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initiated the development of advanced electronic telephone line switch- switching as  Manager of Technology. He was appointed an  IBM Fellow 
ing exchanges. From 1965 to 1973, he supervised a number of projects in 1975, and has published over 30 papers and filed more than 50 
on data transmission, PCM, speech processing, and advanced line patents on data transmission and digital signal processing. 

Some Windows with Very Good  Sidelobe  Behavior 

ALBERT H. NUTTALL 

Abstract-Some of the windows presented by Harris [ 11 are not 
correct in terms of their reported peak sidelobes and optimal behavior. 
We present corrected plots of Harris' windows and also derive addi- 
tional windows with very good sidelobes and optimal behavior under 
several different constraints. The temporal weightings are characterized 
as a sum of weighted cosines over a finite duration. The  plots enable 
the reader to select a window to suit his requirements, in terms of bias 
due to nearby sidelobes and bias due to distant sidelobes. 

T 
INTRODUCTION 

HE  use of temporal weightings for spectral analysis, with 
good sidelobe behavior and small bias, is  well established 

and  documented in Harris [ l ] .  However, some of the  plots of 
the spectral windows  are not correct and do  not have the 
optimal sidelobe levels claimed. We will present the  corrected 
plots and some additional windows with optimal properties. 

The temporal weightings considered will be continuous func- 
tions of time (except possibly at t = kL/2)  and duration L ,  
1.e., 

w(t) = O  for jtl > ~ / 2 .  ( 1  1 
The Fourier transform of the temporal weighting is the spec- 
tral window 

L P  
W ( f )  = lL/2 dt  4 : )  exp (-i2nft)  (2) 

and is a  continuous  function of frequency, defined for all f .  
Notice the  notational convention adopted  here:  a weighting is 
applied multiplicatively in one domain, and its Fourier trans- 
form (called a window) occurs as a convolution in the  other 
domain. 

All the window results presented here are obtained  by exact 
analytical evaluation of (2)  and are valid for all  values off.  
However, window (2)  can  be approximately evaluated at any f ,  
by means of some numerical integration rule (such as trape- 

Manuscript received July 8, 1980; revised  August 5 ,  1980. 
The author is with New London Laboratory, Naval  Underwater Sys- 

tems Center, New London, CT 06320. 

zoidal), by choosing increment A = L/M, where M is a large 
integer. These latter results are not  adequate for I f  1 > 0.5/A, 
because the approximation yielded by this numerical integra- 
tion procedure has period l / A  in f .  Furthermore, if  we limit 
the frequencies f, at which this numerical evaluation is con- 
ducted, to the values n/(NA) (for n and N integer), the results 
can be realized  as an  N-point discrete Fourier transform 
(DFT). Since the frequency spacing at which these values 
occur is (NA)-' and  the  width of the spectral window (2) is 
of the order 1/L = (MA)-', we would also require N >M if  we 
desire to observe fairly closely the changes in the window (2)  
by means of an  N-point DFT. There is no fundamental restric- 
tion  on  the relative sizes  of M and N ;  however, M must be 
large in order to obtain an accurate approximation to (2). 

GENERAL WEIGHTING CONSIDERATIONS 
The temporal weightings of interest here are of the form 

w(t) = y ak cos ( 2 n k t / ~ )  for I tl < ~ / 2  ( 3 )  

where { a k } f  are  real constants. The weighting is symmetric 
about t = 0 and possesses  all orders of  derivatives for I tl < L/2 ;  
however, discontinuities in w(t), defined by (1) and (3) ,  or in 
its derivatives, occur at t = kL/2.  These discontinuities dictate 
the  asymptotic behavior for large I f ]  of W ( f )  in (2). Without 
loss  of generality, the weighting is normalized according to 

1 K  

k=O 

K 1 K  1 

L 
a k = 1 ;  w ( o ) = y  2 @ k = - .  (4) 

k=O k=O 

Observe from (3) that 

which may or may not be equal to zero. If (5) is not zero, 
then weighting w(t) is discontinuous at t = *L/2, and window 
W ( f )  will decay only as l/f for large f .  

