument  applies  only to local  errors  (when  estimates are 
near the  true value), it  does  not address the possibility  of large 
errors  or  anomalous estimates. I t  is appropriate to consider 
only  local  errors  when  a  tracking  gate or  an a priori knowledge 
of the  time delay  dynamics  can be used to limit the magnitude 
of the error  excursion. On the  other  hand,  when a priori in- 
formation  about  the  time delay is lacking, cross-correlators 
are often used  ungated  in  the sense that  any  time delay in  the 
observed range of the correlogram  delay  times is allowed. It  
is important  then to understand  the behavior  of  this  ungated 
mode. 

As we show  below,  a  fundamentally  more  interesting  phe- 
nomenon  than a  simple  increase in variance occurs as the post- 
integration  signal-to-noise  ratio (SNR)  is decreased;  namely, 
below a certain  post-integration SNR  the  probability of  an 
anomalous  estimate increases suddenly  and  precipitously. 
This is a  threshold  phenomenon similar to  that observed in 
frequency  modulation  systems  [7, p. 6611, pulse position 
modulation  systems (PPM) [7,  p.  6271,  or  more generally for 
any  nonlinear  estimation  or  communications  system [4, p. 273; 
7 ,  p. 6171. As  discussed by Woodward [8, p. 901 a  threshold 
effect is liable to occur whenever a message of low  dimension- 
ality (in our case time delay,  which is one  dimensional) is 
“encoded”  in  a signal  having higher  dimensionality or  more 
degrees of  freedom.  Thus,  the  threshold  effect is fundamental 
and unavoidable. 

In  this  paper we first  present  an  approximate analysis for  the 
probability  of  an  anomalous  estimate,  and  hence  for  the  onset 
of threshold. We then describe  experimental  results verifying 
the  theory,  and  then discuss theoretical  and  experimental 
results for  the variance  of the time  delay  estimate in  both  the 
gated and  ungated  modes. 
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11. ANALYSIS FOR PROBABILITY O F  ANOMALY 
We assume that we have two sensors  which receive the  two 

random signals x l ( t )  and x2 (t) given by 

x1 (4 = + n l ( 0  
~ 2 ( t )  = ~ ( t  - D) + nZ(t) (1) 

where s, n l ,  and n2 are  uncorrelated Gaussian random  pro- 
cesses and D is the difference in arrival  time. D is estimated 
by forming the  correlator  output z (A) via 

p(z,) is the  probability density  function  for  any  of  the z, ,  
all of which  are  assumed to  have identical  probability  density 
functions. 

To proceed we must  find  appropriate  forms  for p ( z o )  and 
p (z,). Since zo and z, are  simply  cross-correlation function 
estimates,  their  mean values and variances  are known [9, p. 
1831. Thus, if the  autocorrelation  functions  of  the signal 
R,(7) and the noisesRN(7)  are given by 

Rs (4 = SPW 

z(A)=- x1( t )xz ( t+A)dt ,  1 lT 
= $ l T x l ( t t  A)x,(t)dt,  -To < A < O  (2) 

O<AX<To 

and seiecting the value  of A which  maximizes z(A) as the esti- 
mate D of D. We will assume that s, n l ,  and n2 have identical 
spectra. We also  assume that a T t To second  record  of x l ( t )  
and x2( t )  is available,  although we only average for T seconds. 
By processing  in  this manner we avoid end  effects  and  can 
form  unbiased  estimates.  which have the same variance  (for 
noise  only inputs)  at each lag value. If  we processed  only  a 
T second  record,  taper scaling [9, p. 1821  would be required-to 
avoid bias. Then,. however,  each lag estimate  would have a 
different  variance. The difference  between the  two  methods 
will be small for large bandwidth  time  products. 

