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Efficient Computation of Antenna Coupling and Fields  Within the 
Near-Field Region 

Abstract-The  theory,  techniques,  details of the  important 
equations,  and  description of two  computer  programs  are  presented 
for  calculating  efficiently  the  mutual  coupling  at  a  single  frequency 
between  any  two  antennas  arbitrarily  oriented  and  separated  in  free 
space.  Both  programs  emphasize  efficiency  and  generality,  and 
require,  basically,  the  complex  electric  far  field of each  antenna,  and 
the  Eulerian  angIes  designating  the  relative  orientation of each 
antenna.  Multiple  reflections  between  the  antennas  are  neglected  but 
no  other  restrictive  assumptions  are  involved. If an  electric  field 
component  is  desired  instead of coupling,  the  receiving  antenna is 
replaced by a  virtual  antenna  with  uniform  far  field.  The  first 
computer  program  computes  coupling  (or  fields)  versus  transverse 
displacement of the  antennas  in  a  plane  normal  to  their  axis of 
separation. An effkieut  fast  Fourier  transform (FFT) program  was 
made  possible by “collapsing”  the  far-field  input  data  and  showing 
that  inmost  cases  the  spectrum  integration  need  cover only the  solid 
angle  mutually  subtended by the  smallest  spheres  circumscribing  the 
antennas.  Limiting  the  integration  to  this  solid  angle  artifically  band 
limits  the  coupling  function,  thereby  allowing  much  larger  integration 
increments  and  reducing  run  times  and  storage  requirements  to  a 
feasible  amount  for  electrically  large  antennas.  The  second  program is 
based on a  spherical  wave  representation of the  coupling  function  and 
rapidly  computes  coupling (or fields)  versus  separation  distance 
between  the  antennas.  The  spherical  wave  representation  emerged 
naturally  from  an  intriguing  characteristic  proven  for  the  mutual 
coupling  function;  it,  like  each  rectangular  component of electric  and 
magnetic  field  in  free  space,  satisfies  the  homogeneous  wave  equation. 

I. INTRODUCTION 

T HE  THEORY,  computer  programs,  and  measurement facil- 
ities  for  efficiently  determining the  far fields of antennas 

by measuring the near-field  coupling  between  test  and probe 
antennas have  seen  extensive  development  during the past two 
decades [ 11-[  161.  However the associated  inverse  problem 
of  efficiently  computing the near-field  coupling  of two  an- 
tennas of arbitrary size, orientation,  and  separation, given the 
far field of each antenna,  has received little  attention  despite 
its direct  applicability for determining  the  interference be- 
tween  co-sited antennas,  potentially  hazardous  fields  around 
antennas,  and near-fieId antenna  gain-correction  factors. 

Two  major  reasons for this  lack  of  attention have  been the 
difficulty in obtaining  the  complex vectorial  far  fields that 
must  be  supplied to  the  computer programs,  and the difficulty 
in  developing  efficient  algorithms for performing the required 
transformations  and  integrations.  The  first  difficulty is alle- 
viated for  antennas  measured using near-field techniques 
which  yield  complex  vectorial  far  fields routinely [I]-[  161, 
or  for  antennas  that  conform  to analysis  using  physical  optics, 
the geometrical  theory of diffraction,  or similar asymptotic 
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techniques [ 171 -[21] . l  The second  difficulty  dictates the 
primary  objective of the  present  paper: to  formulate general 
expressions  and  associated  computer  programs that allow the 
efficient determination of near-field mutual  coupling  between 
two  antennas, given the  electric  far field of each antenna  and 
neglecting  multiple  reflections.  (These computer  programs 
also compute  the  electric  near field of an  arbitrary  transmit- 
ting  antenna by  merely  inserting  a  “virtual”  receiving antenna 
with the  proper  far  fields; see footnote IO.) 

Emphasis is placed on combining  efficiency  and  generality. 
General  expressions for  the coupling of antennas have  existed 
for  many  years in terms of aperture  fields [22] , [23],   but 
their  numerical  evaluation  requires  an  exorbitant  amount  of 
computer  time  for all but  electrically small  antennas.  More- 
over the  fast  Fourier  transform  (FFT)  evaluation of the  plane 
wave, antenna  coupling  expressions  from which  much of the 
theory in this  paper is developed,  cannot  be  applied  directly 
over  reasonable  distances  in  the  near field of electrically  large 
antennas  without  encountering  prohibitive  computer  times 
and  storage  requirements.  Asymptotic  techniques  such  as the 
geometrical  theory of diffraction can sometimes  be  applied 
directly to estimate  efficiently the  mutual  coupling  between 
antennas  with well-defined  edges,  feeds,  and struts,  but such 
techniques  are  not  sufficiently developed to  apply to general 
antennas. 

The main body of the  paper divides  conveniently into two 
major  sections. The  first  section  presents  the  theory  and  its 
practical  application  for  computing the coupling  quotient versus 
relative  displacement of two  antennas in a  transverse  plane nor‘- 
mal.to the axis of separation  between  them [241,  [25], and the 
second  section  does the same for coupling  versus  displacement 
of two  antennas  along  the  separation axis, that is, versus 
separation  distance.  The  theory  for  both  sections begins with 
the Kerns  plane wave “transmission integral’’ [ I ] ,  [ 2  3 ,  [4] - 
[71 expressed in  terms of the  far  fields of the  two  antennas 
and  generalized to  allow for  the  arbitrary  orientation of each 
antenna. However  a different  evaluation  scheme is required 
for  efficient  computation  depending  on  whether  coupling 
values  are  desired for  the  antennas displaced  transverse to  or 
along the  separation axis. In  principle the sampling  theorem 
and FFT can  be  applied  directly in  both cases, but in practice 
the required  sample  spacing  (integration  increment) i s  so small 
for electrically large antennas  separated  by  distances  larger 
than  a  few  antenna  diameters  that,  as  mentioned  above, 
computer  time  and  storage  become excessive. 

For coupling  in  the transverse  plane, the  FFT evaluation  is 
salvaged by  collapsing the far-field data  and  showing  that,  for 

1 In cases  where accurate  far  fields  are  not readily  available,  esti- 
mates of the far fields will  yield coupling  quotients  with accuracies  com- 
mensurate  with  the accuracy  of the  estimated  far fields. Sometimes  it is 
believed mistakenly  that  the  errors in the  far fields  are geatly enhanced 
as one extrapolates  inward to  compute near  fields or near-field  coupling. 
This is true  only if one  tries  to  compute fields or coupling  within  the 
reactive zone (typically a wavelength or so) of the  antennas. 
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electrically  large  antennas,  only the  far fields within  about  the 
solid  angle  mutually subtended by the smallest  spheres cir- 
cumscribing the  two  antennas  (including feeds, struts, edges, 
and all other  parts of the  antennas which  radiate,  or  affect the 
reception,  significantly)  are  required to  obtain reasonably ac- 
curate values of coupling.  Limiting the  integration  to  approxi- 
mately  this solid angle artificially bandlimits in space the 
coupling  quotient  and  thus  permits  larger  integration  incre- 
ments as the  separation  distance increases, in all, reducing 
computer  time to  a  feasible amount  for an  arbitrary  separation 
distance.  Specifically, the  computer program gives coupling 
values (or fields) on  two  orthogonal  cuts in a designated  trans- 
verse  plane  over  a  distance  equal to  approximately twice the 
sum of the  diameters of the  two  antennas.  For  the  sum of the 
two  antenna  diameters  equal  to  a  hundred wavelengths, the 
program  takes  about  three  minutes to run  on  a CDC 6600’ 
for coupling  in  the very near field (50 h separation).  Shorter 
times  are  required  for  larger  separation  distances, e.g., one 
minute  for  the same two  antennas  separated by 200 X. 

