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On the Use of Metallized  Cavities in Printed  Slot 
Arrays with  Dielectric  Substrates 

Abstract-A detailed analysis of infinite  slot arrays excited by delta- 
function current sources is presented. The existence of severe a m y  
blindness is proved for  most of the  cases of slots without metallic cavity 
separators. 

I. INTRODUCTION 

M OST  FLAT  PLATE  slot  arrays  produce  a  pencil  beam 
radiation  pattern  with  a  stationary  (nonscanning)  beam 

direction.  In  order  to  maintain  proper  impedance  match over 
useful  frequency  ranges,  it  is  common  practice  in  the  design  of 
nonscanning  arrays to isolate  the  slot  elements  from  internal 
coupling  through  the  parallel  plate  feed  structure  by  the  use  of 
metallic  walls  between  elements.  Such  a  configuration, as 
shown  in Fig. l(b), might  have  walls  formed by milling  the 
cavities  from  a  metal  block, or by the  use  of  pins or plating 
through  holes  in  the  ground  planes  and  supporting  dielectric 
material. 

The  recent  success  of  printed  microstrip  arrays  has  kindled 
an  interest in consideration  of  the  structure  shown in Fig. l(a), 
where  there are no  cavity  walls  to  provide  internal  isolation 
between  adjacent  slots.  This  interest  has  grown  because  of  the 
need to investigate  new  scanning  array  architectures for 
layered  monolithic  fabrication  using  high  dielectric or semi- 
conductor  substrates. 

The  purpose  of this paper  is  to  compare  the  radiation 
properties  of  the  array  geometries  of  Fig. l(a) (case A)  and 
Fig. l(b) (case B) for an infinite  array in order to determine 
whether  it  is  realistic  to  consider  scanning  arrays  without 
metallized  cavity  construction. 

It  should  be  noted  that  the  authors of a  recent  paper [l] on 
the  scanning  properties  of  dipole  arrays  with  dielectric  layers 
and  a  ground  screen  attempted to include  slot  arrays  similar to 
that of case A by an  application  of  duality.  Such  application  is 
incorrect  even  for  the  slot  array  with  dielectric  layers,  but 
when a second  ground  screen  is  added  (with or without 
dielectric  layers),  the  slotted  screen  introduces  a new  bound- 
ary condition  that  cannot  be  addressed by generalization  of 
duality.  In  the  present  analysis  the  Green’s  functions  for  both 
regions are chosen  to  satisfy  the  boundary  conditions at the 
slotted  screen and the  ground  screen,  and  only  a  single  integral 
equation  is  needed  at  each  slot. 
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Fig.  1.  Array geometries. (a) Case A: slot array without internal cavities. 
(b) Case B: slot array with internal cavities. 

II. THE MATHEMATICAL AND PHYSICAL  MODELS 
In  order to perform  a  comparison  that  isolates  effects  due to 

modes  within  the  dielectric  loaded  region,  it  was  necessary to 
use  the  same  source  function for the  slots in both  cases.  This 
led to the  assumption  of  a  delta-€unction  current  source  at  the 
center  of  each  slot.  The  current  source is assumed  constant 
across  each  slot,  and  associated  entirely  with  a  discontinuity  in 
the  tangential x directed  magnetic  field, so that  the  line  integral 
for this scattered  field  is 

I = - J H . d l  (1) 

around the vanishing  cross  section of the  current  source 
reduces to 

B:-B:= -,u&S(X), -b/2 < y < b/2 (2) 
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at the slot  with center (x, y )  = (0, 0), with 6(x) the dirac delta 
function. 