To  determine  the  probability  of  an  anomalous  estimate we 
follow the  approximate  analysis  used  for PPM [7,  p. 6271 ; as 
for PPM the  approximate analysis will be  shown to agree re- 
markably well with  experiments. We first  recognize that  there 
is a signal correlation  time T, (to be defined  exactly  later) over 
which the signal is reasonably well correlated and  beyond 
which the signal correlation falls to  zero.  Thus the observed 
range of lag values, +To, may be expected to contain  roughly 
M = 2T0/Tc independent values of z (h) ,  which we denote  by 
z , .  We assume that  the  true delay is located  at  one of the 
time  delays h, corresponding to  the z, , say A. . We define an 
anomalous  event as one  for which the  estimate of  time  delay is 
farther  than +Tc/2 from the  true value. If we define  the event 
E as 

E = [z, > zo for  at least one A,] (3) 

then we can  argue as in [7,  p. 6291 that E is a  reasonable 
approximation  to  what we  mean by an  anomaly  (the  validity 
of the  approximation is to be tested  by  experiment).  Since 
the z, are  assumed  independent, the  probability  of  the  event 
E is close to  the probability of erro'r in  the  communication of 
M equally  likely messages or [4, p. 2621 

m 

P,. [anomaly] 'P,. [E] = 1 - 1, p(z,) 

. [ 1; P (zm) dzm] M - l  dzo (4) 

where D(Zn) is the  Drobabilitv  densitv  function of Zn and 

RN(7) = NPW (5) 

where S and.N are the signal and noise variance and ~ ( 7 )  is the 
normalized  correlation  function of both signal and noise,  and 
if the  time  -bandwidth  product is large, i.e., T/T, >> 1, then 

- 
zo = S,z, = 0 (64 

Var [ z o ]  N [(S t N)' t S 2 ]  /(B,T) (6b) 

Var [z, ] (S t N)~/(B,T)  (6c) 

where B, is the statistical bandwidth  [9, p. 2781. 
Now assuming that zo and z, are  Gaussianly  distributed 

with  means and variances given by  (6), we can  substitute  these 
approximations  into (4) and,  after normalizing  variables, we 
find 

P,[anomaly] 2 1 - Jw - dx exp [- 3 (x - 4 2 1  
-co * 

where 

Note  that A is the post-integration SNR and B is a scaling 
factor which  takes on values between  1 and 2lI2. Equation 
(7a) will have to  be  evaluated  numerically. 

As in'  the  communication analogy,  an  approximate  analytic 
expression  establishing  an  upper bound  on P, [anomaly]  can 
be found.  Thus as in [4, p.  2641 

(8) 
Then, again assuming that  the underlying  probability  distribu- 
tions  are Gaussian with  means and variances given by (6), it 
can  be  shown that 

P,. [anomaly] < (M - 1) - 1 exp [ - 2 1 P] (sa) 
I \ ", ., .\/z;;C 
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where 

111. DESCRIPTION OF EXPERIMENT 
A computer  experiment  simulating the problem of interest 

was run  by generating two  unit variance, independent Gaussian 
random  number sequences, Vi and Vi, and  combining  these to  
generate the sequences X,i  and according to  the rule [lo, 
p. 9531 

x, j = (1 -I- S/N) l /2  uj (104  

x2i = (1 + S/N)'/2 [rUi + (1 - r2)1'2 v;] (lob) 

where r = (S/N)/ [ 1 + S/N]  . Thus  both XI and X, have total 
variance (1 t S/N) ,  and  the  correlation  of  the  two channels, 
XI X,, is S/N. This  procedure  thus simulates the problem  de- 
scribed by (1) and (5) with N in ( 5 )  set  equal to unity,  with 
S in ( 5 )  set  equal to (SIN), and with D = 0. 

