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Abmucr-The least mean  square pattern synthesis method is ex- 
tended  to  include  constraints  such  as pattern nulls or  pattern- 
derivative  nulls  at  a  given  set  of  angles. The  problem is formulated  as 
a  constrained  approximation  problem which is solved  exactly,  and  a 
clear  geometrical  interpretation  of the  solution  in  a  multidimensional 
vector  space  is  given. The  relation  of  the  present  method to those of 
constrained  gain  maximization and  signal-to-noise  ratio (SNR) 
maximization  is  discussed  and  conditions for  their  equivalence  stated. 
For  a  linear  uniform ,%‘-element array it is  shown  that, when A4 single 
nulls  are  imposed  on  a  given  “quiescent”  pattern, the  optimum 
solution  for the  Constrained  pattern  is  the  initial  pattern  and  a  set  of 
”weighted  (sin :\!r)/sin x-beams.  Each  beam  is  centered  exactly  at  the 
corresponding  pattern  null,  irrespective  of  its  relative  location.  For 
the  case  of  higher  order nulls, the nth pattern  derivative  is  similarly 
canceled by the nth derivative  of  a (sin ;V.x)/sin x-beam. In addition, 
simple  quantitative  expressions  are derived  for  the  pattern  change  and 
gain  cost  associated  with  the  forced  pattern  nulls.  Several  illustrative 
examples  are  included. 

T 
1. INTRODUCTION 

HE PROBLEM  of  forming  nulls  in  the  radiation  pattern  of 
an  antenna, in order  to  suppress  interference  from  certain 

directions,  presently  receives  much  attention. Most  work  is  in 
the  area of adaptive  nulling  systems,  as  discussed by Apple- 
baum [ 1 1  where  a  performance  index  such as the signal-to- 
noise  ratio  (SNR) is maximized.  In  the  case  where  jammers  are 
the  dominant  noise  source  this  process  automatically  places 
pattern  nulls in the  directions  of  the  jammers.  A  seemingly 
different  approach is that of Drane-McIlvenna [2]  where 
another  index,  antenna  gain, is maximized,  subject  to  a  set of 
null  constraints  on  the  pattern. In both  methods  the  perform- 
ance  index is the  quantity  of  prime  interest,  whereas  the  role 
of the  antenna  pattern is no t  too clear,  which  to an antenna 
engineer is unsatisfactory.  The  purpose of this  paper is to   show 
that  the  problem  can  be  formulated  as  a  direct  pattern  synthe- 
sis problem  which  includes  the  pattern  nulls. 

A  narrow-band  interference  source  can be suppressed  by 
imposing  a  single  null  in  the  antenna  pattern  at  the  proper 
angle.  A  wide-band  jammer,  however,  appears  to  cover  an 
angular  sector  of  the  pattern  because  of  the  frequency  depend- 
ence  of  the  antenna,  and  therefore  it  may  be  required  to  null 
an  entire  sector.  This  can  be  done  either by imposing  single 
pattern  nulls  on  a  set of  closely  spaced  points  over  the  sector 
or by imposing  nulls  in  the  pattern  and  its  derivatives  at  the 
center  point  of  the  sector. In circuit  theory  this is analogous 
to  the  Chebyshev  and  Butterworth  filter  alternatives. We will 
consider  the  synthesis  problem  for  both  cases  and  also  derive 
expressions  for  the  effects  of  the  imposed  nulls, in terms  of 
pattern  change  and gain  cost. 