However, if (5) is zero,  then w(t) is continuous for all t .  
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Also,  w‘(t)  is continuous  for all t since  we always have 
wD(t) w t - - = - (- l)kak cos (2&/L) 

1 K  

2n K ( ‘1 k=O 
W‘(t) = - 7 kUk  Sin (2?rkt/L) for I tl <L/2 (6) 

k=O 1 K  
= - (-l)kCkalki exp ( i2nkt /~)  

and k=-K 

lim w’(t) = 0; w’(t) = O  for It I > ~ / 2 .  (7) for O < t < L  (1 1) 
Itl+L/2- 

where 
The last property follows from (1). Thus, when weighting 
values w(?L/2)  in (5) are zero, w(t) and w’(t) are both con- 1, k = O  
tinuous  for all t. e k =  { t ,  W O } .  (12) 

However, w”(t)  may  then  not be continuous  at t = +L/2. Let the sampling interval on weighting wD(t) be 
We have from (6),  

A = L/M (1 3) 
4n2 K w’’(t) = - - k2ak COS (2nktlL)  for I t I < L/2 where M is even; then samples (temporal weights) 
L3  k = o  

1 K  
(8) wD(mA) = - (- l)kekalkl  exp ( i 2 n k m / ~ )  

k=-K 
and 

for O<m<M. (1 4) 

Em w”(t) = - 7 (- l)kk2ak, (9) Then for M > 2K,  the discrete Fourier series is given by  the 
4n2 K 

lt l+L/2- k=O M-point  DFT [2, ch. 3 J 

which may or may not be zero. If (9) is not  zero,  then w”(t) is M-l  
discontinuous at t =  +L/2, and W(f) will decay as l /f3 for AwD(mA)exp (-i27~rnn/M)=(-l)~e,al,l 
large f. m = o  

Conversely, if (9) is zero,  then w”(t) is continuous  for all t ,  
and it follows (similarly to above) that w‘”(t)  is continuous for 

for In1 <M/2. (15a) 

all t. Then W(f) decays at least as fast as l/f5 for large f. Thus, the  effects of tenlPora1 weighting (14) can be  incor- 
We will  have occasion to use these relations later.  porated  in  a digital processing application as a frequency con- 

is  given by (2) as the closed form expression 
The spectral window corresponding to w(t) in (1) and (3) volution of the  data  DFT  with  the sequence 

* ’ * , 0, 0, (-1) K 1  ZaK, * ’ * , -z 1 al, ao, - Z  1 a l ,  ‘ . * , 
L f  (-l)kak 

Wf) = 7 sin (nLf 1 k&o 2 2 - k 2  for all f; (-I>”* aK, 0, 0,. * ’ . (1 5b) 

This is one of the main reasons for employing weightings of 
the form (14) in digital processing applications; namely, the 

(loa) effects of temporal weighting are easily included by means of 
convolution in.  the discrete frequency domain with  a  short 

If we expand  (L2 f 2  - k2)-’ in  a power series in  (k/Lf)2, we sequence of length 2K + 1. 
obtain The effect of sampling continuous weighting  w(t) at incre- 

ment A, in so far as the effective window is concerned, is as 

W(n/L) = {?3 = O }  
- q n i r  12 f O  . 

sin(nLf) 1 K 
Wf)= nLf e k=O 

(-l)kk2mak follows. The effective window is 
m =o 

for ILf I >K. (1 Ob) 

Thus, the  quantities (5) and (9) considered above are simply 
the  m = 0 and  m = 1 coefficients of this expansion; the asymp- 
totic behavior of (lob) depends on the first nonzero term in 
the m-series, and will be plotted in  the following figures  as a 
dotted line. 