Consistent  with  the  assumption of constant  impressed 
current as a function of the  coordinate "y," is the  restriction 
of narrow  slot  dimensions "by" and later the  neglect of all 
field  variations  in "y " across the slots.  This  model is taken  as 
.a realistic approximation to the excitation by a thin wire 
carrying  constant current, a common  method of exciting  slots 
in a flat-plate .configuration. The  model  is the Babinet 
equivalent of the delta-function  voltage  excitation model for 
dipoles, and  should  have similar convergence  properties [ 2 ] .  
The model is the  same  as  used by  Galejs [3] for a single  slot 
problem. 
All other slots are excited by a similar current source, 

related to the above by a progressive  phase  relationship, so 
that  the  slot  with center location (x,,,, yn)  = (mDx, n0,) has 
current 

I (x+ mDx, y + no,) = I o e - ~ k o ( K o m D x + u o " D ~ )  

- 6(x-mDx)w(y-nDy)  (3)  

where 

w ( y - n D , ) = l   ( - b / 2 ) ~ y < b / 2  

0 IyI>b/2. 

In this case u0 and uo are the direction cosines of the  scan 
an& (60, $0) 

M, = sin 6, cos 4o uo = sin Bo sin 40. (4) 

The fields in the free space  half-space  (region 1) and the 
dielectric loaded  volgme  below the ground  plane (z < 0; 
region 2) are written in terms of scalar  magnetic  potential 
functions  derived  from the y directed aperture fields in the 
slots  using Green's functions  that  will be given later. Fields in 
specific  regions 1 and 2 wiU be later denoted by superscripts. 

B ( r ) = V ( V  . 7?,,,)+ky,,, 

E( r )  = - jwv x *,,,. ( 5 )  

Here the  magnetic  potential e,,, = fn is assumed to be a 
single  component of a vector for the  case of  very thin slots 
(and so Ex = 0). 

The Green's functions  chosen to derive these scalar mag- 
netic  potential  functions  have zero normal  derivatives at the 
ground screen, and so E' I = 0 except in the apertures. In 

I addition, they  must  have%e same  periodicity as the current 
distribution (4) except for the  case of fields  within a walled 
cavity  region,  where the boundary  conditions are not periodic. 

In either case, the Green's  functions due to a single  source 
at (x' , y ' , 2') satisfy  the  inhomogeneous  Helmholtz  equation. 

(V2+k; )G(r ,  r ' )=  - S ( X - X ' ) S ( ~ - ~ ' ) S ( Z - Z ' )  (6) 

where 

k;= w2po€" 

Using Green's theorem to relate the functions ?r and G in 
any closed  region of space  to their normal  derivatives at the 
enclosing surface, one obtains 

1 (n(r')V2G(r,  r') - G(r, r')V2n(r')) du' 
u' 

where 7 ' is the outward  normal to the surface. 
Adding  and  subtracting [kfG(r,  r')?r(r')] within the 

volume integral, and  using the inhomogeneous  Helmholtz 
equation (6), one  obtains  an  expression  valid in  both  regions 

an(r') 
n(r)= 1 G(r, r') - ds' 

S' a7 

for the specific case in which G is chosen  to  have a vanishing 
normal derivative at the surfaces. This expression  reduces to 
the  following  relationship  involving  tangential E-fields: 

region 1 x::;= -f 1 ~ ' ( r ,  r f ) ~ , ( r ' )  d ~ '  (9) 
w 

region 2 ?r~;= +L 1 G2(r, r ' ) ~ , ( r ' )  ds' . (10) 

These expressions for d l )  and ?re) fully define the fields in 
regions 1 and 2 based  upon integrals of the unknown  tangential 
aperture fields E,,. The Green's functions G (l) and G(2) are 
constructed to satisfy the inhomogenous  Helmholtz  equation 
(6) and the boundary  conditions  on  both  sides  of the ground 
screen (z = 0). 

Since the fields on either side of the apertures are 
constructed from the tangential electric field, only the equation 
of the  tangential  magnetic  field Bx ((2) is necessary to satisfy 
all continuity  conditions.  Equation (2) becomes (at  the  element 
with center (0, 0)) 

w 

(a;x+ k ; ) d l )  - (a2 xx + kf)d2)  
= - p , , ~ , ~ ( x -  mDx)e-jWUO"Dx+ U O " W  (1 1) 

with 
- b/2  S y  5 b/2  

for (x ,  y )  in any aperture. 
Since  the  total  field  will  have the same  periodicity as the 

assumed current excitation, one can  account for this progres- 
sive phase  term explicitly, and  it is only  necessary to satisfy 
the above  equation or the  defining  equation for the Green's 
function (6)  within the periodic cell with  center (x ,  y )  = (0, 
0). 