For  the  computation of coupling  versus  separation  distance, 
a  new  representation for  the transmission  integral is formu- 
lated.  This  formulation  capitalizes  on  the  interesting  result 
that  the coupling  quotient,  like each  rectangular  component 
of electric or magnetic  field,  and  analogous to  the  mutual 
power  spectrum of partial  coherence  theory, satisfies the 
scalar wave equation  and  thus can  be expanded in a series of 
spherical waves. Because the coefficients of the spherical waves 
are  directly  and  conveniently  determinable  from  the  scalar 
product of the  electric  far  fields of the  two  antennas,  the 
coupling  (or fields) along  an  arbitrary radial axis  spanning 
the  entire Fresnel  region  can  be computed very rapidly. 
Specifically, for  the sum of the  two  antenna  diameters  equal 
to  a  hundred wavelengths,  this  second  program computes  the 
coupling  quotient (or fields) along  a  designated radial axis 
throughout  the Fresnel  region in less than  a  minute  on a 
CDC 6600. 

The  computer  storage  required by both  programs increases 
as the  ratio of the  sum of the  antenna  diameters to  wave- 
length, and computer  run  time  increases as the square of this 
ratio. 

11. COUPLING  VERSUS  TRANSVERSE  DISPLACEMENT 
OF THE  ANTENNAS 

The plane-wave  scattering matrix (PWSM) description  of 
antennas,  introduced by  Kerns, forms  an ideal theoretical 
framework on which to  base the  determination of mutual 
coupling  between two collocated  antennas.  However,  before 
the existing  formulas  can  be  translated into a  convenient 
program  which  computes  coupling  efficiently on a  transverse 
plane,  three  important  tasks  must  be  accomplished. 

1) The  Kerns  transmission  integral  was  originally written  in 
terms of the  appropriate plane-wave  characteristic for 
each antenna.  For  our  purposes, we want to express the 
near-field mutual  coupling  in  terms of the  far field of 
each antenna (assuming  reciprocal  antennas)  because 
usually the  far field most  conveniently  characterizes  an 

2 The CPU time for this  computer is rated at about 2.5 x 106 in- 
structions per second with about 105 central memory words available 
at 60 bit  accuracy.  The  specific  computer is identified in  this  paper to 
adequately  describe the computer  program.  Such  identification  does 
not  imply  recommendation  or  endorsement by the  National Bureau of 
Standards WBS), nor  does it imply  that the computer  identified is 
necessarily the best  available for  the  purpose. 

antenna  and is most  efficiently  computed  from, e.g., 
a  physical optics  and/or  geometrical  theory of diffrac- I 

tion  program  or  from near-field  measurements.  This 
task,  although  straightforward,  requires  careful  attention 
to  the details  of  definition of the  far  field,  the plane- 
wave spectrum,  and  the  reciprocity  for each antenna. 

2) The f a r  fields of each  antenna  are usually  expressed  in  a 
Cartesian coordinate  system  fixed  in each antenna. To , 
compute  coupling  for  an  arbitrary  separation  and 
orientation of two  antennas,  the  coupling  formula re- 
quires  an  integration of the scalar product of the  two 
vector far-field patterns  in  reoriented  coordinate sys- 
tems.  Thus,  task  two consists of expressing the scalar 
product of the  far fields and  reoriented  coordinates of 
each  antenna  in  terms of the Eulerian  angles from  the 
preferred  or  fixed  coordinates  in  which the  far field 
of the  antenna is given. 

3) The  third major  task is to discover  a way to  reduce to  a , 
reasonable amount  the  computer  time  and  storage 
needed to evaluate the final  form of the  double  integrals 
expressing the  mutual  coupling versus  transverse dis- 
placement  for  electrically large antennas  separated  by Y 
an arbitrary  distance. 

The  details  of  these  three  tasks  and  their  accomplishment 
are  described in the following  three  subsections. 

A. The Coupling Quotient in Terms of Far Fields 

Consider an  arbitrary  antenna  transmitting  with  exp ( - i o t )  
time  dependence  located to  the  left of an  arbitrary receiving 
antenna, as  shown  in  Fig. 1. The  antennas may  have arbitrary 
separation  and  orientation.  Assume that only  one  mode  propa- 
gates  in the waveguide  feed to each  antenna.3  The  incident 
and  emergent  waveguide  mode  coefficients for  the  left  antenna 
are  labeled a0 and b o ,  respectively,  and  for the right antenna, 
aoJ and b o r ,  respectively.  The  reflection  coefficients of the 
right  (receiving) antenna  and  its passive termination  are 
denoted  by ro and rL’, respectively. 

The coupling  quotient  bO’/aO is  a measure of how  much 
signal couples into  the receiving antenna  per  unit  input  into 
the  transmitting  antenna. If the same type of waveguide  feeds 
each  antenna  and  the receiving  waveguide is terminated in a 
perfectly  matched  load, Ibo‘/ao l 2  equals  the  amount of 
power coupled  to  the  receiving  antenna  per  unit  power inci- 
dent to the  transmitting  antenna. (This  power  ratio expressed 
in decibels is commonly  referred to  as the insertion loss ratio 
or simply coupling loss.) Thus bO‘/aO is indeed  the  major 
parameter of interest  in  determining, e.g., mutual  interference 
between  antennas. 

The transmission  integral  which gives the coupling  quotient 
in terms of the  transmitting  and receiving  plane-wave  charac- 
teristics of the respective antennas can  be found  directly  from 
Kerns [2,  pp. 87 and 121 1 : 

3 I f  more than  one  mode  propagates in one  or  both of the  feeds, 
this analysis can be applied  for  each  possible  transmit-receive  pair  of 
modes;  and  thus  the  analysis can be  applied to “out-of-band”  coupling 
(provided, of  course, that the far fields of each antenna  are  known  at 
the out-of-band frequency). 
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Len antenna ann t r m m a C r g  
characterlrtl: 5,& 

Fig. 1. Schematic of two antennas  arbitrarily  oriented and separated 
in free space. 

where slo(k) and iO2(k)  are  the  vector  transmitting and 
receiving  characteristics  defined  with  respect to  plane waves 
traveling in  the  common k direction  but  with  phase  referenced 
to  the arbitrarily  chosen  origins 0 and 0' of the  left  (trans- 
mitting)  and  right  (receiving)  antennas,  respectively. 

As can  be  seen in Fig. 1,  the  coordinates (R, z = d ) ,  where 
R = x;, + y?,, give the position of the origin 0' fixed  in  the 
right  antenna  with  respect to  the ( x ,  y ,  z) coordinate  system 
fixed at 0 in  the  left  antenna.  The  vector K = k,?, + k c 
is the transverse part of the propagation  vector k = K + ye, 

y 2 

( k  = 2x/h, where is  the wavelength),  and y = (k2  - K2)l12  
is taken positive real for K < k and  positive  imaginary for 
K > k .  The  symbol dK is  shorthand  notation  for  the  double 
differential dk,dk,,. (Although s10 and sb2 are  shown  as 
functions of k, they  could  just as well be written as functions 
of K since y is  determined  by k ,  and k,,.) 

Equation (1) is an  exact  result  from Maxwell's equations 
for  two  linear  antennas  operating  with  exp (-jot) time de- 
pendence  in  free  space  for iQ values of d beyond  "encroach- 
ment" of the  two  antennas  (defined as the z-separation at 
which the  two  antennas overlap  with  respect t o  a  plane  per- 
pendicular to  the z-axis ana  lying-  between  the  antennas). 
Multiple  reflections  between the  antennas  are also neglected. 
In  other  words,  the bo '/a0 computed  from (1) neglects  power 
that  enters  the receiver after'having been  reflected  from  re- 
ceiving antenna to transmjtting  antenna  and back  one or 
more  times. No other restrictive  assumptions  are  involved. For 
example, the  antennas may b'e lossy or even  'nonreciprocal. 
Of course, (1)  cannot  be usFd to  evaluate bo'/ao unless the 
characteristics sb2 and s10 are  determjned  explicitly  in  terms 
of commonly  measured or computed  characteristics of the 
antennas.  Toward  this  end,  both  characteristics  and (1) are 
recast  next  in  terms of the  electric  far  fields of the  antennas. 