DISCRETE FOURIER  SERIES 
When continuous  temporal weighting is used in digital pro- 

cessing, it is sampled and often transformed into  the frequency 
domain, where its effect can  be included as a convolution of 
its discrete Fourier series with  the  data DFT. To evaluate this 
discrete Fourier series, we begin by delaying, the  temporal 
weight to  the interval (0, L) :  

+ W  

We( f )  = dt A s ~ ( t )  w(t)  exp  (-i2nft) 
- m  

Eo 

=sl/A(f) @ W(f)= W f - -  
,=-Eo ( :) (1 6 )  

where &,(x) is an infinite unit-area impulse train  in x at spacing 
a. Thus; there are periodic replications in We( f )  at multiples 
of l / A ;  the aliasing at f =  *0.5/A is obvious. All the following 
results correspond to A = 0, i.e., continuous weightings; thus, 
there is no aliasing. 

‘This consideration is different  from  that  mentioned under (2), 
where we were interested in approximately evaluating window W(f) in 
(2) by means of a DFT. 
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HARRIS’ WINDOWS 
The first weighting to be considered is Hanning, for which 

there are only two  nonzero coefficients in (3): 

Its power response in dB is plotted versus Lf in Fig. 1, nor- 
malized to the peak  response at f = 0 ;  that is 

dBE10log IW(f)/W(0)12 (18) 

is plotted., The largest sidelobe is -31.47 dB. Since (5) is 
zero for  the weights in (1 7),  but (9) is not,  the Hanning 
window has an  asymptotic decay of 18 dB/octave; this decay 
is the first nonzero term  in (lob). 

The second weighting is Blackman [ 1, eq. 321 : 

a, =0.42, a ,  =0.50, a, =0.08. (1 9) 

The window is depicted in Fig. 2. Again, ( 5 )  is zero,  but (9) is 
not; thus  the  asymptotic decay is 18 dB/octave. The largest 
sidelobe is -58.1  1 dB. 

The “exact” Blackman  weights  are [ 1, p. 631 

a, = 7938/18608, a, = 9240/18608, a2 = 1430/18608. 

(20) 
Now (5) is not zero; therefore,  the window decays at  only 
6 dB/octave as shown in Fig. 3. However, the largest sidelobe 
is -68.24 dB, not -51 dB as cited in [l,  Fig. 231. Also, the 
sidelobes in Fig. 3 are about 6 dB lower than those reported 
in [ 1, Fig.  231. 

The following four windows are listed in the  table in [ l  , 
p. 651. The ccminimum’’ 3-term weights  are 

a, = 0.42323, a ,  = 0.49755, a2 = 0.07922.  (21) 

Since ( 5 )  is not zero, the window decay is only 6 dB/octave, 
as shown in Fig. 4. The maximum sidelobe is -70.83 dB, not 
- 67 dB as reported in [ 1, Fig. 24 and p. 641. 

The 3-term weights are 

a, = 0,44959, a, = 0.49364, a2 = 0.05677. (22) 

The corresponding window is  given in Fig. 5 and has a maxi- 
mum sidelobe of -62.05 dB, rather than  the  -61 dB reported 
in [ l ,  p.  651. Since ( 5 )  is not  zero,  the decay is only at 6 dB/ 
octave, as indicated by  the  dotted line. 

The “minimum” 4-term weights are3 

a, = 0.35875, a, = 0.48829, a, = 0.14128, 

a3 = 0.01  168. (23) 

2When the weighting  is applied instead in  the lag domain, as for 
Blackman-Tukey spectral analysis, rather  than  in  the  time domain as 
presumed here, the window appears linearly rather  than as its square. 
In this case, the  square  must  be removed from  the definition in (18), 
and  all the plots require that  the dB numbers on  the  ordinate  be halved. 
For example,  the peak  Hanning sidelobe is then  -15.73 dB. 

3These are not  the weights actually listed in [ l ,  p. 651. However, the 
values listed there do not  add  up  to 1 ; accordingly, we  have modified 
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Fig. 1. !Tanning window for a- = 0.5, a! = 0.5. 
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Fig. 2. Blackman window for a0 = 0.42, a1 = 0.5, a2 = 0.08. 
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Fig. 3. Exact Blackman window for a, = 7938/18608, = 9240/ 
18608,a2 = 1430/18608. 