The  synthesis  method is based  on  least  mean  square or 
Gaussian  approximation [ 3 ] ,  which  allows  an  attractive  geo- 
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metrical  interpretation  in  a  multidimensional  vector  space.  It 
will be  shown  that  under  certain  conditions  the  present 
approach  yields  the  same  result  as  the  methods  of  constrained 
gain  maximization  and  as  SNR  maximization.  The  least  mean 
square  error  criterion  with single-null constraints  has  been 
lucidly  discussed [ 4 ]  in  very  general  terms  and  as  applied  to 
satellite  multiple-beam  antennas.  In  contrast  we will study  the 
classic problem  of  pattern  synthesis  for  a  linear  array of  iso- 
tropic  elements,  which  leads t o  a  slightly  different  formulation 
and  some  complementary  viewpoints  and  results.  The  use  of 
the derivative to  broaden  a  pattern  null was  first  suggested  in 
[ 2 ]  and  recently  applied  in  the  context  of  pattern  synthesis 
in [ 51 and  adaptive  systems  in [ 61. 

11. FORMULATION OF THE  PROBLEM 

We consider  a  situation  where  an  array  antenna is being 
illuminated by desired  signals  and also by  highly  dominant 
interference  signals  from  certain  discrete  directions.  The 
optimum  antenna  pattern for this  case  is  reasonably  defined  as 
the  desired  pattern  in  the  absence  of  the  jammers,  the so called 
quiescent  pattern,  suitably  modified so as to  form  pattern 
nulls  in  the  interference  directions.  The  degrees  of  freedom 
available  in the  antenna  pattern  are  thus  used in  first  place t o  
form  the  pattern  nulls,  with  remaining  degrees of freedom 
being  used for  approximation  of  the  quiescent  pattern. 

The  corresponding  antenna  pattern  synthesis  problem  con- 
sists  of  determining  the  closest  approximation p a  to a given 
quiescent  pattern PO, subject  to  a  set  of  null  constraints.  The 
solution of  this  problem  requires  a  definition  of  “distance” 
between  two  patterns  and  this will be  defined  in  Gauss’s  sense 
as  the  mean  square  difference  between  the  patterns.  This 
particular  metric  provides  an  overall  measure  of  approxima- 
tion,  and in contrast  to,  for  instance,  the  Chebyshev  approxi- 
mation,places  no  explicit  bound  on  the  maximum  deviation 
from  the desired  function  at  any  particular  point.  However  it 
is the  only  metric  that  allows  the  approximation  problem  to 
be  solved  with  any  sense of generality. 

For  simplicity we consider  a  linear  array  of 111 isotropic 
antenna  elements  with  uniform  half-wavelength  spacing.  Set- 
ting u = sin 0 where 0 is defined  in  Fig. 1 ,  the  antenna  far-field 
pattern is described  by  the  array  factor 

where x, denotes  the  complex  excitation of the  nth  array 
element. 

The  synthesis  problem  can  now  be  stated  mathematically: 
find  the  pattern pa(u), such  that  the  mean  square  difference 
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Fig. 1. Array antenna: its aperture and far field. 

subject  to  the  constraints 

dV 

duV 
- pa(up)  = 0, p = 1, .-, M I ,  v = 0, .-*, M,, (2b) 

where { ~ ~ } ~ ~ 1  denotes  the  angular  location  of  the M I  inter- 
ference  sources.  Since  the  total  number of constraints  must 
not  exceed  the  number  of  free  variables  it  is  required  that 

We assume  that  the  desired  quiescent  pattern is  given  as  a 
sum  of N harmonics,  as  represented  by (1). For   the general 
case  where p0(u)  has any  functional  form, p o  may  be  simply 
approximated  by  the  first N terms  of  its  Fourier-series  expan- 
sion.  Although  the  synthesis  procedure  then involves two 
subsequent  approximations,  it is  easily shown  to  lead  to  the 
correct  least  mean  square  approximation  of  the  initial  pattern 
171. 

M,(M,  + 1) < N .  

111. METHOD O F  SOLUTION 

The  synthesis  problem  posed  above is most  conveniently 
formulated in  a  multidimensional  vector  space,  where  each 
point  represents  one  array  excitation,  which  allows  a  clear 
geometrical  interpretation of the  approximations  involved. 
From  the  solution  for  the  array  excitation  the  desired  pattern 
is then  simply  given  by (1). The  underlying  principle  for  this 
equivalence  between  array  excitation  and  radiation  pattern  is 
of  course Parseval’s theorem. 