The sequences X,i and X,, were then low-pass  filtered by a 
finite  length Gaussian f i ter  with  sampled  transfer function 
h(n AT) given by 

h(nAT) = [ 2 ( ~ a ) ' / ~ ] - '  exp [-(nAT)2/(4a)], n < 16   . ( l l a )  

resulting in sequences  with  sampled  autocorrelation function 

R(nAT) Z (' s/N) exp [-(nAT),/(sa)]. 
2(27ra)1'2 

where AT is the  tiine  between samples (AT is effectively set 
equal to  unity below). These  simulate time series with  the 
spectral  density 

~ ( 2 7 r f )  E (1 t S/N)  exp [ - 2 ~ ( 2 7 r f ) ~ ] .  (1 IC) 

This form of filter was chosen  since  it is a  low-pass  filter  whose 
autocorrelation  function  has  no  sidelobes;  bandpass  filters  or 
filters  with  high  sidelobes  could introduce  added complica- 
tions which we do  not wish to deal  with  now. We discuss this 
again briefly in  the final  section. 

A simulated T t To second  record  of  filtered data was formed 
by  the processing  described  above. With T = LAT and To = PAT 
this gives two, L t P point  records. The cross-correlation of 
these  two sequences was estimated  by dividing these L + Ppoint 
sequences into (L + P)/P contiguous  segments  and  proceeding 
via the  FFT  technique  outlined  in [ l l ,  p.  5601.  This gen- 
erates  a  correlogram  estimate at lag values between +_P(*T0 s). 

To determine  which  events  constitute  an  anomaly we first 
must decide on a  reasonable  definition for  the  correlation  time 
Tc  of  the process. We use the  definition 

m 

TC E R-'(O) R(T) d ~ .  (1 2)  

Note  that if the correlation  function were a  boxcar  function 
with  constant value in -T1/2 < T < T,/2 and  zero  elsewhere, 
then (12) would give TC = T1 . If, as another example, the 
process had a  spectrum  that was uniform  in -B < f < B then 
(12) would give a value of T c  = 1/2B. For  the process that we 
are  considering we find,  after  substituting  the  continuous ver- 

sion  of (1 1 b) into (12) and  evaluating the integral, 

TC = 2(27ra)",. (13) 

Other  definitions  for Tc could have been  chosen.  Equation 
(1 7) is reasonable and will be  shown to yield  satisfactory results. 
M ,  the number of independent values  of z(A), is then given by 

where 

a = b2AT2. ( 14b) 

The region Re corresponding to a  correct  (nonanomalous) 
value of D is 

T c  A Tc  3 R :- - < D < - or - (2n)'l2b < - G (27r)'"b. (15) 
e 2  2 AT 

Finally, to completely  specify  the  problem we must  choose  a 
value for  the  bandwidth-time  product given by (6d). For'the 
spectrum  of (1 1) B, = [2(7ra)"'] -' so with  (14b) 

BiT = - L 

2(7~) ' /~b '  

To specify our  problem we can  choose M and  the  FFT size 
P ;  this  determines the spectrum  parameter b from (14b). Then 
we must  choose L ,  the  total record  length, to insure that B,T 
is large. 

Having specified the parameters of the  problem a large num- 
ber (several thousand) of separate  realizations of the L + P 
point filtered  sequences  were  generated  and  correlated. For 
each  realization the lag  region +_P(+To) was searched to find 
the  location  of  the  correlation  peak (largest positive  value). 
If the peak  fell  within Re then a  refined  estimate of the loca- 
tion  of  the  peak was  generated and  stored using the parabolic 
interpolation  formula 

Here ip is the value  of delay  corresponding to  the peak  of the 
correlation  function  estimate  and ip e are the  adjacent delay 
values, separated by  one sample  interval (AT)  from ip. If ip 
did not fall within Re for a given re'alization, the  estimate'was 
counted as an  anomaly. A refined  estimate was still generated 
and  stored using  (17). In  addition,  when  an  anomalous event 
occurred,  an  estimate of the  location  of  the  peak value  of the 
correlogram  closest to the  true value  was  also generated. Thus 
for every realization two delay  estimates  were  generated.  For 
nonanomalous  events  these  estimates were identical. At  the 
end  of all the realizations the total number  of  anomalous events 
and  the variances  of the  two delay  estimates were  generated'. 
For  each  set of parameters (M, b, L )  data  were  generated as a 
function  of SNR. 