AS a  preliminary to  expressing (1)  in  terms of the far  fields 
of the  antennas,  assume  that  the receiving antenna  contains  no 
nonreciprocal  devices or material so that  its receiving functions 
so2' are  related to  i ts  transmitting  functions s io  by the simple 
reciprocity  formula [ 71 , 4 

4 I f  the receiving antenna is nonreciprocal, the formulation must re- 
main in terms of the receiving  function ~ ' 0 2 .  

All quantities  in (2) have  been  defined  in the previous section 
except Z o ,  the impedance of free space,  and v O r ,  the char- 
acteristic  admittance  of the propagated  mode  in the feed 
waveguide  of the right  antenna of Fig. 1. 

Substitution of sbz from (2) into  (1) gives. 

_- bo' (1 - b J r o f ) - '  ys;o(-k) 

a0 kZOT70' 
- 

K < k  

- s l o ( k ) e i ~ d e ' K * R  d ~ .  , ( 3 )  

Note  that  the  integral over  transverse K in (3) has  been  made 
finite  by  eliminating the  integration over the evanescent part 
of the spectrum, Le., the range K > k included  in the original 
infinite  integral of ( l ) ,  thereby leaving  only the  radiating  part 
of the  spectrum. This is permissible for all antennas which 
are  outside  each  other's reactive field zone, provided the con- 
tribution  from  the  integration  in (3) near  the critical point 
K = k is negligible, as is usually the case. (Notable  exceptions 
are electrically small  antennas,  for  which the  integration  near 
the critical  point  may  contribute significantly for  certain 
orientations of the  antennas.) To ascertain in practice  that  this 
latter provision is satisfied, the variation  in  coupling  quotient 
can  be  observed as the  upper  limit of integration  for K is varied 
(see  Section 11-C). 

A  major  advantage of the PWSM technique is that  the 
radiating  characteristic of an antenna  for K < k is  proportional 
to  the  vector  far field E(r),.+= of the  antenna. Specifically, if 
f(r) refers to  the normalized  complex  electric far-field pattern 
of  the  left  antenna of  Fig. 1  measured  with  respect to  the ori- 
gin 0, i.e., 

re- ikr  

f(r) - E t r L  m , (4) 
00 

then  the radiating  characteristic s1 ~ ( k )  for K < k is related to  
the complex far-field pattern  by  the disarmingly  simple  pro- 
portionality [ 71, 

SI o(k) = - ftk). 
i 

Y 
(5) 

Although f is shown  as  a  function of r in (4), we know  that  the 
complex far-field pattern is a  function of only the  direction of 
r; ahd thus f(k) in (5) is also  a function  only of the  direction 
of k which is determined solely  by the relative size of k ,  and 
k,; the  integration variables  of ( 3 ) .  

Similarly,  the  radiating  characteristics s i o ,  K < k ,  for  the 
right  antenna in Fig.  1  can  be written in terms of the nor- 
malized  complex electric far-field pattern f 'of that  antenna: 

i 

7 
&,(-k),=-f'(-k), (6 1 

where,  as  in (4), f' is d e f i e d  in  terms of the electric  far 
field E'(rlr-,= of the right  antenna  when  it  is  radiating: 

re- ikr  

f'(r) E - E'(r)--. (7) 

Substitution of the characteristics  from  (5)  and (6) into (3) 
produces  the  coupling  quotient  for  two  antennas as a double 
integral  over the scalar product of the complex  electric far- 

00 



field patterns of the antennas: 

where C’ is consolidated  notation  for  the  “mismatch  factor” 

The  coupling  quotient bO’/aO in (8) is  a measure of the sig- 
nal  which is received  by the passively terminated  antenna  on 
the right  side  of Fig. 1  when an  input  mode of unit  amplitude 
is applied to  the  transmitting  antenna  on  the  left.  A  natural 
and  important  consideration is the coupling to the  left  antenna 
when  the  right  antenna  transmits  at  the same frequency  and 
the  left  antenna is terminated in a passive load. Specifically, 
what is the expression for bolao’ and  how is it related to  
bo’/ao of (8)? 

The answer to  this  question can  be  obtained  immediately 
by  retracing the steps in the derivation of (8) but  with  the  left 
antenna  in Fig. 1  receiving  and the right  antenna  transmitting. 
This  yields  an  expression for bolao‘ very similar to  (8). In 
fact  one  finds 

a0 a0 

where the mismatch  factor C is defined  like C’ but  for  the  left 
antenna. This means that if the coupling between  two recip- 
rocal antennas is measured or computed  with  one of the 
antennas  transmitting and the  other receiving, the  coupling, 
when  the roles of transmitting and receiving are reversed, is 
also known  (through  (9b)). A separate  measurement or com- 
putation need not be  done. Use  of (9b), of course,  requires 
knowledge of the  reflection  coefficients  and  input  admittances 
of each  antenna  contained  in  the  definitions of C and C‘. 

Equation  (9b) can  also  be  derived  directly from  the “sys- 
tem  two-port”  equations describing the two antennas, by 
applying the  Lorentz  reciprocity  theorem  and  knowing  that 
multiple  reflections  between the  antennas  are being  neglected 
[7] . It can further  be  proven  that if fields  scattered  by  the 
receiving antenna have  a  negligible  effect on  the  transmitting 
antenna,  then  the available power  at  the receiving antenna  per 
unit  input  power  to  the  transmitting  antenna is the same  when 
the roles of receiving and  transmitting  are reversed. 

B. Eulerian Angle  Transformations Describing the 
Arbitrary  Orientation of the  Antennas 

From  a  quick  look  at (8), it might  be  concluded that  the 
analysis  required to compute  the  coupling  between  two 
antennas is essentially  finished. All  we need to  do  is  compute 
or measure the  vector far-field patterns of each antenna,  take 
their scalar product,  and  perform  the  double  integration  on  a 
computer. 

Unfortunately  a  major  problem,  ignored so far, is that  the 
far-field pattern of  an antenna is given with  respect to a 
Cartesian coordinate  system which is fixed in  the  antenna  and 
which is not, in  general,  aligned  with  the  Cartesian  system 
shown  in Fig. 1 to  which the far-field patterns f ( k )  and f’(-k) 
in (8) are  referenced.  Thus, t o  use (8), it is mandatory  that  the 
far-field direction  in the  coordinate  system  fixed  in  each an- 
tenna  corresponding to  a given (k,., k y )  in (8) be  determined 

/ 
xA 

U 
(b) 

Fig. 2. Definition of coordinates for left  antenna of Fig. 1. (a) Coor- 
dinate  system  fixed to the  left  antenna in which the far field f is 
known as function of @A, 8 A .  (b) Eulerian  angles (9, 8, g) needed 
to  rotate  the fixed axes X A ,  y ~ ,  ZA to the coupling axes x ,  y ,  z of 
Fig. 1. 

explicitly.  Moreover, to  evaluate the  dot  product f ‘ - f ,  the rec- 
tangular  components of f and f’ in the x - y’ - z system of 
Fig. 1  must  be  expressed in  terms of the rectangular  compo- 
nents of the  coordinate  systems  fixed  in  the  ?ntennas.  Fortu- 
nately all these necessary transformatjons can  be  accomplished 
by specifying the Eulerian  angles  required tb  align the axes 
fixed  in  each antenna  with  the (x, y , z) axes  chosen in Fig. 1. 

Assume the  left  antenna  in  Fig.  1 has’ a  fixed  coordinate 
system  with  rectangular  axes ( x ~  , y ~ ,  ZA centered at 0) in 
which the  normalized electric-far-field pattern i s  given in  terms 
of the  spherical angles QA and OA , as  shown  Fig. 2(a). That 
is, we have at  our  djsposal,  obtained  from  either  measurement 
or  computation,  the  vector far-field pattern f(@JA, 0,) as  a 
function of $A and 8 ~ .  Let (9, 0,  9 )  be the Eulerian  angles 
needed to  rotate  the ( X A  , y A  , z A )  axes  in  line  with  the (x, y ,  z )  
coupling  axes of Fig. 1, as  specifically shown  in Fig.  2(b). 