III. SOLUTION OF THE INTEGRODIFFERENTLU EQUATION 

Equation (11) is recast into the form below,  where  it  is 
evidently a linear, inhomogeneous integrodifferential equation 

(ip+k2,)(?r(')-n(2))= -/.tQIl)S(x-mDx)+k2,(€,- 1)T" 

- b  b 
2 2 
-5ys- (12) 
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which,  for  the  aperture at the  origin of the  coordinate  system 
can  be  solved  in two regions x 2 0 and x < 0. 

T( ’ )  - T ( ~ ) =  C1 COS koX+ C2 sin k G  

+ ki(  E ,  - 1) T ( ~ ) (  {)I 
* sin ko(x-r) d l ,  x S O .  (13)  

This set  of  integral  equations  applies for either  case  A or 
case B; only  the  choice  of  Green’s  function  is  different  in  the 
two regions. 

A  more  convenient  form  is  obtained by redefining  the 
constant C2, and  evaluating C, in terms  of C2 after  performing 
the  delta  function  integral. This is done by integrating (13)  
over  the  source  (defined to exist  for  some small region o 2 X 
2 0), and ’ then  identifying  the  discontinuity in the  first 
derivative  of  this  potential  difference as the  source  strength - 
PI09 or 

ax(n’(x)-a2(x))~,=,-a,(a’(x)-?r2(x))lX=o 

= kO(C2 - C4) - Pol0  = - Polo 

which leads to the  condition C2 = C4. 
The  resulting  equation  can be wriaen  for all “x” as 

d l )  - d 2 )  = C, ( 1  + sgn (x ) )  cos kox+ C2 sin kox 

+ C3(1 -SF ( X ) )  COS kox 

where 

and 

A .  Green’s  Functions for Both Regions 
The  Green’s  functions  given  below  apply  to  regions 1 and 2 

for  case  A  and  case B. The  Green’s  functions  for  case B are 
given in Appendix I, those for free space  (region ( 1 ) )  are well 
known (see [4]). 

I) Region  I-Haw-Space z 2 ,s Subject to the assumption 
of  a  periodic  field  in this region,  with  periodic  cell  dimensions 

DX and Dy defined in x and y directions 

where 

K,, = kodl - u3 - v z  , for all integer rn, n 

with  the  negative  imaginary  branch  taken  for  negative 
ment  and 

mX nX 

D X  DY 
u,=uo+- ; u,=uo+-. 

2) Region 2-Case A: In the  parallel  plane  region - t < z 
< 0 the  fields  have  the  same  periodicity as z > 0. Since Ey = 
0 at z = - t ;  the  Green’s  function  boundary  condition is 
&G(r, r ’ )  = 0 at z = - t .  In the  expression  below  the source 
is  set  at z’ = 0 (see  Appendix) 

G‘)= -- zF Kcrnn sin (Kemnt) 
1 cos KEmn(Z + t )  

exp { - j k o [ ~ ~ ( ~ - ~ ‘ ) + ~ , ( y - Y ’ ) l )  (17) 

where 

K E ~ ~ = ~ ~ ~ ~ E , - u ~ - u E .  ( 1  8) 

3) Region 2-Case B: When  waveguide  cavities are 
formed  in  the  region z < 0 the  solution in  this  region  is 
required  to  satisfy  the  boundary  conditions  at  the  waveguide 
walls,  as  well as the  base  of  the  cavities ( z  = - t )  (see 
Appendix). 

The  resulting  Green’s  function  is  given  below  (for  source 
location z’ = 0). 

forp  = 1 ,  2 - - - ;  q = 0, 1 ,  2 - - .  where 

with  the  negative  imaginary  branch  taken  for  negative argu- 
ment. 