Although ( 5 )  is not zero, it is nearly so. Therefore, the initial 
decay of the window is greater than 6 dB/octave; however, it 
must eventually decay only as 6 dB/octave. The maximum 
sidelobe of  the window is indicated in Fig. 6 ;  it is -92 dB, 
as reported  in [ 1 1. 

The 4-term weights are 

a0 = 0.40217, a, = 0.49703, a2 = 0.09892, 

them according to  the  comment under (34), andmade them sum to 1 
(with the lowest sidelobe possible  by modifying just  one of the last 
digits). and the largest sidelobe is -74.39 dB, as  claimed in [ l ,  p. 651. 

The asymptotic decay is only  6 dB/octave, as shown in Fig. 7, 
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Fig. 4 .  “Minimum” 3-term window for Q O  = 0.42323, Q I  = 0.49755, 
a2 = 0.07922. 

Fig. 5. 3-Term window for a0 = 0.44959, a l  = 0.49364, (22 = 0.05677. 

Lt 

Fig. 6 .  “Minimum” 4-term window for Q, = 0.35875, a1 = 0.48829, 
Q2 = 0.14128,a3  =0.01168. 

RAPIDLY DECAYING WINDOWS WITH MINIMAL 
SIDELOBES 

It was observed earlier that  the window W ( f )  decays fairly 
rapidly for large f if (5) is zero, and very rapidly if (9)  is zero. 
Such windows will .lead to spectral estimates that are immune 
to strong interferences at frequencies removed from those of 
interest. In this  section, we will consider this class of windows 
in terms of the peak sidelobe and  asymptotic  decay;  the main- 
lobe width of each window is  not discussed, but is  easily deter- 
mined from the plots. Discontinuous weightings will be taken 
up later. 

Fig. 7. 4-Term window for QO = 0.40217, a1 = 0.49703, a2 = 0.09892, 
a3 = 0.00188. 

If only two coefficients in weighting (3) are  nonzero, satis- 

(25) 

faction  of (4), and  setting (5) equal to  zero, yield 

a ,  t u ,  = 1, a. - a l  = O .  

The Hanning window satisfies these requirements and is 
plotted  in Fig. 1. Convolution sequence (15b) is simply -1/4, 

Moving on  to three  nonzero coefficients in (3), if we satisfy 
1/2, -1/4. 

(4), and set (5) and (9) equal to zero, we find 

a. = 318, a ,  = 4/8, a2  = 1/8. (26) 

The weighting is 

From (15b), the discrete Fourier series for convolution is 

1, -4 ,6 ,   -4 , l  
16 

which are simply the binomial coefficients. As noted under 
(9), since the  third derivative of w(t) is continuous at t = +L/2, 
the window decays at a 30 dB/octave rate. The plot in Fig. 8 
indicates that  the largest sidelobe is -46.74 dB. 

Instead of forcing (9)  equal to zero, we  can  use the one 
degree of freedom left,  after (4) is satisfied and (5) is set equal 
to zero, to minimize the maximum sidelobes. The optimal 
weights are found to be 

a. = 0.40897, a, = 0.5, a2  = 0.09103. (29) 

The corresponding window is presented in Fig. 9 .  The asymp- 
totic decay is 18 dB/octave, and the  two equal sidelobes are 
of size -64.19 dB. This is 6.1 dB better  than  the -58.1 dB 
sidelobe of the Blackman window, yet  the  asymptotic decays 
are equal. Although the maximum sidelobe of the “minimum” 
3-term window in Fig. 4 is  6.6  dB better,  that decay is only 
6 dB/octave rather  than the 18 dBJoctave decay here. 

When  we consider four nonzero coefficients in (3), we have 
several alternatives. If  we satisfy (4), set (5) and (9) both 
equal to zero, and also set  the  fourth derivative of w(t) equal 
to zero at t =‘+L/2, we have four  equations  in four unknowns, 
with  solution 
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Fig. 8. Window for a0 = 0.375, a1 = 0 . 5 , ~ ~  = 0.125. 

Fig. 9. Window for a0 = 0.40897, a1 = 0.5, a2 = 0.09103. 