We introduce  an  N-dimensional  excitation  space X, in 
which  the  array  excitation { x , } ~ ~  is represented  by  the  vector 
x = ( x l ,  a * * ,  X N ) .  The  inner  product  of  two  vectors  we  define 
as (2, 7) = Z,xny,*, where  the  asterisk  denotes  complex 
conjugate,  and  the  norm llxll = (F, 

In  order  to  express  the  mean  square  error E in  terms of the 
array  excitation  we  substitute  (1) in  (2a)  and  obtain  after 
integration 

where X0 and Fa are  the  excitation  vectors  corresponding to 
the  patterns p o  and p a ,  respectively.  Likewise the  pattern  con- 
straints  (2b)  can  be  expressed as constraints  on  the  array 
excitation.  The  mathematical  expressions  simplify  somewhat 
if we  first  multiply  the  pattern  function p by  a  phase  factor 
exp  (i$u), where 

N +  1 $ =-, 
2 

which  shifts  the  phase  center  of  the  pattern to the  array  center. 
Substituting  this  new  function  in  (2b),  we  find in view  of (1) 
that  a  single or  zero-order null a t  u = up requires 

and  in  general,  for  a  vth  order  null 

N 

finally  lets us write ( 6 )  as  orthogonality  conditions  on  the 
array  excitation 

Note  that  we  now  have  characterized  each  combination  of 
jammer  direction u p  and  pattern  derivation  order v by  one 
constraint  vector.  Since  we  have  a  total  of M = Ml(1 + M 2 )  
such  combinations,  see  (2b),  we  have M different  constraint 
vectors.  In  the  following  we will suppress  the  superscript v and 
denote  the  constraint  vectors  just  by ym, where m runs  from 1 
t o  M .  

In  view  of (3)  and (8) the  synthesis  problem,  as  expressed 
by  (2),  now  becomes 

E = I I x ~ - x , I I ~ = ~ ~ ~  (9a) 

( F a , & )  = 0, m = 1, ...) M ,  (9b) 

where Eo and Ea denote  the  unconstrained  and  constrained 
array  excitation,  respectively. 

Equation (9) shows  that  the  desired  solution Fa is ortho- 
gonal  to  the  constraint  vectors { U m } l M .  A geometrical  inter- 
pretation  of  this  relation  is  obtained if the  excitation  space X 
is  divided into  an  M-dimensional  subspace Y ,  spanned  by  the 
vectors {u,x}lM and  its  (N-M)-dimensional  orthogonal 
complement 2. Any  vector x now  has  a  unique  decomposition 
[81 
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where 7 E Y ,  Z E Z ,  FLY. and  because of this  orthogonality 

11x1I2 = llB1I2 + 1 1 ~ 1 1 2 .  (1 1) 

Using  this  decomposition  for X0 and X a  we get  from (91, 
( l O ) , a n d ( l l )  

Equation  (1  2b)  yields 

Y Q  = 0, 
- - 

and  therefore E in (1  2a) is minimized  by  setting ?, = TO lead- 
ing  to  the  sought  constrained  excitation 

‘and  the  least  mean  square  error 

Equations ( 1  4)  and  (1 5) constitute  the  mathematical  solution 
to  the  posed  problem.  Its  properties will now  be  discussed 

Fig. 2. Geometrical illustration of approximation  problem: desired 
point = xo, closest approximation  confined  to subspace 2 is x, = 
Z O .  

becomes 

When N is large, ( 1  8) can  be  approximated  as 

from  various  points  of  view. 
The  method  of  solution is  illustrated  in  Fig. 2. The  excita- 