To understand  the  transformation  needed  to  evaluate ( 8 ) ,  
note  in (8) that f (and f ‘ )  are  written as functions of k = 
k,Z, + kyky  + yC, or,  in  other  words, as functions of k, and 
k,, because y is  determined  from k ,  and k,. However we are 
given as known (measured or  computed) f as  a function of 
$A and O A ,  not k ,  and k,. Consequently, to  evaluate (8) 
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(a) (b) 

Fig. 3.  Definition  of  coordinates  for right antenna of  Fig. 1. (a) Coordinate system fixed to  right antenna in which the  far 
field f ’  is known as function of ?J, ep.  @) Eulerian  angles (@’, e’ ,  $’) needed  to  rotate  the  fixed  axes x p ,  y p ,  z p  to  the 
coupling  axes x ‘ , y ’ ,  z’, which are In the  direction  of (-x), b), ( - 2 )  axes of Fig. 1. 

au- 

Fig. 4. Physical interpretation  for  limits of integration.  Only  that  portion  of  the far  fields within  about  the solid  angle 
01 is required  to  compute  coupling  quptient  for two antennas. 

numerically,  a trapsfomation is needed that will convert 
(kx,   k , , )  to  ( @ A ,  0,) under  the given Eulerian  angles ( @ , 0 ,  $) 
defining  the x A  - y~ - ZA system  with  respect to &e x - 
y - z system.  Similarly,  assuming the vector far-field pattern 
f’(@,, 0,) of the right  antenna is given as  a  function of the 
spherical  angles ( Q p ,  e p )  measured  with  respect to  axes (x,, 
y p ,  z p )  fixed  in  the  right  antenna,  a  transformation is needed 
to  convert (kx ,  k,,) t o  ( G P ,  0,) under  the given Eulerian 
angles (@’, e‘, $‘I defining the, x p  - y ,  - z p  system  with 
respect to  the x - y - z system  (see  Fig. 3). These  Eulerian 
transformations, which  come from  a  straightforward,  rather 
lengthy,  linear  transformation  found in a  number of text- 
books [ 2 6 ] ,  are  stated  in the appendix in n e  form  useful  for 
our  purposes of evaluating (8). 

C. Limits of Integration,  Sarnpje Spacing, 
and  Fast  Fourier Transform 

In (8) the  limits of integration range  over the  propagating 
plane  waves K < k .  In  th&  section we show that  the range of 
integration can  be  reduced further  to cover  only about  the 
solid  angle  mutually spbtended  by  the smallest  spheres cir- 
cumscribing the  two  antennas (see Fig. 4). Thus  integration 
time decreases  appreciably  with  increasing  separation  distance. 
Moreover,  limiting the range of integration  to  this solid  angle 
artificially  bandlimits  the  coupling  quotient  with  respect 
to  the transverse  displacement R; thereby allowing, through 

the sampling theorem, larger integration  increments  and  fur- 
ther  reduction  in  computer  integration  time.  In all, computer 
time is reduced  from  a  prohibitive to an  acceptable level. 

Rewrite (8) with R equal to  zero  and K expressed in polar 
coordinates ( K ,  @o). With the  substitution K = k sin 0, (8) 
becomes 

where 

The far-field function t(b), if expressed as a  Fourier series, 
c o n t a s  no higher  harmonic  frequency  than  approximately 
the  sum of the  lvgest nonnegligible harmonic  frequency of 
f and f. For all but pathologically  highly  reactive  antennas 
(e.g., highly  supergain  antennas), the highest  possible harmonic 
frequency  in  the  far field is  approximately k D / 2 ,  where D is 
the overall  dimension of the  radiating  part of the  antenna  or 
2X, whichever is larger.5 (For example, if the  left  and  right 

5 Here  we are assuming that  the origin to  which the far field is re- 
ferenced is chosen near the physical center  of  the  antenna. 
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antenna of figure 1 were  each an electrically large, circular 
aperture-type of radiator, D and D’ would  be  their  respective 
diameters;  but if one  or  the  other of the  antennas were  a 
short dipole,  its  effective  diameter  would  be  set  equal to  2h.) 
Thus  the highest  possible harmonic  frequency  in  the  function 
t(0) is  about  k(D + D’)/2. 

As a  consequence of this  latter  result,  the  integration  in 
( loa)  becomes  oscillatory  when the  rate of change  with re- 
spect t o  /3 of kd cos 0 becomes  greater  than  about twice 
k(D + 0 ‘ ) / 2 .  Specifically, the  integration  in  (loa)  beyond 
sin Po = ( D  -k Df) /2d ,  d > (D + D ’ ) / 2 ,  contributes an amount 
no larger in magnitude  than  about 21 f ( P o )  Ijkd, provided 
kd(1 - cos bo)  is also greater  than  about n/4, Le., d < (D + 
D’)2/h,  the mutual Rayleigk  distance. Now the  function t(P) 
generally  decreases  appreciably  with  increasing 0 because the 
@o integration in ( lob)  usually encounters  more  and  more 
fluctuations  with @o in the far-field scalar product f ‘* f  as 
becomes larger. Thus,  although  hypothetical  antenna  configu- 
rations  are possible  where f (0)  does  not decrease  appreciably 
with  increasing 8, for  most  practical  computing  purposes, 
the limits of integration in (loa)  and (8) need extend  only  to 
about sin Po = (D -t D’)/2d or 

KO (D + O f )  (7 D +D’ < d <  (D+D’)2 
- =sinPo =d k h (1  la) 

In practice the  computer  program increases the K limit  of  inte- 
gration  beyond KO to  test  whether  acceptable convergence 
has  been  reached.  Equation  (1 la)  has been  derived for R = 0. 
Further analysis  shows that  the result  can  be  made to  extend 
to an R % (D 4- 0’) by  merely  doubling the right  side of (1 la). 

Physically (1 la)  has a very simple interpretation. Refer- 
ring to Fig. 4, it says  that t o  a  good  approximation,  for ordi- 
nary antennas larger than  a  couple of wavelengths  across, 
only  that  portion of the far  fields  within the solid angle  mu- 
tually  subtended by the smallest  spheres  circumscribing the 
radiating  part  of both  antennas  (including feeds, struts, edges 
and all other  parts of the  antennas which  radiate  or  affect  the 
reception  significantly) is required to  compute  the  coupling 
quotient. In other words the far fields can  usually be set  equal 
to  zero  outside  about  the solid  angle CY shown in Fig. 4. 

As a  consequence of this  zeroing, the  coupling  quotient 
computed  from  the  limited  integrations will no longer  be 
equal, even approximately,  to  the  actual  coupling  quotient 
for R greater  than  about (D + D’), but will in fact  become 
zero  more  rapidly  beyond ( D  + D’). Specifically  a  more 
detailed  analysis  shows that  limiting  the range of integration 
to K < k(D f D’)/d also artificially bandlimits the coupling 
quotient  in space to  an R = RO given by 

with the sample  spacing, 

Akx  Ak ,  h 
_. ,- = 

k k 4(0 4- D’) 

and the  summation  limits 

(A simple way to  obtain  the  sample spacing (1  2b) is to  estimate 
the largest  spectral  frequency in the integral  of (1 Oa) under  the ‘4 

bandiimit sin 0 < (D D’)/d.) Note  that when the  separation 
d approaches the  mutual Rayleigh  distance ( D  + D‘)2/A only  a 
few points  of  integration  are  required, as one might expect . 
frdm physical intuition because  only the near-axis  plane waves 
contribute  to  the  coupling as the far field is approached.  The 
computer program  can  decrease the values of A k ,  and A k ,  
below the values given in (12b)  to  make certain  that small 
enough  integration  increments have  been  used to  attain ac- 
ceptable  convergence. 

the fast  Fourier  transform  (FFT) (see, e.g., [ 2 8 ] ) .  A two- 
dimensional FFT will compute  the  double  summation  in 
(12a)  for  a grid of x - y values.  However in order t o  perform 
ail computations  for large antennas  within  the  computer 
central  memory  core,  a  one-dimensional FFT program was 
preferred.  This  program  computes  the  coupling  quotient  at 
a  fixed  z-separation d on each  of  two  orthogonal  cuts (x = 0 
and y = 0) by “collapsing” 1291 one  summation  and per- 
forming  an FFT on  the remaining  summation. 

