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Fig. 2 .  (c) As in (b) for  the phase  error in the passband of interest. 

bandwidth close to  the  boundaries of the filter  passband.  This 
behavior  can  easily  be  fully  justified  from (5). Fig. 2 also 
shows  that  the  coefficient  compensation (9) reduces  the  ampli- 
tude  and  phase  errors  by  more  than  an  order  of  magnitude. 
The  residual  errors  are  to  be  attributed to the  terms  neglected 
in  the  approximation (4) and  to  the  fact  that  the  charge- 
transfer  loss  actually  transforms  an FIR filter  into  an  IIR  one, 
as  can  be  seen  from  the  model  of  Fig. 1 and  from  relation (3). 

IV. CONCLUSIONS 
In  many  applications  of CCD transversal  filtering, the CTI E 

and  the  filter  length N are  such  that N E  << 1.  In  this case, the 
general  expressions (5) for  the  transfer  function  deviation 
caused  by  the device  CTI  have  been  obtained.  From  these 
relations,  the  amplitude  and  phase  errors  of  the  filter  fre- 
quency  response  can  be  derived  in a straightforward  way. 
The  accordance  between  the  computed  errors  and  those  ob- 
tained  from  computer  simulations  and/or  those  already  known 
in  the  literature  was  verified  for  many  filters. 

Furthermore,  the  simple  modification  algorithm (9) of the 
filter  coefficients  derived  from  the  preceding  analysis has 
proved to be  quite  effective in reducing  the  amplitude  and 
phase  deviations by more  than  an  order of magnitude.  The 
simplicity of the  compensation  algorithm (9) is, in  principle, 
particularly  attractive  when the coefficients  of a CCD transver- 
sal  filter  are  externally  evaluated  and/or  modified  by  means, 
for  example,  of a microprocessor  and  supplied to a multiply- 
ing  digital-to-analog  converter to  perform  the  filtering  opera- 
tion [21. 
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Confidence Bounds for Signal-to-Noise Ratios  from 
Magnitude-Squared  Coherence  Estimates 

JOHN W. FAY 

Abstract-Coherence is used frequently to determine the degree to 
which one observed  voltage is related to another observed  voltage. 
Typically, in practice, these.  observables  are  degraded  by  system  noise 
that  is often independent,  white,  and  Gaussian.  Often,  in  measuring 
coherence, the interest  is to determine the fraction of the observed 
power that is due to coherent signals and the fraction that is due to  the 
uncorrelated noise. floor. The term “signal” as used  here  describes a 
component  of  voltage  of  interest to an observer.  With  accurate  co- 
herence  estimates,  uncorrelated  noise  power can  be separated  from 
coherent signal  power. Therefore, the concern  in this article is with 
the accuracy of signal-to-noise ratio (SNR) calculations  made  from 
magnitude-squared  coherence (MSC) estimates. Use is made  of  work by 
Carter  and  Scannel [ 11 in  which  they  determine  confidence  bounds  of 
MSC estimates  for  stationary  Gaussian  processes.  Their  results  are  used 
in this article to derive  corresponding  confidence  bounds  for SNR cal- 
culations  without  recourse to the complicated  details of the underlying 
SNR statistics. 

DISCUSSION 
The  magnitude-squared  coherence  (MSC), or the  coherence 

function  as it is sometimes  called,  between  two  stationary  pro- 
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cesses x ( t )  and y ( t )  is defined  by 

The  quantity x ( t )  could  be  the  input to a  system,  with  the 
y ( t )  the  corresponding  output. 

Frequency  dependence is implicit  in  (1).  The  hyperbars  de- 
note  ensemble  averaging.  The  quantity  in  the  numerator of 
the  fraction  in  (1) is the  magnitude  squared  cross  spectrum 
which,  for  the  most  part,  shows  spectral  components  that  are 
correlated  between  voltages x ( t )  and y ( t ) .  Typically,  the  cross 
spectrum  has  deterministic  errors  due to such  things  as  gain 
differences.  Quantities  in  the  denominator of the  fraction  are 
autospectra  of  observed  processes x ( t )  and y ( t ) .  The  coher- 
ence  in  (1)  measures  the  fraction of power  in y ( t )  that is re- 
lated  in  a  linear  way to  x ( t ) .  Note  that  the MSC is indepen- 
dent of gain or level  difference  between x ( t )  and y( t ) .  