Thus  the  pattern p o  is simply  given by the  quiescent  pattern 
p o  and M superimposed  sinc-beams.  This  result  agrees  with  the 

tion which is to  be approximated, has the projections Y o  single-jammer  considered  in [ 11 and  the general conclu- 
and To in subspaces Y and Z .  Equation  (9b)  implies  that  the sion in [ 4 1 ,  
approximation ‘ 0  is to the constraint vector set The Jf cancellation  beams  represent ,If degrees  offreedom, 
{Ym}lX’ which spans ‘: and therefore ‘ 0  is ‘Onfined to the and  clearly  it  should  be possible to  realize A4 nulls 
subspace Z .  Under  these  circumstances  the  best  approximation with these. However it is noteworthy that each of these beams 
t o  X0 is obtained b)! setting Xa = 20, since of ail elements 2 E is centered exactly on the corresponding null, irrespective of 
Z this  point is closest to -TO. their  relative  location  and  that  the  beam  shape,  given  by 

Returning  to  the  solution  for  the  constrained  excitation as sin ((S.rru12)!sin (nu,2). is fixed regardless of how much the in- 

cellation  beams  corresponding  to  higher  order  pattern deriva- 
given  by ( I 4 )  we  note  that 70 is a linear Of the dividual  beams over]ap, Similar  hold for the  can- 
vectors yi,, and  therefore Fa may  be  written 

tives.  These  properties  are  consequences of the  isotropic  array 
elements  and  the  least  mean  square  approximation we have 

The  present  synthesis  method  with single-null constraints 
( I6)   adopted.  

where  the  coefficients a,, will  be determined  later.  Presently 
we infer  from  (16)  that  the  sought  excitation X a  is composed 
of the  quiescent  excitation -TO and  a  weighted  sum  of  the vec- 
tors J ’ , ~ ~ .  Note  the  dual  role of these  vectors:  initially  they 
characterized a constraint,  now  they  represent an  array  excita- 
tion. 

As for  the  resultant  antenna  pattern.  it  follows  from (1 6) 
and  the  linear  relation  between  the  array  excitation  and  the 
pattern.  that  the  constrained  pattern  p,(u)will be the  quiescent 
pattern Po(2‘) with 11;1 beams  superimposed.  The  beam  cor- 
responding  to  the  excitation ?,,, we  call  a  cancellation  beam, 
denoted  by 4,7J(u).  and  it is easily shown by using (7)  in  (1) 
that 

- 

will yield the  same  pattern  as  does  SNR  maximization [ 11 in 
the  limiting  case,  where  the  jammers  become  infinitely  strong. 
This  latter  condition  forces  the  optimum  SNR  pattern  to 
maintain  true  nulls,  rather  than  shallow  dips, in the  jammer 
directions  and  then  the  two  methods  are  comparable, as shown 
in the  appendix.  Further,  we.  also  find  equivalence  with 
constrained gain maximization [ 21 in the special  case  where 
p o  is a  maximum gain pattern,  on  which  a  set  of  single  nulls 
is imposed.  Minimizing  the  pattern  change E then  simultane- 
ously  minimizes  the  gain  cost.  as  shown  below,  in  conjunction 
with  (26),  and  thus  the  constrained  least  mean  square  pattern 
coincides  with  the  constrained  maximum gain pattern. 

Compared  to  these  methods,  however,  the  pattern  synthesis 
method is a  more  direct  and  therefore  conceptually  more  ap- 
pealing  approach,  which  provides  valuable  insight  into  funda- 
mental  pattern  properties. 