Using  the  above  Green’s  functions in the  integral  equations 
(13) completes  the  analytical  formulation. 

B. Reduction to the Final Matrix Equation 
The  system is reduced  to  a  matrix  equation by expanding  the 

aperture  field E,, in  a  series of sinusoids. 
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I 
E y = C  Ai sin in(x /a+ 1/2). (21) 

i= 1 

As indicated previously, the solution  assumes thin slots, 
with  no  allowed  field variation  in the “y”  direction. The 
constants C1, Cz, and C3 are also assumed  independent  of 
“y,” and the “y” dependence  present in the  integral 
equations was removed by integrating the system of equations 
over the region - b /2  < y < b/2 (the  slot  width). 

The series expansion  results in algebraic  equations to 
replace  the  integral  equations (13). With  the series truncated at 
i = I, there are I + 3 unknown  constants. The final  equations 
are as follows. 

Case A 

C1 (1 + sgn (x ) )  cos k g  + C2 sin kox 

cot KEmn(t) 1 

Kern, K m n  
+ - exp ( -jkoumx)] 

Case B 

CI(1+ SP ( X ) )  COS kox+ C2 sin kox 

I 
+ C3(l -sgn (x)) cos k o x + c  Aiba 

i 

= sgn (x )&  - sin kox 
10 

2 

with  the  summation  indices  as  defined for the  Green’s 
functions. The parameters, S,  S ,  4,  r], p, and y are defined in 
.Appendix II. 

The final  step  in  converting these equations  into  matrix 
equations is to require them to be  satisfied at I + 3 points 
within  the  region a/2  < x < -a /2 .  In this case, “I” was 
chosen odd, and the aperture points  chosen  equally  spaced on 
each half  of the aperture, starting at x = f E ,  for E vanishingly 
small. The excitation Io was  assumed  unity. 

C. Approximations and Series  Convergence 
Because of the large number  of  variables  in this problem,  it 

is necessary to choose to display data from only array lattice 

dimensions; so throughout  the figures 

Dx=Dy=dx=dy=0 .5h  

for Figs. 3 , 4 , 5 ,  and 6.  Figs. 7 and 8 show the results of using 
increased lattice dimensions 

Dx=Dy=dx=dy=0.55X. 

In all cases  the  slot  thickness is b = 0.05 A. 
The  number of terms in the various series were  varied to 

evaluate the convergence  properties of each  summation  as well 
as  of the  matrix  equation. It was  found  that  the series in “rn,” 
“n,” “p,” and “q” (22) and (23) could  be  truncated  at rn = 
n = p = q = 14 with  resulting  conductance  parameters 
differing  from  those  computed for m = n = p = q = 80 by 
only a few  percent for most of the cases tested. The value 20 
was used throughout Figs. 5 and 6 except  where  indicated. 
Figs. 3 , 4 , 7 ,  and 8 were  computed  with  these series truncated 
at 14, to save  computer  time.  Values of l u p  to 39 were used, 
but  the general  shape of the curves was  unchanged  once “I” 
was greater than  about  seven. 

Several  instances of ‘‘relative convergence”  phenomena 
were  observed for cases  with a very thin layer of  high 
dielectric material.  This  phenomenon  is  commonly  encoun- 
tered in the series solution of  such  problems  in  which  the 
integral  equation  kernel is expanded  as a truncated series (in 
this case using the indices p and q in one  region, rn and n in 
the other). As more terms are used to approximate  the 
unknown, a point is reached  beyond which further increases 
lead to severe divergence in the hitherto converging  solution. 