IV. COMPARISON OF THEORETICAL AND EXPERIMENTAL 
RESULTS FOR PROBABILITY OF ANOMALY 

A test  example  with  parametersM = 16, b = ( 2 / 7 ~ ) ' / ~ ,  P = 32, 
L = 320 (hence B,T = 113) was chosen. The  theoretical  results 
for  the  probability  of  anomaly  plotted against the post-integra- 
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Fig. 1. Probability of anomaly versus post-integration SNR, M = 16. 

tion SNR, A , are  shown  in Fig. 1.  The  curve  labeled “Gaussian 
approximation” was obtained  from (7). The  curve  labeled 
“Upper  bound” was obtained  from (9). The  upper  bound is 
close to,  but  does.not converge to,  the Gaussian approximation 
for  the range of values shown. 

The  experimental  results  for  the  probability of anomaly are 
plotted as x’s in Fig. 1. A variable  number  of  total  realizations 
(generally from  2000-5000) were used to  obtain  these data. 
The confidence regions indicated are .95 percent  confidence 
intervals and are based on  standard  techniques  for  the  estima- 
tion o.f proportions  [12, p. 1851 . The  experimental  results 
agree remarkably well with  the  theoretical  results over the 
entire range of A shown.  The  data  for very small P,. [anomaly] 
do  appear to’ fall slightly  below the  theoretical  predictions, 
however. 

In ‘Fig. 2 we show  theoretical  and  experimental  results  for 
M =  4 [(b = (2/n)’l2, P =  8, L = 320)1,M=64 [(b =0.4(2/n)’12, 
P = 128, L = lE8)] and  the  previous  theoretical  result f o r M =  
16.  Both  new cases have B,T = 113 as’ for  the M = 16 case; 
thus Fig. 2 reflects  only the effects  of varying M. The  experi- 
mental  results again confirm  the  applicability  of the  theory. 
From Fig. 2 we see  that as M is increased while holding  the 
post-integration  SNR, A futed, the  probability  of an anomaly 
increases. This is similar to  the effect seen in PPM and  occurs 
because as M increases,  with  futed  SNR,  there are simply  more 
chances  for  a noise peak to exceed  the  peak  at  the  true value 
of delay, since there are  more noise bins. 

Pr [anomaly]  decreases,  at  first;  with increasing SNR. As we 
see from  (7b),  however, A and  hence  Pr[anomaly]  eventually 
become  independent of SNR.  Thus,  for B,T futed,  there is 
st01 a  chance  of  making large errors even at infinite  SNR.  This 
effect  occurs because the  peak selecting correlator, as imple- 
mented,  includes new data in the  estimate of the cross-correla- 
tion  at  each lag value;  thus  it  cannot be guaranteed  that, even 
at  infinite SNR, the  peak value of the  correlation output will 

I 2 3 4 5 6  
POST INTEGRATION  SNR - A 

Fig. 2. Probability of anomaly versus post-integration SNR, M = 4, 
16,64. 

be at  the  true value of  time  delay.  It  should  be  noted,  though, 
that  except for small B,T, the error rate  at  very  high S/N will 
be  quite small and  hence  the resulting  ungated  variance will  be 
less than  the variance predicted  by  the  linear  theory.  This sug- 
gests that  for  a small B, T  and  a very large S/N the  peak select- 
ing correlator  may  not be the  best  instrumentation. 

v. COMPARISON OF THEORETICAL AND EXPERIMENTAL 
RESULTS FOR THE TIME  DELAY  ESTIMATION  VARIANCE 
Theoretical values for  the variance of  the  time  delay esti- 

mate,  for small estimation errors, can be obtained  from  the 
results  of [2] using the Gaussian spectral  shape given by (1 IC). 
Evaluating  the.integrals we find 