IV. THE SYNTHESIZED  PATTERN 

where p and v are  determined b>/ the  index J f 7 .  For  the case  of The  pattern p a .  which  satisfies the  desired  null  constraints 
N single nulls in the  pattern ( V  = 0 )  the  constrained  pattern is given b>f (18)  where,  however,  the  coefficients a,, so far  are 
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unknown.  They  may  be  determined  from  (16)  and  (1  2b) 
which  leads to  the  following  system  of  equations: 

where  the  Gram  determinant G = G(71, -., 7 ~ )  is the  coef- 
ficient  matrix  in  (20):  see [ 81,  and Dm is the  determinant of 
the  same  matrix  with  the  mth  column  replaced  by  the  column 
vector   ( (ul ,  TO), -., (UM,XO)). Note  that  there  are  only  as 
many  equations  as  there  are  constraints  and  usually  therefore 
(20) will represent  a  small  system  of  equations,  which will be 
easy t o  invert. 

To illustrate  the  synthesis  method we have  programmed 
(21)   on a  digital  computer  and  calculated  a  few  actual  pat- 
terns. We considered  "sinc-patterns"  defined  by  the  function 
sin  (Nm/2)/hr  sin  (nu/2)  and  Chebyshev  patterns,  since  they 
are  in  a  sense  complementary-the  former  have  sidelobes of 
constant  width  and  varying  height,  the  latter  have  sidelobes 
of  varying  width  but  constant  height.  In  the  first  examples  we 
chose  the  original  pattern PO to   be  a  sinc-pattern  and  imposed, 
respectively,  a  zero-,  a  first-,  and  a  second-order  null  in  the  pat- 
tern  at  the  rather  arbitrary  value u = 0.22. Fig. 3 shows  that 
the  null  width  indeed  increases  as  expected  and  also  that 
the  changes  in  the  pattern  are  rather  local. 

As a comparison  to  the  latter  case,  which  uses  three  degrees 
of  freedom  for  sidelobe  cancellation, we also  calculated  the 
pattern  with  three  single  nulls  located  at u1 = 0.21, u2 = 0.22, 
u 3  = 0.23. Fig.  4  shows  that  in  this  case  we  do  get  somewhat 
less sidelobe  cancellation  but  over  a  wider  sector.  In  contrast 
t o  derivative  nulling the  placement  of  single  nulls  thus  provides 
efficient  control  over  the  trade-off  between  cancellation  ratio 
and  sector  width. 

In  the  next  two  examples  the  unconstrained  pattern is a 
40-dB  Chebyshev  pattern  in  which  we  place  four single  nulls 
over a narrow  sector  (0.22,  0.28)  and  eight  single  nulls  over  a 
wider  sector (0.22, 0.36), respectively.  In  both  cases  the  nulls 
are  equally  densely  spaced Au = 0.02  apart.  The  resultant 
patterns, given  in  Figs.  5 and  6,  show  a  sidelobe  cancellation of 
30 dB  and  51  dB,  respectively,  over  the  sectors.  This is a  sur- 
prising  fact.  Intuition  would  lead us to   expect  less cancellation 
for  the  wider  sector,  which  contains  a  larger  number of nulls, 
i.e.,  a  larger number of  superimposed  sinc-beams,  whose  un- 
controlled  sidelobes  we  might  expect  to  add  up  to  a  relatively 
higher  average  sidelobe  level  between  the  nulls. A related  prob- 
lem  of  practical  interest  concerns  the  number of  nulls  required 
to  suppress  a  jammer  over a given bandwidth,  which  will  be 
addressed  in  the  future. 

Finally, we show  a  sinc-pattern  and  a  20-dB  Chebyshev 
pattern  in Figs. 7 and 8, again  with four single  nulls  equispaced 
over  the  interval  (0.22,  0.28).  The  sidelobe  cancellation  in  this 

- '30, ' 0 

I \  I 

-IC94 : : . ) I . ,  , '  
I 0 I 

(d) 
Fig. 3. (a) Initial sinc-pattern. (b) Pattern with a null of zero order 

imposed at u = 0.22. (c) With null of first order. (d) With null  of 
second order. Pattern change = 0.01, 0.03, 0.13, and  gain  cost = 
0.06, 0.11, 0.59 dB,  respectively.  Twenty-one array elements. 