As pointed  out  by  Carter  and  Scannel [ 1 I ,   the  MSC is usu- 
ally  estimated  in  practice  by  means of a  dual-channel  fast  Fou- 
rier  transform  (FFT)  algorithm,  as  follows: 

I N  

n = l  n = l  
. .  

The asterisk denotes  complex  conjugation  and N is the  number 
of data  points  averaged.  The  factors x, and y n  are FFT  out- 
puts of the  nth  data  segments of periodically  sampled x ( t )  
and y ( t ) ,  respectively.  Typically,  we  have N independent  data 
segments,  each of length MAT, where AT is the  sampling  inter- 
val. In  general,  this  partitioning is done to gain  statistical  sta- 
bility  at  the  expense of increased  bias  and  decreased  frequency 
resolution.  Bias  and  frequency  resolution  are  not  a  concern 
here. 

If we  have  uncorrelated  noise  and  coherent  signals  between 
x ( t )  and y ( t ) ,  it is  possible to  correct  the  spectrum  of y ( t )  t o  
determine  the  amount of power  due  only  to  uncorrelated 
noise  and the  amount  due  only  to  coherent signal. If the  un- 
correlated  noise  power  in x ( t )  is  assumed nonexistent,  the 
power  in y ( t )  as  a  result of a  coherent  signal  between x ( t )  and 
y ( t )  at  frequency f is 

Similarly,  the  power  in y ( t )  due to uncorrelated  noise is 

The  ratio of (3) and (4) yields  the.  coherent  signal-to-uncor- 
related-noise  ratio  (SNR) [ 21 for y ( t )  at  a single  frequency  in 
terms  of  measured  coherence, 

Note  from  (5)  that  the  SNR  is  a  function of frequency  and is a 
random  variable  because of the  randomness  in  the  estimate 
T:y. Thus, we are  limited  in  the  use of (5) until we  can put 
some  confidence  bounds  on  its  estimate. 

Using the  results  in  Carter  and  Scannel [ 1 ] , we can  find  cor- 
responding  confidence  intervals  for  SNR. A computer  pro- 
gram  in [ 1 ] permits  calculating  arbitrary  confidence  limits  for 
MSC estimates  of  stationary  Gaussian  processes.  Table I is a 
sample  output  from  this  program. 

Magnitude  squared  coherence  values  from  Table I have  been 
used to  compute  confidence  bounds  for  SNR  in (5) (see the 
Appendix).  These  bounds  are given in  Figs.  1  and 2 for 80 and 
95 percent  confidence,  respectively.  The  outermost  curve  in 
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CONFIDENCE BOUNDS FOR MSC ESTIMATES' 
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0.280 
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0.924 
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0 .899 

1 .ooo 
0.072 

0.307 

0.470 

0.618 

0.754 

0.882 

1 .ooo 
0.036 

0.258 

0.428 

0.586 

0.729 

0.869 

1,000 

0.018 

0.230 

0.407 

0.565 

0.718 

0,860 
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0.004 

0.015 

0.061 

0.175 
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1 .000 
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0.023 

0.111 
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0.001 
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0.747 

1 .ooo 
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0.377 
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0.947 
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0.921 
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0.112 
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0.532 

0.668 

0.789 

0 .a99 

1.000 

0.057 

0.308 

0.478 

0.625 

0.758 

0.889 

1.000 

0.029 

0.269 

0.447 

0 * 599 
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0.879 
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0 .ooo 
0.167 
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0.667 
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0 .ooo 
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0.190 
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'Sample output from program in 11 1 . 

each  figure  corresponds  to N = 8, whereas the  innermost 
curves  are for N = 128.  In  order to use  these  curves,  it is nec- 
essary to  obtain  an  estimate of MSC from ( 2 )  for  some value 
of N ,  eg. ,  N =  8 and  95  percent  confidence of MSC. This 
specifies  a  point on  the abscissa  in  Fig.  2  at  a  value of 0.5, for 
example.  The  line  normal to the abscissa  at 0.5 intersects  the 
N = 8 curves  at -6.73 and 6.44 dB.  These  SNR  bounds  corre- 
spond to the  lower  and  upper MSC bounds,  respectively. We 
can,  therefore,  make  the  statement  that  the  true  SNR is within 
this  interval  95  percent of the  time.  Expressing  this  another 
way,  true  SNR is no less than  the  estimated  SNR  minus 6.73 
dB,  or  not  greater  than  the  estimated  SNR  plus 6.44 dB, 95 
percent of the  time. 