Normalizing Var [3] .by  A F  and recalling the  definitions 
a = b2AT2, T = LAT, B,’ = 2(na), (18) becomes 

Var [h ]  4n1/2b3 [ -- -- 
A T ~  z . 1 +2S/N 

Equation  (19) is plotted, as a  function  of  SNR,  and  labeled 
“Linear  theory” in Fig. 3 using the  same  parameters [(b = 
(2/7r)’/’, L = 320)] as were used for  the M = 16  example  shown 
in Fig. 1. Experimental  results  for  three  different  initial  gate 
widths  are  also.  shown..  The  data  labeled  “Gate  -tTc/2”  were 
determined  by  selecting  the  peak value of the  correlogram 
within  the region +Tc/2  (the  true value is at  zero  delay),  then 
interpolating using (1 7), and  computing  the  variance of the re- 
sulting time  delay  estimates.  Note  that  a given estimate  could 
be  outside  +Tc/2  after  interpolation if the  maximum value is 
not interior to  +Tc/2. ‘The data  labeled  “Gate ~ T c ”  were.com- 
puted similarly except  that  the initial range searched  for  a  peak 
was +Tc. These  two  estimation  procedures will yield  identical 
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Fig. 3. Normalized variance of time delay estimate  versus  preintegration 
SNR, gated modes. 

estimates  except  when  there is a relative maximum  interior to 
+Tc/2 and a larger peak value between Tc/2  and T c  (or - Tc/2 
and -Tc). Finally, the  data  labeled  “No gate”  correspond to 
time delay  estimates  for  which the  entire correlogram (+To) 
was searched  for  an initial  peak. 

We first discuss the  results  for  the  two gated  modes.  From 
Fig. 3 we  see that  for high  SNR, theory  and  experiment agree 
quite well as has previously been  shown  [SI , [6].  For S/N = 
0.6 or greater both gate  widths gave identical results. As SNR 
is decreased the experimental  results begin to exceed the  theo- 
retical  results  and at  low  SNR  experiment  and  theory differ 
significantly. The  low  SNR  behavior  depends  on  the  initial 
search  gate width; as is reasonable, the larger the inital  search 
gate the larger the variance. For  SNR = 0 the “Gate +Tc/2” 
data have an average normalized variance of  1 1.6 or a  standard 
deviation of 0.85  times the initial  gate  width (Tc  = 4);  the 
“Gate +Tc” data  for  SNR = 0 have an average normalized vari- 
ance  of 14.5 or 0.48  times the initial  gate width. 

We now  examine at what  point  the measured  variances for 
the gated  modes begin to depart  significantly  from the  theo- 
retical  prediction.  The  error  expansion  used  in  the’derivation 
of  (18)  retains  only terms to the  order of d 2 R s ( ~ ) / d ~ 2  [ I ]  . 
It can be shown  that (1 8) is then valid as  long as 

Var [SI << [(d2~,/dT2)/(d4~~/d74)1 D o .  (20) 
Equation (20) thus gives a  criterion  for  determining  when  the 
estimates  remain on the linear  region of dRS(7)/d7; For  the 
parameters  of  our  example  the  right  hand side of (20) equals 
0.85;Jhus we might  expect (18) to be  accurate as long as 
Var [Dl < 0.08. From Fig. 3 we  see that this is a  reasonable 
estimate. 

A simple  correction to  the theoretical  result  of  (18)  can  be 
derived as follows. Equation (18) is computed  from  an ex- 
pression of  the  form [ 11, [4,  p. 701 

If  instead of evaluating the second derivative at T = 0 we  evalu- 
ate  it  at  the value Vo given by (21) we  can  find  a  corrected 
formula  of the form 

where we have  usedR(7)  from(l6b). Var [ 6 ] c / A T 2  is plotted 
in Fig. 3 and  labeled  “Nonlinear  correction.”  This simple cor- 
reaction is  seen to work  reasonably well for SNR’s down to say 
0.5. 