D. Numerical  Testing of the Program for Coupling 
Versus Transverse DisDhcement 

Equation  (12a) is amenable to computation by means of I 

In order to  build  confidence  in the  computer  program 
which was written to  evaluate  coupling quotients  from  (12a), 
the far fields  of two hypothetical  antennas were  inserted into 
the program.  The  hypothetical  antennas  were  linearly  polar- 
ized (in  the  x-direction),  uniform, circular aperture  antennas 
for which the complex far-field patterns  are well-known in 
terms of simple  analytic  expressions involving the first-order 
Bessel function I301 . The  radii  and  operating  frequency of the 
antennas could be  chosen  arbitrarily  in  addition to their mutual 
orientation  and  separ-t’ a loll. 

One  check  performed on  the program is displayed  graphi- 
cally in Fig. 5, which  shows the coupling  quotient  for  two 
identical 50 wavelength antennas  facing  each  other in their 
very near field 50 X apart. Here the magnitude  of the coupling 
quotient  should be very high,  actually  approaching  unity  when 
the  antennas are  directly  aligned,  as Fig. 5 confirms. The curve 

R o  = 2(D f Dl). (1 lb)  in Fig. 5 is one of two curves  which the program produced in a 
total  time  of  three  minutes  on  a CDC 6600. At  a separation 

The sampling theorem  (see, e.g., [ 2 7 ] )  then applied to  (8) distance Of 2oo the program ran in One minute. 
under this b a n d h i t   t h e  integration in (8) to the A second  check of the  computer  program involves comput- 
double  summation,  ing  the  coupling when the  antennas  are  separated  by  a large 

enough  distance for coupling to  take place  mainly  between 
bo’(R, d )  C‘ the  far fields along the direction  between the antennas. In 

~ = - -Ak,Ak, Section 11-C, this  critical  distance  which we called the  “mutual 
Rayleigh  distance” was shown to be  approximately (D +D’)*/h. . 2 f(@,’”~e,’m).f(@A’m~ OA rm) In Fig. 6 the coupling  between the  antennas is computed  at 
this  mutual  Rayleigh  distance  for the  antennas  by  two  meth- 
ods-first,  by the  FFT  integration of (12 ) ,  and  then  directly . ,$ lmediKlm-R,  (12a)  from  the far-field coupling  along the direction of separation. 

a0 k 

m=-.M I=-L Ylm 
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Fig. 5 .  Hypothetical  circular  antennas  directly  facing  each  other  in  near  field. 

x ( c m )  

Fig. 6 .  Coupling of circular  antennas  computed fust using FFT inte- 
gration, and then  directly from far  fields  along  direction of separation. 

The  agreement  between  the two results  again  imbues  confidence 
in  the  computer  program.  The ripples in the  FFT results  occur 
because the  antennas  are  finitely  separated, i.e., are not really 
in  each  other’s infinite  far  field. 

Finally,  Fig. 7 shows  a  typical  coupling  curve  for the same 
two aatennas as in Fig. 6 skewed in  the  near field of  each 
other.  Further  confidence  in  this  first  program was  also  gained 
through  comparing  its  computed  values  of  coupling  with  those 
of the second  program  which  uses  a  very  different  computa- 
tional  scheme as described in Section 111 (note Figs. 5 and  12). 

111. COUPLING VERSUS SEPARATION  DISTANCE 

Section I1 presented  an  efficient  technique to  compute  the 
mutual  coupling of two  antennas versus  relative  displacement 
normal to  their z-axis of separation. For  many  applications, 
such  as determining  gain-correction  factors  for  two  antennas 
or  computing  potentially  hazardous  fields  in  the  vicinity of 
antennas,  it is desirable to  compute coupling loss or  fields 
versus separation  distance as well. 

At  first  sight  there  appears to  be a  very  simple  way to  do 
this  by  applying the  FFT  to (8) with  respect to  the exponen- 
tial  exp (iyd). Specifically, if the differential d K  is written in 
polar  coordinates, 

dK = K dKd& = 7 dyd@o, 

(8) becomes for R = 0 

The $0 integration can  be performed  first  and  the  FFT  applied 
to yield the  coupling  quotient as  a function of separation 
distance d .  



120 IEEE TRANSACTIONS ON ANTENNAS  AND PROPAGATION, VOL. AP-30,  NO. 1 ,  JANUARY 1982 

40 dB- 1 .Or 

Fig. 7. Typical coupling curve for  antennas skewed in their near  fields. 

The  problem  with  this  approach is that  the sample  spacing 
in 7 required to  accurately  compute the integral in (13)  is 
so small for  reasonably  large  antennas  that  computer  time is 
excessive  even  using the  FFT. Moreover, so many  sample 
points  are  required  that  incore  computer  storage  for many 
commonly  used  computers  also  becomes  inadequate  when 
applying  this FFT approach to  large antennas.  Thus we are 
forced to  look for an  alternative  method  which will permit 
efficient  computation of  coupling  versus  separation  distance 
for electrically large  antennas. 

A .  Spherical Wave Expansion for   the Coupling  Quotient 

Return  to (1)  and  rewrite  a  normalized  coupling  quotient 
for  an  arbitrary  separation  vector r and  propagation  vector k as 

T(r) = -Zoqo' [ sb2(k) * slO(k)eik" dK, (14) 

where we have  let r = R + de,,  and r equalsthe  distance 00'. 
Normally, (14) is def ied  only  for r and k in one chosen  hem- 
isphere, i.e., one chosen z-axis, and holds  for all d outside  the 
encroachment of the  two  antennas  with  respect  to  a  plane be- 
tween the  antennas  and  perpendicular to  this z-axis. However 
the  definitions of sb2 and s10  can  be continued  to all direc- 
tions of k and  (14)  then  applies  with respect to any  z-axis  and 
for all directions of r. (When the  direction of z is reversed, 
Kerns [ 71 relabels sb2 and s l0  by sbl and s z O ,  respectively. 
Here,  because (14)  is simply an intermediate  step  for proving 
(16) below, we retain  the same  labels  regardless of the chosen 
direction of the z-axis.) In review, then,  the  only assump- 
tions involved in this generalized interpretation of (1  4) are 

1)  the  two  antennas  are located  in  free  space  and  remain 
in the same  relative  orientation  with  respect t o  Cartesian 
axes  fixed  in  each  antenna as the  vector r from 0 to  0' 
varies; that is, the right  antenna of Fig.  1 is translated 
without  rotation by the  vector r; (recall  that 0 and 0' are 
the origins to  which the characteristics  and  far  fields 
of the  left  and  right  antennas  are  referenced, respec- 
tively) ; 

2 )  for a given r there  exists  some  direction of the z-axis for 
which the separation  distance Y = 00' is beyond  the 
encroachment  distance;  and, of course, 

3) multiple  reflections  are  neglected. 