Overall, there is a  tightening of the  confidence  interval  as N 
increases, and  a  leveling  off of the  confidence curves  with  in- 
creases  in  estimated MSC. Confidence is poor  for small MSC 
estimates.  An  obvious  rule of thumb is to  choose  as large  a 
value of N as is practically  possible. 

SUMMARY 
We have  presented  confidence  bounds  for  SNR  calculations 

from MSC estimates  for  Gaussian  processes.  Confidence 
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where ?:y is estimated  from  (Al), 
Our  interest,  here, is in  determining  the  confidence  bounds 

for  SNR, given confidence  bounds  for ?:y. We can do  this  by 
noting  from (A2) that  SNR is a  monotone increasing  function 
of y:y. Let u = ?zy and V = 1 - ?:yA 2Then Au = ?:,, (C) - 
q:y and  AV = ?zy - ?.$ (C),  where y x y  ( C )  is an  upper  or 
lower  confidence  bound  for  the  coherence  estimate  in  Table I. 
From  (A2), 

and 

- 7 L + + + +  : , : : : 4 
0 0.2 0 4  0.6 0.8 1.0 

ASNR  VAU - u A V  
ESTIMATED MSC (:fy) SNR u ( V + A V )  

-- - 

Fig. 1. 80 percent  signal-to-noise  confidence  limits for N = 8, 16, 32, Substituting  for u ,  V ,  Au,  and AV, we obtain 
64, and  128. 

ASNR ?:y(C> - ?:,, -- - 
SNR ?2y(l  - ? 2 y ( C l )  ‘ 

(A31 
A N = 8  O N = 6 4  
0 N = 16 X N =  128 
0 N-32 Taking 10 loglo [ 1 + (ASNR/SNR)]  provides us with  the SNR 

confidence  bounds,  relative  to 0 dB,  presented  in  the  main 
text, i.e., the  interval  within  which  the  true SNRAwill exist  a 
given per2ent of the  time,  which is defined  by  y2y(Cupper), 

We have  presented  SNR  confidence  intervals  for 80 and  95 
percent  confidence  bounds  in  the  main  text. Note that  esti- 
mated MSC values of zero  and  unity  have  been  deliberately 
avoided  because,  for MSC confidence  limits  in [ 11, loglo [ 1 + 
(ASNRISNR)] is undefined  as MSC goes to  zero  and  ASNR/ 
SNR  becomes  indeterminate  at  unity MSC. However, the MSC 
values  we  have  considered  should  cover  most  practical  cases. 
If not,  the  reader  must  invoke  a  metric  different  from  the  one 
used  here. 

y x y ,  and Y&v(C1owe,) from [ 11. “2 

0.2 0.4 0.6 0.8 1.0 
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user  interested  in  separating  coherent  signals  from  incoherent 
noise  can do so with a quantitative  measure of confidence 
from  simple  calculations. 

APPENDIX 
The MSC between  two observed  stationary  processes, x ( t )  

and y ( t ) ,  is given by 

N 2 

n = 1  n = 1  

where y:y is an  estimate of the  true  coherence rZy. It  is, 
therefore, itself a  random  process.  The  quantities  in ( A l )  are 
ensemble  averages of FFT’s of N independent  data  segments. 
In general,  the  segments  need  not  be  independent.  The  SNR 
that gives a measure of causality  between x ( t )  and y ( t )  is given 
by 

A Continuous  Recursive DFT Analyzer-The  Discrete 
Coherent  Memory  Filter 

B. G. GQLDBERG 

Abstract-The  discrete  version of the coherent  memory  filter 
(DCMF) is  introduced and it is shown that the device performs  a (N 
point) DFT of the N input  data samples. It is also  shown that with  a 
simple  modification the device can be operated  recursively, so that as 
the  data samples flow in, the DFT of  the last N data samples are per- 
formed  continuously. 
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