In the  present  study  several  examples of “relative conver- 
gence” [4] effects  were  observed for cases in which the 
parameter I substantidy exceeded m, n, p or q, but for “I” 
less  than or equal  to  these  parameters the convergence was 
uniform  except for the several cases  with relative dielectric 
constant  nine. In these  cases there was  good  convergence for I 
= 13 or less. As will be  indicated later, conservation of  power 
was  found to be a good  measure of the stability of the  solution 
(in  the  sense of its relative  convergence). For this reason, two 
measures of power, the circuit power P and  the  radiated  power 
P, are defined  in  the  next section. The validity  of the  solution 
was assured  not only by  noting convergence in thep, q, m, n, 
and I variables, but  by comparing the two power  measures as 
well  in order to assure that the results  were free. of  such 
relative  convergence errors. 

Near  resonance, the radiation  resistance R and  the two 
power  measures (E‘, and P )  described in the next  section  were 
stable, and  not  strongly  dependent  on  any of the  truncation 
parameters, while the reactance,  conductance,  and  suscep- 
tance  were  more  sensitive. 

IV. ADMITTANCE, IMPEDANCE RADIATED POWER, AND ELEMENT 
PA-S 

The  slot  impedance is defined  below, in terms of the total 
voltage u (the electric field  integrated  across  the center of the 
slot  and  the  applied current Io 
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Using this expression,  one  can  write  one  form  of  the 
average  radiated  power  for  each  slot  as 

1 

2 
Pz=-  Re (2) since Io= 1. (25) 

A second  definition  of  radiated  power  based  upon  integrated 
fields  can  be  compared to (28). The  average  power  per  unit 
cell  radiating  in  the  normal  direction  away  from  the  infinite 
array  is 

P = s   S * z ^ d s  (26) 
cell 

where S is  the  Poynting  vector 

1 

2 
s=- Re ( E x H * )  (27) 

so 

This formula  applies  for  any  radiating  mode u’, + v i  < 1. Zo 
is  the free space  impedance 

( Z 0 = G ) .  (28) 

These  two  definitions of power  were  compared  for  all 
computed  data.  Except  near  pattern  anomalies  they  were 
always  within  a  few  percent  of  each  other as long as only  a 
single  mode  radiates (no grating  lobe).  In  those  cases  where 
“relative  convergence”  was  a  problem,  a  comparison of the 
results  of (25) and (27) proved to be  a  sensitive  measure  of  the 
overall  stability  of  the  solution. 

Active  element  patterns are often  used  to  illustrate  the 
scanning  properties  of  arrays  when  the  admittance  of  the 
feeding  transmission  line  is  fixed, as in  the  case  of wawguide 
radiators.  They are less  general  than  impedance or admittance 
plots  in  the  present  case,  for  one  could  choose to excite  the 
slots by a  number of different  feed  mechanisms or devices. 
For  an  infinite  array  the  element  pattern  is  cos B multiplied by 
the  array  power  transmission  factor,  which  is  the  ratio  of  the 
power  transmitted in  a  given  direction to the  input  power  (into 
a  matched  load).  This  definition  implies  that  a  characteristic 
load  impedance is chosen for the  feed  circuit,  and  then  the 
matched  load  input  power  is  then  the  maximum  power 
transmitted  (or  half  the  power in the  circuit). 

In order to compute  the  ratio  of  radiated  power  to  that  into  a 
matched  load,  including  the  case  when  several  grating  lobes 
are present, an equivalent  resistance  is  defined  using  the 
radiated  power 

2P R,=-- 
I I O l 2  

- 2 P  

using (25). 

Based  upon  a  series  circuit  equivalent,  the  ratio  of  power 
into the resistance R ,  to  that  into  a  matched  load  is 

where Ro is  the  characteristic  transmission  line  impedance, 
chosen to match  the  antenna at some  angle.  Usually Ro is 
selected for broadside  match, by requiring Ro = R ,  at 
broadside.  The  impedance z in this formula  is  that  evaluated 
from (24), and so includes  the  series  impedance  of  any  number 
of radiating  grating  lobes. 

Since  the  resistance  term R in  the  impedance z is not 
identical  to R,, then PnOm is  not  quite  unity  at  broadside. This 
error is  also  exhibited  in  the  comparison  of Pz and  power (P) ,  
as  mentioned earlier, and  is  corrected by use  of  higher  order 
approximations to the  truncated  series  solutions. 