A sufficient  condition for assumption 2) to hold is that  the 
separation  distance r remain  larger  than  the sum of the radii 

of the  two  spheres  centered  at 0 and 0' circumscribing the  left 
and  right  antenna,  respectively.  (Actually  each  sphere  need 
only  enclose the significant  sources,  applied  and  induced,  of 
its  antenna, when  radiating.)  Letting a and a' denote  the 
radii of the  left and  right  antennas,  respectively  (see Fig. 8), 
one can simply  state  that, neglecting  multiple  reflections, 
(14)  determines the coupling  between  any two  antennas of 
fixed  relative  orientation for a l l  

r > r o   = a + a ' .  (1 5) 

For origins 0 and 0' near  the  physical  center of the radiating 3 

part of their  respective  antennas, a D / 2  and a' x D'/2 ,  
where  for  antennas  greater  than 2h across, D and D' were 
defiied  in  Section 11-C as the overall  dimension of the radiat- 
ing part of the  left  and  right  antennas. 

Equation  (14) reveals  an  intriguing  characteristic  of the nor- 
malized  coupling  quotient T(r); it, like  each  rectangular  corn- , 

ponent of electric  and  magnetic field in  free  space,  satisfies 
the  homogeneous scalar wave equation6 

V 2 T f k 2 T = 0 ,  (16a) I 

for all r where (14)  remains valid, and in particular,  for r > ro.  
In addition, an asymptotic  evaluation [7] of (14) as r + 0 

reveals that T(r) satisfies the outgoing  radiation  condition: 

T(r)-- - 27rikZ0?70' cos 60 sb2(r) sl0(r)eik'/r. (16b) 

Consequently, T(r) can  be expanded  uniquely [321 in  a series 
of outgoing scalar  spherical wave functions  for r > y o  and  can 
be  evaluated  subsequently  by  an  extremely  efficient  algorithm. 

Since exp ( i w t )  time  dependence  has been  assumed,  the 
outgoing  spherical  waves  use  spherical  Hankel  functions of the 
fiist  kind  and T(r) can  be  written  formally  as 

m n  

r > r o .  (1  7) 

The angles (60, Go) are the  spherical  coordinate angles of the 
position  vector r with  respect to  the (x, y ,  z)  axes  fixed in 
the  left  antenna.  The  functions hn(' ) are  the  spherical Hankel 
functions of the  first  kind, Pnm are the associated  Legendre 
polynomials,  and the B,, are  the Spherical wave coefficients 
which  change for each  antenna  pair,  and  for each different 
relative orientation of the  antenna pair. 

There  are  a  number  of  reasons  that  make  (17) especially 
conducive to the  efficient evaluation of coupling versus 
separation  distance.  First of all, for coupling  along  an arbi- 
trary z-axis, 00 is  zero, P,"( 1)  is  nonzero o d y  for m = o 
where it equals  unity,  and  (1  7)  reduces to  

m 

T(d) = B,hn(' '(kd), Bn E Brio, d > y o .  (1 8) 
n=O 

We emphasize that  (1 8) is  no  less general than  (17)  for cou- 
pling quotient versus  separation  distance  because the z-axis  can 
be chosen  arbitrarily.  Second,  the B, ,  in (1 7 )  and thus  the Bn 

6 In this respect the mutual coupling function for  antennas is 
analagous to the mutual power spectrum or, equivalently, the spectral 
density of the mutual coherence function  which gives a measure of the 
partial coherence of radiation  between  two  points in space [ 3 9 ] .  
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(a)  (b) 
Fig. 8. Schematic showing radius  of each sphere circumscribing the 

radiating  portion  of each antenna.  (For r > ro = a + a' (14) gives 
correct coupling quotient.) (a) Left  antenna. (b) Right  antenna. 

in (18) are  determined  efficiently, as will be  shown in Section 
111-B, from  an  integration of the scalar product of the  far 
fields  of the  antennas  multiplied  by  the Legendre  polynomials. 
Moreover, for  the  coupling  along  a single axis given by (1 8),  
we shall show that, within the  approximation  that  the evanes- 
cent  spectrum is negligible,  only the scalar product of far 
fields in the hemisphere of this axis  are  required.  Third,  both 
the Hankel functions  and  the Legendre  polynomials  can  be 
determined  by  extremely  rapid  forward  recurrence  relations 
which  require  a  meager  amount of computer  storage. Fourth, 
because the basic input to the  computer  program is the same 
as  in  Section 11, i.e., the scalar product of the  far  fields of the 
antennas, all the necessary  Eulerian  angle transformations are 
contained  in  the  appendix;  and  the  subroutines  required  to 
compute  these  transformations can be  borrowed  directly  from 
the previous  computer  program  of  Section 11. 

B.  Evaluation of the  Spherical Wave Coefficients 
To express  the Brim, and  thus  the  required B, of (1 8), 

simply in  terms of the  far  fields of the  antennas,  equate  the 
T in (14)  and (1 7),  and  let  the  separation  distance r approach 
infinity. As r + CQ the spherical  Hankel  functions  in  (17) 
behave  as 

and  the  integral  in  (14) can  be  replaced  by the first  term  in 
its  asymptotic series (1 6b). 

For a  reciprocal  receiving  antenna  (see footnote 4), one can 
substitute  from  (2), ( 9 ,  and (6) to  recast  (16b)  in  terms of 
the  far  fields of the  antennas: 

With the  help of (19a)  and  (19b),  (14)  and  (17)  equate  to 
yield 

= n  
2nff(-r) - f ( r )  = 2 B , , ( - Q ~ P , ~  ( c o s ~ ~ ) e ~ ~ @ ~ .  

n=O m = - n  

(20)  

We can multiply  (20)  by P,me-im@O and  use the ortho- 
normality  relations [31] for  the spherical  harmonics to  ob- 

tain  the  coefficients Bnm in  terms of the  far fields. Specifi- 
C d Y  2 

For B, = Bn0 (21)  reduces to  

Given the  far  fields of the  two  antennas,  (22)  can  be  inte- 
grated to  determine  the B,, which  can in turn be  substituted 
into  (1 8) for the coupling  quotient versus separation  distance 
d along  an  arbitrary z-axis. 

There  remains the  question of how  many  terms  in  the  sum- 
mation of (18) are  required  and  what  sample spacings  are 
required  in the Go and 8, integrations of (22) for reasonable 
accuracy.  In  addition,  the  scalar  product f f C f  must  be  written 
in  terms of  angles Go and Bo in order  to  perform  the  intega- 
tions in (22). However, before dealing  with  these  topics, we 
will show that only the  far fields, i.e., f ' . f ,  over the surface 
of one  hemisphere is needed to  compute  coupling in that 
hemisphere  by the  method of substituting  (22)  into (1 S), pro- 
vided the evanescent  spectrum is negligible. 

Equations  (14)  and  (1  7)  are  two  representations  for  the 
same  coupling  function T ( r ) .  Furthermore,  (14)  determines  the 
coupling  quotient  in  any  hemisphere  from  the far-field scalar 
product over the surface of that  hemisphere, plus the  contribu- 
tion  from  the evanescent spectrum, regardless of the  far  fields  in 
the  opposite  hemisphere.  Thus,  set  the far-field scalar product 
in the  opposite  hemisphere  equal to  zero? Since (17)  is an 
equivalent  expression for the coupling  quotient, it follows 
that  for coupling  computed along the axis in  one  hemisphere 
(1 8) requires the far-field scalar product only  over the surface 
of that hemisphere,  assuming that  the  contribution  from  the 
evanescent spectrum is negligible. 

Using the scalar product of far  fields in one  hemisphere 
only to compute  the  coefficients B, from  (22)  significantly 
reduces the  computer time.  In  Section IIC, it was further 
shown that  for electrically  large  antennas  only the  far  fields 
within  about  the solid  angle  mutually subtended by the 
smallest sphere  circumscribing the  two  antennas  usually 
suffices for reasonably  accurate  computation of the coupling 
quotient.  Thus if the coupling  quotient is required  only for 
separation  distances  much  larger  than the  sum of the  an- 
tenna  diameters,  a solid  angular  sector  much less than  a  hemi- 
sphere  could  be  used  and  computer run time could be de- 
creased still further.  (This  latter  feature  has  not been taken  full 
advantage of in the initial  program  for  computing  coupling 
versus  separation  distance  because  computer  run  time was con- 
sidered  small  enough  without it.) 