u=sin8 

u=slna 

Fig. 4. Sinc-pattern with three nulls  equispaced  over the sector 
(0.18, 0.26). Sidelobe Cancellation = 36 dB, pattern change = 
0.12, gain  cost = 0.55 dB.  Twenty-one array elements. 
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-100; : 1111 , , I 

c U'S lP3  
I 

Fig. 5 .  Initial  40-dB  Chebyshev pattern with four nulls  equispaced 
over the  sector  (0.22, 0.28).  Sidelobe cancellation = 30  dB, pat- 
tern change = 0.001, gain  cost = 0.04  dB. Forty-one array elements. 

I 0 I 
u=%n 3 

Fig. 6. Initial 40-dB  Chebyshev pattern  with eight  nulls  equispaced 
over the  sector  (0.22, 0.36).  Sidelobe cancellation = 5 1 dB, pattern 
change = 0.004, gain  cost = 0.15 dB. Forty-one array elements. 

case  is 34 dB  and 32 dB  respectively,  which  is  of  roughly  the 
same  magnitude as the  30 dB  obtained  for  the  40-dB  Chebyshev 
pattern  above.  This  indicates  that  the  cancellation  ratio is 
rather  independent  of  the  actual  sidelobe level. It  thus  takes as 
many  degrees  of  freedom  to  suppress  the  sidelobe  level,  for 
example,   from  20  dB  to 60 dB,  as  from 40 dB to 80 dB. 

V. THE  EFFECTS OF NULL  CONSTRAINTS  ON 
THE  PATTERN 

It  is clear  that  forcing  the  antenna  pattern  to  zero  at 
certain  directions  does  affect  the  pattern  over  the  entire 
angular  region,  and  the  extent  of  these  effects is a  matter of 
practical  as  well  as  theoretical  interest.  The  following  two 
measures  for  the  difference  between  the  quiescent  and  the 
constrained  pattern  seem  natural. 

1 )  Pattern  Change E = 1/2 J I PO - p a  l 2  du:  This  overall 
measure  is  relevant  for  shaped  beam  patterns  or  for  patterns 
described  over  the  entire  angular  sector. 

2) Gain  Cost eg = G,(ul) - G,(ul): This  is  the  reduction  in 
maximum  directivity  in  the  look  direction ul and is  of  interest 
particularly  for  pencil  beams. 

The  pattern  change  which  by  definition is  minimized  by  the 
pattern p a  is  given by (1 I) ,  (14):  and (1 5) as 

This  form is convenient  when  the  constrained  excitation x, is 
explicitly  known. 

A simple  estimate for emin is obtained  for  the case  of  single 
nulls  when  the  constraint  vectors y m  are  nearly  orthogonal, 
so that 

- !  I - 
@ m , ~ n ) < t l F m  II l I7n l1 ,  WI f n .  (23) 

This  condition is  satisfied as soon as the  jammers  are  more 
than  a  beamwidth  (2/N)  apart.  In  this  case  the  vectors{?m}lM 
after  normalization  by IlF, = fi form  an  approximately 
orthonormal basis for  the  subspace Y ,  and  thus  we  find 

0 I 
1 lM 

N I 

-I 
u=sm e Emin = 1170 1 1 ~  2 I ( F O , F ~ ) I ~  

Fig. 7.  Initial sinc-pattern with four nulls  equispaced  over the  sector 
(0.22,  0.28). Sidelobe cancellation = 34  dB, pattern change = 0.03, 
gain  cost = 0.13 dB. Forty-one array  elements. l M  

=- 2 Ip0(um)l2.  (24) 
N l  

Equation.  (24)  for emin seems  reasonable  since  1)  the  cancel- 
lation  beams,  which  are  superimposed  on p o  to produce  the 
nulls,  are  proportional  to p ~ ( u , ~ ) ,  and 2) the  beamwidth  of 
the  cancellation  beams,  and  therefore,  their  power  content is 
inversely  proportional t o  N .  