A .  Admittance and  Impedance  at  Broadside for Various 
Dielectric  Substrates 

In addition  to  evaluating  the need to  divide  the  array  using 
cavities  (case A versus  case B) this  paper  addresses  and 
compares  the  result  of  using  various  dielectric  substrates 
beneath  the  slots.  These  effects are related  primarily  to  the 
existence  of  cut-off or propagating  higher order modes  in  the 
region  beneath  the  ground  plane,  and  again are best  under- 
stood by considering  cases A and  B  separately. 
In both  cases  the  region 1 Green’s  function is the  same,  and 

consists  of  a sum of  propagating or nonpropagating  modes of 
the  periodic  structure,  sometimes  called  a  grating  lobe  series. 
The  condition  that  a  mode  radiate  is  that  the  mode  have urn, un 
coordinates  in the region 

u;+u;<1 (3 1) 

or that  the  scan  angle  direction  cosines  lie  within  a  unit  circle. 
Fig. 2 shows  the  grating  lobe  lattice  for  an  array  with 0.5 X 
spacing  in  both  dimensions.  The  grating  lobe  locations are 
shown as dots, spaced two units  apart  in  the u and u planes. 
With 0.5 X spacing,  only  one  grating  lobe  exists  within  the  unit 
circle  for  any  scan  angle (see x on figure), and hence  only  the 
main  beam  of  the  array  radiates. 

For  case A, the  field  expansion  below  the  ground  plane 
(region 2) also includes  a  similar  set  of  spatial  harmonic 
modes,  but  the  use  of  a  dielectric  substrate  below  the  ground 
plane  results  in  a  propagation  constant Kern, (1 8) that  allows 
propagating  modes  within  a  circle  of  radius A, instead of 
unity (see Fig. 2 (case A)). This can  be  a  dramatic  increase  in 
the  number  of  propagating  modes,  and  can  make  the  behavior 
of  the various array  parameters  extremely  sensitive to fre- 
quency  and  array  lattice  dimensions.  Of  greater  importance, 
however, is that  each  of  these  modes  has  different  behavior 
with scan angle,  and  this  will be shown to lead to severe  array 
blindness or rapid  change in input  impedance as a  function  of 
scan angle. For example, if E ,  = 2.5, with DX = 0.50 X, a 
grating  lobe  occurs  in  the  substrate  for 0 > 25”, and  for er = 9 
there are grating  lobes  in  the  substrate  even at broadside. 

For  case  B  the  boundary  between  propagating  and  non- 
propagating  modes  is  independent  of  scan  angle,  for (20) 
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I .- . DX I dx=dy=d A 

FREE SPACE RADIATION PARALLEL PLATE REGION CAVITY REGION 
(CASE A) (CASE B) 

(5 2dx r + (SJ 2d < E 

P = 1,2,3 
q = 0,2,4 

Fig. 2. Grating lobe and internal mode excitation. 

shows  that  propagation  in the waveguide  cavity  regions  occurs 
from ( p ,  q) such  that 

The  set  of p and q values that corresponds to radiating  modes 
are shown  within the circle of radius G i n  Fig. 2(b). Modes 
with q-odd are not excited. 

If the  cavity  backed  slot array (case B) has air dielectric or a 
very  low dielectric constant substrate then  it  is  usually  possible 
to choose the cavity  dimensions d, and dy so that a single  mode 
propagates.  This assures wider  frequency  performance and 
good scan characteristics. When  high dielectric substrates are 
used, there may be many  propagating  modes  because  the 
radius of the circle (32)  and  Fig. 2 is still 4, but the  mode 
propagation  constants are independent of scan angle. 

The substrate thickness “t” is usually  chosen so that its 
electrical thickness is less than 0.25 wavelengths.  For case A, 
t /h  c 0.25/&, but for case B the value oft can be  somewhat 
larger because of the  elongated  wavelength in the  waveguide 
cavity  region. 