7 Although, in  principle, analyticity  of  the  spectrum  implies  that 
setting  the back hemisphere  zero can be done  only  at  the  expense  of 
changing both  the evanescent spectrum  and  the far-field  scalar product 
in  the  forward  hemisphere, in numerical  practice using a fixed number 
of  spherical modes prescribed in  Section 111-D, these changes contribute 
negligibly if the  contribution  from  the evanescent spectrum in (14) is 
negligible. 
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C. Applicability  of Previous Eulerian Angle  Transformations 
To  evaluate  the  integral  for  the B, in (22)  for  an  arbitrarily 

chosen  direction of the z-axis in (1 8) and  arbitrary  orientation 
of the  two  antennas,  the scalar product  f'(-r)-f(r)  must  be 
evaluated  as  a function Bo and @o for  arbitrary Eulerian  angles 
describing  each antenna.  Fortunately,  the necessary  transfor- 
mations have  been  described  and  performed in  the  appendix 
(see Figs. 2  and  3). 

Specifically the x, y ,  z components of r  are  expressed  in 
terms of Bo and Qo by 

x = r sin Bo cos Go, y = r sin B o  sin do, z = r cos B o .  (23) 

Once x, y ,  and z are  known, f - f  is determined  from (Al), 
(A2),  and  (A3), given the  far  fields  in  the  preferred  coordinate 
system of each antenna  and  the Eulerian  angles  needed to 
rotate  the  axes of the  preferred  system of the  left  and  right 
antenna to the (x, y ,  z)  and ((-x), y ,  (-z))  axes,  respectively. 

D. Number of  Modes, and Size o f  integration and 
Separation  Increments 

The  infinite  summation  in  (1 8) must  be  truncated  in  order 
to evaluate it numerically. Thus the  approximate value of n at 
which the B,  evaluated  from  (22)  become negligible  must  be 
determined.  First  consider  the  case  where the major  variation 
in  f'*f is due to  the  transmitting  antenna's  far field f. For 
example,  let f = z x f .  Then the coupling given by (1 8) would 
be proportional to  the  x-component of electric field of the 
transmitting  antenna,  and  the  number of modes  required 
beyond  a wavelength or so from  nonsuper-reactive  antennas 
is approximately k(a 4- A) [33],   [34].  Similarly, if the  major 
variation  in f'.f were due  to  the receiving  antenna's far  field, 
the  number of required  modes is approximately k(a' + A). 
For a  general  scalar product of two  far  fields,  the  maximum 
variation  with Bo and Qo in  the scalar product f'af is no 
greater  than  approximately  the  variation of a single antenna of 
radius a 4- ar. Thus  the  number N of required  modes  in  the 
summation of (1 8) is given approximately by 

N k(a + a' + A); (24) 

for nonsuper-reactive antennas  separated  by  more  than  a wave- 
length  or so, i.e., beyond  each  other's reactive-field  zone. In 
computational  practice,  it  has  been  found  that  the  modal coef- 
ficients B, become  neghgible extremely  rapidly as n gets 
larger  than  the N given approximately by the  formula  (24), 
e.g., see Figs. 1 1 and  13. 

The  formula  (24)  implies  that B, given by  the  integrals  in 
(22) is bandlimited to  n = k(a -I- a' + A), and  this can  be  used 
to  determine  the  maximum  integration  increments  in @o and 
Bo permitted to  evaluate the integrals  in  (22). We evaluate 
(22) by  straightforwardly  converting  the  integrals to  summa- 
tions  with  equal  increments A@o and ABo. 

Consider the @o integration  first and  define 

W o )  = Cn f '  f(O0, @o)d@o 

L 

= A40 c f'  f(B0, dol ) ,  ( 2 5 )  
I= 1 

where 

2rl 

L 
$01 = (I- 1)AOo and AGO = -. 

The  only  other  information  required  to  evaluate  the summa- 
tion  in  (25)  is  the value  of L .  Since the  Fourier series repre- 
sentation of f'*f  with  respect t o  @O is assumed  bandlimited  by 
the N given in  (24),  the  sampling  theorem  [27]  tells us that 
the minimum  required  value of L is  just N.8 

Equation  (25)  must  be  evaluated  for  each value of Bo re- 
quired to  perform the Bo integration.  From  (25)  and  (22) 
we can  write 

2n+ 1 
B ,  =- 

2 
(i)"ABo F(B0,)sin BopPn (cos e o p ) ,  (26) 

P 

p= 1 

where 

rl 
B o p  = ( p  - l)ABo  and ABo = -. 

P 

Once  again we are  left  only  with  determining  the  minimum 
permissible  value of the  summation  limit P (not  to be  con- 
fused  with  Legendre  polynomials PnM and P,). The  minimum 
value of P can  be  decided  by  observing that  (26)  is  required 
for  a  maximum n given approximately by N, and that 
pnr(cos e o p )  can  be written  as  a sum of exponentials 
exp (?inBop) with n < N. Thus  the  sampling  theorem [27] 
again  can  be  applied to show  that  the  minimum  required value 
of P is  approximately N.9 The  limits L and P of the summa- 
tions  in  (25)  and  (26)  are  then given  by 

L = P = N = k ( a + a ' + A ) .  (27) 

In  the  computer  program convergence of the $0 and Bo sum- 
mations can  be  tested  by  increasing the values of L and P 
beyond that given in  (27). 

Given the  electric  far field of each of the  two  antennas,  and 
the Eulerian  angles of orientation  of  each  antenna  with  respect 
to  the rectangular  coordinate  system to which the  far field is 
referenced,  (26)  and (25) along  with the  transformations of 
the  appendix  determine  the  spherical wave coefficients B,. 
The  coefficients B, then  determine  the  coupling  quotient 
versus  separation  distance d from  the  summation  in  (1 8) for 
d > ro = a 4- a'. The  spherical  Hankel  functions  in  (18)  and 
Legendre  polynomials  in  (26)  are  computed very efficiently 
from  their  recurrence  relations [ 35 1 ,  and  as will be  discussed 
in the concluding remarks,  total  computer run time  and  stor- 
age become  proportional to  N2 and N, respectively, for 
electrically large antennas. 

The size of the  increments  in  separation  distance d needed 
in (18) to  resolve the variations  in  coupling  quotient  (or 

8 Actually,  one  can relax this sampling criterion  for  the incre- 
ments  by redefining a and (I' with  respect  to circumscribing cylinders 
(rather  than spheres) with  center lines  along the z-axis [ 131, [ 141. 

9 The  bandwidth J V  cannot be  assumed immediately for the eo 
exponential integrals  because the eo integration ranges only  from 0 to 
?T rather  than  from 0 to 28. This problem can,  however, be overcome  by 
extending  the  definition (25) of F(eo) to  cover t h e  redundant range 
n < 8 0  S 2n as well, or by arguing that  the relatively narrow convolving 
sinc function  introduced  by  the 0 to  n window will broaden  the  band- 
width negligibly. 
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fields) throughout  the  Fresnel region still must  be  determined. 
To do this, assume that  the variation of coupling  quotient  with 
distance d will be no more  rapid  than  the  variation of the 
fields  of  a  single  antenna  with  diameter  equal to  the sum of 
the  diameters of the  two mutually  coupled  antennas.  Fresnel 
approximations  applied to aperture  antennas  [36] can then  be 
used to  show that  increments Ad in the separation  distance 
given by 

-=’(-) Ad d 2  > d>- D t D ’  

h 2 D f D ’  2 

suffice to resolve the largest  variations  one  could  encounter 
for  nonsuper-reactive  antennas.  (In (28)  it is assumed that  the 
separation  distance d is measured  between  origins 0 and 0’ 
which  are  physically  close,  within  a  diameter or so, to their 
respective  antennas). The  total  number of points (Nd)  spaced 
according to  (28) throughout the near-field region from 
(D 4- D’)/2 to  the far field ( Z ( D  f D’)’/h), i.e., throughout 
the Fresnel  region, is given roughly by 

i 

k(D f D’) 