The  quantity emin, normalized  to  the  total  radiation  power 
11 50 ] I 2 ,  is  given in  the  text  accompanying Figs. 3-8. Clearly 
the  pattern  change is  insignificant  for  all  cases  considered. 

The gain  cost eg evaluated  at u = ul is 

Fig. 8. Initial 20-dB  Chebyshev pattern with four nulls  equispaced 
over the  sector  (0.22,  0.28). Sidelobe  cancellation = 32 dB, pattern 
change = 0.04, gain cost = 0.03 dB. Forty-one array elements. 

Equation  (25)  can  be  expressed  in  terms of the  array 
excitation if we, for  the  look  direction uI:  define  a  vector XI = 
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For the  particular  case  where  the  quiescent  pattern p o  is 
a  sinc-pattern  directed  at u = ui, it  is found  that  the  cor- 
responding  excitation x. = x l  and eg(u1) = 2(l lX0 1 1 2  - 

11’) = 2e. In  this  case  therefore  minimizing  the  pattern 
change E simultaneously  minimizes  the gain  cost.  as  mentioned 
earlier. 

An  estimate for Eg can be obtained  when  the  constraint 
vectors  are  approximately  orthogonal  again.  Assuming single 
pattern  nulls,  setting for simplicity U I  = 0 and  neglecting 
higher  order  terms  of 1 1  x0 - x a  II/IIxo 11, it  is  easily shown 
from (26) that 

- 

(27) 

For the  examples  discussed  earlier,  the  gain  cost,  measured 
in  decibels, is given  in the  captions  of Figs. 3-8. Apparently 
the  cost,  which  ranges  between 0.03 and 0.6 dB,  is no t  severe 
although  in  some  cases we have  suppressed  the  sidelobes 
substantially. 

VI. SUMMARY  AND CONCLUSION 

We have  extended  the  general  method of  least  mean  square 
pattern  synthesis [3]  t o  include  null  constraints  on  the  pattern 
and  its  derivatives.  The  problem  has  been  posed as a  con- 
strained  approximation  problem  and an exact  solution  has 
been  obtained.  The  relation  to  other  methods  to  achieve  pat- 
tern  nulls  under  mathematically  well-defined  conditions  has 
been  discussed. For a  linear  uniform  array we  have shown  that, 
when M single  nulls  are  imposed  on  a  pattern,  the  constrained 
pattern is the  sum of the  original  pattern  and 11-1 weighted  sinc- 
beams.  Each  beam is centered  on  the  corresponding  null, 
irrespective  of  how  closely  spaced  they  are o r  how  much  the 
beams  overlap.  In  the  general  case of higher  order  nulls,  the 
mth  pattern  derivative is  canceled  with  a  beam given  b>/ the 
mth  derivative  of  a  sinc-beam. In addition we have  derived 
simple  quantitative  expressions  for  the  pattern  change  and  the 
gain  cost  associated  with the  forced  pattern  nulls. 

Several  illustrative  examples  of  patterns  with  single  nulls 
and  higher  order  nulls  are  given.  These  indicate  that  when we 
impose a set  of  closely  spaced  single  nulls  on  a  pattern  sector 
the  sidelobes  are  reduced by a rather  constant  factor,  which is 
independent  of  the  actual  sidelobe level. The  relation  between 
the  number of  nulls  and  the  sidelobe  cancellation is more 
complex.  For  instance,  doubling  simultaneously  the  sector 
width  and  the  number  of  nulls  produces,  contrary  to  intui- 
tion,  an  increased  cancellation  ratio  for  the  wider  sector. 
The gain  costs  seems  rather  insignificant fo r  all examples 
considered. 