Admittance  data are plotted  throughout this paper  because 
the  slots  appear  naturally  as  shunt  admittances in parallel  with 
admittances of  modes  in  the substrate region and because the 
slowly  varying  admittance  data are more appropriate to plot 
than the series resonant  impedance data. 

At broadside, the variation of basic  parameters is similar in 
cases A and B. The  resonant  slot  dimension “a” varies with 
the dielectric constant E ,  and the dimension t .  Generally, 

. decreasing  the  spacing “t” reduces  the  slot  length at 
resonance,  as  shown  in  some of the examples in Figs. 3 and 4. 
However,  when the dielectric constant is so large that  several 
internal modes are present  even  at  broadside, then the 
admittance  curves are greatly  modified,  and no  such simple 
dependence  upon E exists (Figs. 3(c), 4(b), and 4(c)). The 
location of the resonance  is  shown in these figures as  the first 

zero crossing of the susceptance, as the dimension “a” is 
increased. At this point, the admittance  changes from having 
an inductive  (negative)  susceptance to a capacitive  (positive) 
susceptance. 

The  radiation  resistance at resonance, however, is primady 
a function of the slot dimension “a” is more important than 
the dielectric constant E in  determining the slot  conductance. 
Since  the  resonance occurs for smaller “a” values  when  the 
dielectric constant is large, this leads to low conductance  (high 
impedance)  values for slots over high dielectric substrates. 

B. Scanning Behavior-Element Patterns and 
Admittance 

Figs.  5-8  detail  the  behavior of a number of slot arrays of 
the types designated case A (no  cavities) or case B (with  cavity 
separators). The figures show E- and H-plane (u  and  u-plane, 
respectively) normalized power  transmission factors, which 
are readily  converted  to active element  patterns  upon  multipli- 
cation by  cos 8 .  These figures assume  the characteristic 
impedances of the feed  transmission  lines  chosen for broadside 
match. In each of these cases the normalized electrical 
thickness of the  substrate is chosen  equal  to 0.2 h at broadside 
for the  lowest order mode  in the substrate, which  means  that t 
= 0.2 WJE, for case A, and 

0.2 h 
t =  (33) 

$73 
for case B. Also, the slot length “a” for each case is chosen to 
resonate  the array at  broadside. This dimension,  and  the array 
broadside  conductance, is given  in the figure caption. 

The figures indicate  that all the case B results  (with  cavities) 
shown  in Figs. 7 and 8 have u and u plane  patterns  that are 
nearly  independent of the properties of the dielectric substrate, 
and that, for 0.5 X spacing (Figs. 5 and 6)  the u and u plane 
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Fig. 3. Broadside  admittance  versus slot length for case A. 

scan characteristics are nearly  identical. In the  case  of 0.55 X 
cell size the u and v patterns are different, as one  would  expect 
because of the  emergence of the  grating  lobe  at  wider  scan 
angles. For either  spacing,  the  case B element  patterns  are 
wide  and  exhibit  good  scanning  properties. 

The  case A results all have  severely  distorted  element 
patterns  and  array  blindness  in  either  the u or u planes  (or 
both)  except for the  air-filled  case (er = 1.0). With er = 2.5, 
there  is  a  severe  blindness in the E plane ( u  plane)  but  none  in 
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Fig. 4. Broadside  admittance versus slot length for case  B. 

H-plane. This  might  suggest  the  possibility of building 
arrays  with  cavity  separators  in  the E-plane only,  but  even  this 
degree  of  simplification  would  not  help for = 9, where 
blindness occurs in  both  scan  planes. 

V. CONCLUSION 
This  paper  has  compared  the  radiation  properties of slot 

arrays  with  and  without  separating  cavities for various 
dielectric  loadings and substrate  thicknesses.  The  comparison 
was carried  out  using  the  same  formulation,  geometry  and 
excitation for both  cases,  and  this  led to the  use  of  idealized 
delta  function  current  sources at each  element. 