The preceeding discussion applies to the  performance of the 
gated processing modes; to be practically usable the gated 
mode  requires  some a priori information  about  the  true value 
of the  time delay.  If no  such  information is available the full 
correlogram  delay region (*To) must  be  searched. The  ex- 
pected variance for  the  ungated  mode is approximately  equal 
to  the variance, given no anomaly,  times  the  probability of 
no  anomaly, plus the variance, given an  anomaly,  times  the 
probability of an  anomaly.  This  function is plotted  and la- 
beled  “Theoretical variance for  no  gate”  on Figs. 3  and 4. 
The variance, given an  anomaly, is approximately T:/3 since 
this is the variance  of a variable uniformly  distributed in +To. 
The observed values are  indicated  by the x’s in Fig. 4 ,  and are 
seen to  agree quite well with the  theory. 

I t  is clear from Figs. 3 and 4 that  the variance for  the  un- 
gated mode  departs  from  the  linearized  theory at a  higher 
value of SNR  than does the variance for  the gated  modes. I t  
is of interest to have a general criterion  determining  which 
mode  of processing, gated  or  ungated,  departs  from the  lin- 
earized theory  at  the higher  SNR.  First, it can  be  shown using 
the criterion  of (20) that,  for large bandwidth  time  products, 
the gated  modes begin to depart significantly  from the linear 
theory  for SNR’s below the value  of (S/N)G E (30/B,T)’/2. 
Next we compare  the value of the variance from  the linear 
theory, evaluated at (S/N)G, with  the variance for  the gated 
mode, also evaluated at (S /N)G.  This  yields  a  criterion 

where CG is C from  (9b)  evaluated at (S /N)G.  Equation (23) 
shows that if M 3  is greater than  the critical value on  the right 
hand side then  the variance for  the  ungated  mode  departs  from 
the linear analysis at a  higher SNR  than  does  the variance for 
the gated mode;  the  opposite is true if M 3  is less than  the right 
hand side. Hence, as stated earlier the larger the value  of M the 
more  likely is anomalous  behavior to be important. If B,T is 
very large then CG N (15)’l2, independent  of  SNR,  and  the 
criterion  becomes  simply 

G 
M >< 8. 

UG 
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Fig. 4. Normalized variance of  time delay  estimate versus preintegration 
SNR, ungated mode. 

VI. FINAL COMMENTS 
The  experimental  results  shown  here were obtained using a 

low-pass  spectrum  shose  autocorrelation function has no side- 
lobes. Signals with  narrow-band  spectra  or  with  large  sidelobes 
will have  a  greater  probability  of an  anomalous  estimate  due to  
the relatively  large values of  the  autocorrelation  function  at 
time  delays  removed from zero.  Such  spectra will have to be 
considered  individually.  One  would  expect the  mean  square 
error  for  the  ungated  mode  to be greater than  that shown  here 
at  the higher SNRs  due  to  the  effect  of  the sidelobes or nar- 
rowband peaks (assuming the same  bandwidth). At the lower 
SNR’s these  effects will probably  not  be so important  and 
hence  the results will be similar to  those given here. 

For small  estimation  errors,  the  standard  of  comparison  for a 
given instrumentation is the CRLB. Further,  it is known  that 
cross-correlators  with  appropriate  filters achieve the CRLB. 
[For  the Gaussian signal and noise  spectra  used  here,  however, 
the CRLB, found  after inserting the  optimum filters, is zero, 
since  an  integral over all frequency is specified.  This,  of  course, 
is physically  unrealistic since some other noise  process will 
eventually  become important and  limit  performance.] For 
large  estimation  errors  other  bounds  such as the  Barankin 
bound [ 131 or  the Ziv-Zakai bound [ 141 are more  appropriate. 
These bounds  must be evaluated and compared  with the  un- 
gated  mean-square  estimation  error as in Fig. 4, to  establish 
how nearly optimum  the cross-correlator is in  the  presence 
of large  estimation  errors. 
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