Finally,  it is worth  noting  that.  although we  have form- 
ulated  the  constrained  synthesis  method  for  a  linear  array  with 

isotropic  half-wavelength  spaced  elements,  it  is  not  limited  to 
these  cases.  It  can  readily  be  formulated  in  more  general  terms: 
in  which  case any desired  linear  passive  beamforming  network 
may  be  included  in  the  antenna.  It is hoped  that  this  approach 
can  contribute  to  an  understanding of the  fundamental  proper- 
ties  and  limitations of an  adaptive  antenna. 

APPENDIX 

We consider  Applebaum’s  approach in which  we  seek  a  set 
of array  element  weights,  denoted by the  row  vector = 
(wl, -., w , ~ )  that  maximizes  the  generalized  signal-to-noise 
(S /N)  ratio 

Here t is a  generalized  signal  vector  and 1l.I the noise-covariance 
matrix.  The  latter  consists  of  two  parts: 

M = A, + B,  (29)  

where A represents  the  quiescent  environment  (receiver  noise 
only)  and B represents  the  statistically  independent,  external 
interference  sources  (jammers). For the  present  comparison 
with  pattern  synthesis, we can  assume all array  eleFents  to 
contribute  uncorrelated  noise of equal  power I Vo I L ,  which 
leads to 

where I is the  identity  matrix. 
The  matrix B is derived  as  per  Applebaum [ 11. AssumingM 

jammers  located in the  directions { u ~ ~ } ~ ’ ~ !  the  total  interfer- 
ence  signal at  the  kth  element is 

1 

where V ,  denotes  the  complex  amplitude  of  the  individual 
jammer.  The  terms u k l  of  the  matrix B are given by 

where E denotes  “expected  value,“  and  in view of  the  fact  that 
the  jammers  are  statistically  independent, 

( 3 3 )  
I 

A pleasant  consequence of (33) is that B can be written as the 
sum of the  covariance  matrices of the  individual  jammers; 
therefore, 

M 

(34) 
1 

with ( B , ) p y  = exp [ i k ( q  - p)u,] .  Substitution  of (30) and 
(34) in (28)  yields 

I (ir, I * )  12 
(S/N) = (3 5 )  

(G*[ Vo2 + V I  ’ B ,  + ... 4- V,142B,14] !w*) 
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In  the  limit  of  infinitely  strong  jammers,  a  necessary  con-  obtain 
dition  for  a  nontrivial  result is 

(Z*B, ,  w*) = 0 ,  m = 1, ... , M .  (36) 
- 

Noting  that B ,  can  be  rewritten  as  the  outer  product  of  the 
vectors TmT and T,, where T, is  given by (7) and  the  dagger 
denotes  the  complex  conjugate  transpose,  it is  easily  shown 
that  (36) is equivalent to 

f i x ,  F,,,) = 0, m = 1, .-., M .  (37) 

Summarizing ( 3 9 ,  (36),  and  (37)  we  thus  arrive  at  the  prob- 
lem  to  seek 

subject to  the  constraints 

As before  we  decompose  the  vectors iT and i into  their 
components  in  the  subspace Y spanned  by fi,>,” and  its 
orthogonal  complement Z to  obtain w = wy -I- wz, i = i,, -I- 
I,. In  view of (38b)   the  component  wy = 0 and  (38a)  become 

2 I( .> I = max, 
II Z z *  II 

(39) 

which  leads t o  Gz* = hiz, where h is an  arbitrary  proportion- 
ality  constant.  To  compare  this  result to that  of pattern  syn- 
thesis (14) we  set h = 1, note   that  i = x,, and  invoke  the 
phase  conjugacy  between  a  weight  distribution in the receive 
mode  and  an  aperture  distribution in the  transmit  mode  to 

Thus  in  the case  of infi i tely  strong  jammers,   the  pattern  that  
maximizes  the  generalized  SNR is the  least  mean  square  ap- 
proximation  to  the  desired  quiescent  pattern  with  single-null 
constraints. 
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