The weighting is 

1 
w(t) = - cos6 (nt/L) for I t I < - L 

L 2 (31) 

and from (15b), the discrete Fourier series for convolution is 

-1,6,  -15,20,  -15,6, -1 
64 

which are again the binomial coefficients. The window decays 
at a very fast  rate of 42 dB/octave, since the  fifth derivative of 
w(t) is continuous  for all t .  The  plot  in Fig. 10 shows the 
maximum sidelobe to be  -60.95 dB. 

If we satisfy (4), and set (5) and (9) both equal to zero, but 
use the remaining degree of freedom to minimize the  maxi- 
mum sidelobes, the optimal weights are determined to  be 

=0.338946, a1 =0.481973, a2 =0.161054, 

a3 = 0.018027. (33) 

The window is given in Fig. 11 and has two equal sidelobes of 
-82.60 dB. The  asymptotic decay is 30 dB/octave, since the 
third derivative of w(t) is continuous  for all t. Comparison 
with the c‘minimum’y 4-term window in Fig. 6 reveals a differ- 
ence of 9.4 dB in the maximum sidelobe; however, the decay 
of Fig. 11 is much faster at a 30 dB/octave rate. As far as the 
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Fig. 10. Window forao  = 10132, a1 = 15/32, a2 = 6/32, a3 = 1/32. 
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Fig. 11. Window for Q O  = 0.338946, a1 = 0.481973, a2 = 0.161054, 
a3 = 0.018027. 

4-term window in Fig. 7 is concerned, Fig. 11 has an 8.2 dB 
better maximum sidelobe and a much  better  decay, 30 dB/ 
octave versus 6 dB/octave. 

Finally, if we satisfy (4), and set only ( 5 )  equal to zero,  and 
use the remaining two degrees of freedom to minimize the 
maximum sidelobes, the optimal weights  are found to be 

a. = 0.355768, a ,  = 0.487396, a2 = 0.144232, 

a3 = 0.012604. (34) 

The window is shown in Fig. 12 and has three equal sidelobes 
of -93.32 dB. Notice that  this level  is better  than  the  pur- 
ported “minimum” 4-term level  of -92 dB claimed in [l , pp. 
64-65];  and  the  asymptotic decay is 18 dB/octave, not 6 dB/ 
octave. Furthermore, this level  was  achieved under the  con- 
straint of setting (5) equal to zero. If we were to  eliminate 
this constraint of a continuous weighting function, a sidelobe 
level lower than  -93.32 dB can be achieved. (This problem 
and  the determination of the  true minimum 3-term window 
(to replace Fig. 4) are undertaken  in  the  next section.) Com- 
parison with  the  4-term window of Fig. 7 reveals  an 18.9 dB 
peak-sidelobe improvement in Fig. 12 and a better decay of 
18 dB/octave instead of 6 dB/octave. 

MINIMUM SIDELOBE WINDOWS 
If only two coefficients in weighting (3) are nonzero, and we 

disregard the  continuity requirement (5), the one degree of 
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Fig. 12. Window for  a0 = 0.355768,  al = 0.487396,  a2 = 0.144232, Fig. 14. Minimum  3-term window  for  a0 = 0.4243801,al = 0.4973406, 
a3 = 0.012604. a2 = 0.0782793. 

- 90 

- 1w 
0 2 4 6 8 10 12 14  16  18 20 

0 

- 10 

- 20 

- 30 
- 40 

-50 

- 60 

dB -70 

I I I I I 
I WEIGHTING 

DISCONTINUOUS 

I I I I I I I 
- 80 
- 90 

- 100 

-110 

-120 

-130 
0 2 4 6 8 10  12  14  16 18 20 

Lf 
Lf 

Fig. 13. Hamming window forao = 0.53836, a1 = 0.46164. 
Fig. 15. Minimum 4-term  window  for a0 = 0.3635819, a1 = 0.4891775, 

a2 = 0.1365995, a3 = 0.0106411. 

freedom left,  after normalization (4) is satisfied, can be used 
to minimize the maximum sidelobes. The result is the familiar 
Hamming window, plotted in Fig. 13, with coefficients 

a. = 0.53836, a, = 0.46164. (35) 

The two equal peak-sidelobes are -43.19 dB, and  the asymp- 
totic decay is only 6 dB/octave, as dictated by  (lob) when (5) 
is not zero. 