The paper  gives  impedance  parameters for a  number of 
different  array  configurations,  and  shows  a  comparison of 
array scan parameters.  The  primary conclusion of this  work is 
that  except  for  arrays  with air dielectric (er = 1) substrate, it  is 
necessary to use  separating  cavities  between  slots. 

APPENDIX 1 
GREEN'S  FUNCTIONS IN THE SUFISTRATE (REGION 2) 

Case A 

Assuming  the  same  periodicity  as  above  the  substrate,  we 
require 
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. 5. Principal  plane  power  transmission  factor  versus scan coordinates 
(p, u )  for  half-wavelength spacing (case A). Note: upper case  dimensions 
are normalized to wavelength. 
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Fig. 6. Principal  plane power transmission  factor  versus  scan coordinates 
(u, u )  for  half-wavelength  spacing (case B). Note: upper case  dimensions 
are normalized to wavelength. 

The z dependence is chosen to have  vanishing  normal 
derivative  at z = 0 and z = - t ; so is written below  on  either 
side of the source: 

Integrating the differential equation across a small region 
near the source evaluates the change in derivative 

(37) 
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Fig. 7. Principal  plane  power  transmission  factor  versus scan coordinates 

(u,  v )  for 0.55 wavelength  spacing  (case A). 

the  source  at z’ = 0, so only E,, is needed 

- exp [jko(Urnx’ + u , ~ ’ ) l  
K~,,(sin Kern,t)DXDy Ern, = (40) 

Equations (7) and (3), substituted  into (1) of this  Appendix 
yield  the  final  expression  for  the  case  A  Green’s  function, (17) 
in  the  main  text. 

Case B 
The  Green’s  function  in  the  waveguide  cavity  loaded  region 

is  not  periodic,  but  instead  must  satisfy  the  electromagnetic 
boundary  conditions  at  the  walls  and  bottom  of  each  cavity, 
and also at z = 0. 

Conditions  on  the Ey field  require  that  the “z” derivative of 
the  Green’s  function  vanish at the  cavity  top  and  bottom (z  = 
0 and - t )  and at  the  cavity  side  walls ( x  = * dx/2)  while  the 
condition  that E = 0 on  all  cavity  walls  adds  the  constraint  that 
the  normal (“y”) derivative of the  Green’s  function  vanish  at 
the  cavity,  walls ( y  = k d y / 2 ) .  The  resulting  Green’s 
function  has  the  form: 

= .55 h 
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Fig. 8.  Principal  plane  power  transmission  factor  versus scan coordinates 

(u,  u )  for 0.55 wavelength  spacing  (case B). 

As  before,  substituting  the  above  into  the  inhomogeneous 
differential  equation (l), using  orthogonality of the  sinusoidal 
functions  and  integrating  over  the  waveguide  cross  section, 
one  obtains 



using 

for z>z' 
for z<z' (43) 

and the integral of the differential equation  over the inhomoge- 
neity, one obtains a  relationship  between the constants  and H, 
and F, 

+ kzHpq sin k,(z' + t )  

Upon the use of the Green's  function  continuity  condition 

Fpq cos kzz= Hpq cos kz(z+ t ) ,  at z=z' 

and  the  relationship (44), one can solve for the unknown 
constants. 

Since z' = 0, only Hpq is given  below: 

The resulting Green's function is given in (19). 

APPENDIX 

DEFIIUTIONS 
The following  expressions are defined for use in (25) and 

(26). 

1 b/2 
S,=- 1 exp [jkouny'] dy' = 

b -b/2 ko un b /2  

2 i r  
(ir)2 - (kouma)2 

=S, - 

a 
2 '  

- j sin kopm - i even 

COS kopm - i odd 
a 
2 '  

l o ,  
where 

(- 1)P'2 

bo s i n 7  - (2) sin k.;] 

. k i - ( z ) 2  

i ,  p even 

i ,  p odd 

otherwise 

, p even 

+ ju ,  sin kox- cos k;} . 
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