For  three  nonzero coefficients in (3), satisfaction of (4) 
leaves two degrees of freedom. These  can be used to  realize 
the minimum 3-term window in Fig. 14, for which the optimal 
coefficients are 

a. = 0.4243801, a, = 0.4973406, u2 = 0.0782793. (36) 

There are three equal peak-sidelobes of -71.48 dB, which is 
0.65 dB better  than Fig. 4, with  an  asymptotic decay of 
6 dB/octave for  both. 

When four coefficients are nonzero  in (3), there are three 
degrees of freedom left  after normalization (4). The minimum 
4-term window results for coefficients 

a0 = 0.3635819, a, =0.4891775, a2 =0.1365995, 

a3 = 0.010641 1 (3 7) 

and is shown in Fig. 15. The four equal sidelobes are at level 
-98.17 dB, which is  6.16  dB better  than Fig. 6,  with  an 

asymptotic decay of 6 dB/octave for  both. This sidelobe level 
is 4.85 dB better  than Fig. 12,  but  the decay in Fig. 12 is 18 
dB/octave. 

COMPARISON WITH KAISER-BESSEL AND VAN DER MAAS 
WINDOWS 

The windows in Figs. 13-1 5 are very  similar to the Kaiser- 
Bessel window. Specifically, the Kaiser-Bessel weighting and 
window are 

1 
L 

w(t> = - I,(B dl - ( 2 t / ~ ) ~ )  for It I < ~ / 2 ,  

respectively, where B is a parameter. If we choose B to make 
the first null of the Kaiser-Bessel window lie at  the  three 
alternatives of Lf = 2 , 3 , 4  (as in Figs. 13-1 5 , respectively), we 
obtain  the  plots in Figs. 16-18. The corresponding mainlobe 
shapes are indistinguishable, and  the  asymptotic decays are 
all 6 dB/octave. The immediate sidelobes of the Kaiser-Bessel 
windows are several  dB  larger than  the minimum results in 
Figs. 13-15, but  the distant sidelobes of the Kaiser-Bessel 
windows are over 10 dB lower for  the examples considered. 
Thus, a tradeoff exists between the peak sidelobe and the 
distant sidelobe level. 
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Fig. 16. Kaiser-Bessel window with first null at Lf = 2. 
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Fig. 17. Kaiser-Bessel window with first null at Lf = 3. 
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Fig. 18. Kaiser-Bessel window with first null at Lf = 4. 

The windows here are  also  similar to the ideal impulsive van 
der Maas window given by 

B I I ( B d 1  - (2t/L)’) 1 
w(t) = - + -  6 (t- $) 

L dl - (2t1L)’ 2 

t - 8  1 if.+) for ~ t l < y ,  L 
2 

W ( f )  = cos (d (n~ f ) ’  - B ~ )  for allf. (3 9 )  

This window is characterized by having the narrowest possible 
mainlobe width  for  a specified sidelobe level, and vice  versa. 
However, the window does not decay at all for large f .  The 
peak to sidelobe voltage  level is SL E cosh (B), and the first 
null of the window occurs at 

TABLE I 
COMPARISON OF NULL LOCATION WITH VAN DER MAAS CASE 

van der Maas 
Figure Number Null Location Null Location 

9 
11 
12 
13 
14 
15 

3 2.62 
4 3.29 
4 3.67 
2 1.87 
3 2.88 
4 3.85 

TABLE I1 
WINDOW  CHARACTERISTICS 

Peak Asymptotic 

Weighting  (dB) (dB/octave) 
Sidelobe Decay 

1. Hanning 
2. Blackman 
3. Exact Blackman 
4. “Minimum”  3-Term 
5. 3-Term 
6. “Minimum” 4-Term 
7. 4-Term 
8. 3-Term  with Continuous Third Derivative 
9. 3-Term with Continuous First Derivative 

10. 4-Term with Continuous  Fifth Derivative 
11. 4-Term with Continuous Third Derivative 
12. 4-Term with Continuous First Derivative 
13. Hamming 
14. Minimum  3-Term 
15. Minimum  4-Term 
16. Kaiser-Bessel  Window with First Null 

17. Kaiser-Bessel  Window wi@ First Null 

18. Kaiser-Bessel  Window with First Null 

a t L f = 2  

a t L f = 3  

at Lf = 4  

-31.47 
-58.11 
-68.24 
-70.83 
-62.05 
-92.01 
-74.39 
-46.74 
-64.19 
-60.95 
-82.60 
-93.32 
-43.19 
-71.48 
-98.17 

-39.79 

-65.45 

-91.22 

18 
18 
6 
6 
6 
6 
6 

30 
18  
42 
30 
18 
6 
6 
6 

Thus, the first null location can be expressed in terms of the 
sidelobe level SL according to 

Table I shows this null location and the  actual location for 
several of the windows presented earlier, when the peak side- 
lobes are equal; the agreement is close, especially for those 
windows with a 6 dB/octave decay, Figs. 13-1 5 .  

SUMMARY 
When strong interference, either tonal or narrow band, 

occurs additively with a desired  signal, its effect on frequencies 
removed from the interference band can be greatly reduced by 
using  windows with low sidelobes and significant decay of the 
sidelobes. Thus, close-by interference rejection requires the 
immediate sidelobe region of the window to be small, while 
distant interference rejection requires a rapidly decaying side- 
lobe response. The type of windows considered here furnish 
several alternative choices, depending on the application of 
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interest,  and range from -31 dB to -98 dB for  the peak side- 
lobe,  or 6 dB/octave to  42 dB/octave for  the  asymptotic decay. 
The weighting  given by (3) is nonnegative for all the numerical 
coefficients listed here. A summary of the windows is pre- 
sented in Table 11. An application of these windows to  a dis- 
crete Hilbert transform is given in [3]. 
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On  the Application of a Fast Polynomial Transform 
and the Chinese  Remainder Theorem to Compute 

a Two-Dimensional Convolution 

Abstract-In  this  paper,  a  fast  algorithm  is developed to compute  two- function. This is accomplished usually by using the conven- 
dimensional Convolutions of an m a y  of dl x 6 complex  number tional fast Fourier transform (FFT). However, the  FFT alga- 
points where d2 = 2” and dl  = 2m-r”1 for some 1 < r < m. This 
new algorithm  requires  fewer  multiplications and  about  the same num- rithm generally requires a large number of floating-point 
ber of additions as the  convention^ FFT for computing the complex additions and multiplications. Also, the transpose of 
two-dimensional  convolution. It dso has the advantage that  the opera- a  matrix is usually required in  the  computation  of such a  two- 
tion of transposing the matrix  of data can be avoided. dimensional convolution. 

Recently, Rader [3] proposed that a  number-theoretic trans- 

INTRODUCTION form (NTT) could  be  used to accomplish two-dimensional 
filtering. It was shown [4] that  an improvement both  in accu- 

Wo-DIMENS1oNAL convolutions Of two sequences Of racy and speed of two-dimensional convolutions could be 
number points can be applied to many in achieved by transforms over a  finite field GF(q) where 4 is a 

particular to  the synthetic aperture radar (SARI L1l Y [21. In prime of  the form 45 X 229 + 1. However, to compute  a  two- 
SAR, a two-dimensional Cross correlation of the new echo dimensional convolution of  two long sequences of an integer 
data Of numbers with the response function Of a number of  points, such a transform over a  finite field did not 
point target is required to produce images. When the  two- dlow for a wide variety of dynamic ranges. 

can divide the  entire range of echo  data  into several subinter- nomial transform Over the fields of polynomial which could 

A principal advantage of  this  method over the above- 
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Within each One can use a constant be used to efficiently compute two-dimensional convolutions. 
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