2 
Nd = 

E. hhmerical  Testing of the Program for  Coupling 
Versus  Separation  Distance 

The  computer  program was tested by first  applying it t o  
a  transmitting circular aperture  antenna  with  a  uniform 
aperture  electric  field  polarized the  x-direction,  and  a 

receiving antenna  inserted  in  order to  compute 
fields  instead of coupling.  The on-axis (i.e., mainbeam  axis) 
E, field of the  hypothetical  transmitting  antenna can  be 
determined  analytically  and is given by the simple  expression 

“virtu& 0 

with “a” denoting  the  radius of the circular aperture F d  EO 
the x-directed  aperture  electric  field. A typical  comparison 
between the on-axis E, field computed  by  the  program  and 
the  exact  expression  (30) is shown  in Fig. 9 for an antenna 
20 h in diameter.  ‘Excellent  agreement is exhibited  throughout 
the Fresnel  region  (from d = Q to  2a2 /X). For a  100 h antenna, 
the  program  exhibited the same  excellent  agreement  between 
computed  and  exact on-axis  fields, and  took  30 s to  compute 
the on-axis field throughout  the Fresnel  region on a CDC 6600. 

The on-axis  fields of these  hypothetical  antennas vary much 
more  rapidly  than most, if not all, existing  antennas of the 
same  electrical size. It  should also be  pointed  out  that  the 
computer  program made no use of the circular symmetry of 
the  hypothetical circular antennas. If this  symmetry  were 
utilized the  computer  run  times could  be  reduced  drastically 
for on-axis fields. However, actual  antennas used  in  practice 
do  not,  in general,  display  this  high  degree of symmetry. Also, 
for  computations  along  a  radial  line  other  than  the  mainbeam 
axis, the  strong  symmetry of  these  hypothetical  circular 

10 A virtual receiving  antenna used to compute  the x, y ,  or z-com- 
ponent of electric  field of the transmitting  antenna is defined by es- 
sentially letting  the far field f ’  of the receiving antenna  equal G y ;  ;,,I 

antennas  with  respect to  the radial  line  disappears.  (As  an 
example of  “off-axis’’ computation, Fig. 10  shows  the mag- 
nitude of the E, field for  the same 20 h antenna of Fig. 9 
along  a  radius  making  a 30’ angle  with the mainbeam axis.) 

A  typical  plot of the spherical  modal  coefficients B ,  versus 
n is shown  in  Fig.  11 for  the  on-axis  fields of the 20 h hypo- 
thetical  circular aperture  antenna in Fig. 9. As predicted  by 
the  theory  [33],  [34] discussed  in  Section 111-D, the values 
of B ,  become negligible for n > N x k ( ~  -k X ) .  (The size a’ of 
the virtual  receiving antenna is ignored  when  computing 
fields.) 

It was mentioned  in  the  introduction  that  the  computer 
program can also be  used to predict near-field  gain-conection 
factors  for  two  antennas. Fig. 12 shows the magnitude of the 
coupling  quotient versus  separation  distance for two 50 h 
diameter  circular aperture  antennas facing  each other,  and 
each  with uniform  aperture  fields  polarized in the  x-direction. 
This program  took  36 s to  compute  the coupling  quotient on  a 
CDC 6600 throughout the Fresnel  region  from (d a 4- Q’ to 
2(a -k ~ ’ ) ~ / h ) .  To display the coupling  quotient over the  entire 
Fresnel  region on a linear scale, the  plot in Fig. 12 in the very 
near field is compressed. An expanded scale, however,  shows 
close  agreement  between the maximum  value of coupling  pre- 
viously shown in Fig. 5 for  these  same two  antennas  computed 
from  the program  discussed  in  Section I1 and the value in Fig. 12 
for d ’  = 50 X .  Fig. 13  further  confirms  the  theory of Section 
111-D that  the spherical  mode  coefficients B,  become negli- 
gible for n > N x k(a + a‘ 4- X ) .  Finally,  Fig. 14 shows the 
gain-reduction factor  computed  between  a  lineady  polarized 
uniformly  illuminated  rectangular-aperture  antenna  and a 
dipole  probe.  The  dots in Fig. 14 were determined  from  a 
direct  integration of the  aperture field and  can  be  considered 
exact to  within the  thickness of the  dots. 

IV. CONCLUDING REMARKS 
We have  presented the  theory,  explained  the  techniques, 

detailed the  important  equations, and  described two com- 
puter  programs  for  calculating  efficiently  the  mutual  coupling 
at  a single frequency  between any two  antennas  arbitrarily 
oriented  and  separated  in  free  space.  Both  programs  empha- 
size efficiency  and  generality,  and  require,  basically, the com- 
plex  electric  far field of each  antenna  at  a given frequency, 
and the Eulerian  angles  designating the relative orientation 
of each  antenna. Multiple  reflections  between the  antennas 
are neglected but  no  other restrictive assumptions  are  involved. 
If the receiving antenna is nonreciprocal,  its  complex  receiv- 
ing pattern is required  instead of its  far  field. If an  electric 
field component is desired  instead of coupling, the receiving 
antenna is replaced  by  a  virtual  antenna  with  uniform  far  field, 

The  first  computer  program  is based on a  plane-wave 
spectrum  approach  and uses  an FFT algorithm to compute 
coupling  (or  fields) versus  transverse  displacement  of the 
antennas  in  a  plane  normal to  their  axis of separation. An 
efficient  program  was  made  possible  by  showing that in  most 
cases the  spectrum  integration need  cover  only about  the solid 
angle  mutually  subtended by the smallest  spheres  circum- 
scribing the antennas.  Limiting the  integration  to  this solid 
angle  artificially  bandlimits  the  coupling  function  thereby 
dowing much larger integration  increments  and  reducing  run 
times  and  storage  requirements t o  a  feasible amount. 

The  second  program is based on a  spherical wave repre- 
sentation of the coupling  function  and  rapidly  computes 

or d,,, respectively. _- , 
coupling  (or  fields) versus separation  distance  between  the 

- -  
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Fig. 9. Computed  and  exact  on-axis  electric  field  for uniform circular aperture  antenna 20 A in diameter. 
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Fig. 10. Computed  electric  field  along 30" axis for uniform circular 
aperture antenna 20 A in diameter. 

Spherical Made Number n k(a+h) 

Fig. 11. Plot of magnitude of spherical modal coefficientsB,  for  the 
on-axis  fields of the 20 A circular antenna of Fig. 9. 
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Fig. 12. Magnitude of  coupling  quotient versus separation  distance  for 
two 50 h circular antennas facing each  other. 
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Fig. 13. Plot  of  magnitude  of spherical modal  coefficientsB,  for  the 
two 50 h antennas of Fig. 12. 

Meters 
Fig. 14. Gain reduction  factor  for  uniformly  illuminated  rectangular  aperture  antenna (55.5 h X 23.8 A at  1.3 GHz). 
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antennas.  The  spherical wave representation emerged  naturally 
from  an  intriguing  characteristic  proven  for  the  mutual  cou- 
pling function; it, like  each  rectangular  component of elec- 
tric  or  magnetic field in  free space  and like  the  mutual  power 
spectrum of partial  coherence  theory, satisfies the homogene- 
ous scalar wave equation.  Both  programs  produce  coupling  or 
field values to  an accuracy  commens&ate  with the accuracy 
of the  inputted  far  fields, neglecting  multiple  reflections. 

To  compute  the coupling  of two  arbitrary  antennas whose 
diameters  sum to  100 X, or  to  compute  the  fields of a single 
antenna 100 X in  diameter,  both  programs  take  about  a  minute 
of computer  time  within  core  on  a CDC 6600. This  time is 
especially noteworthy  for  the  second  computer program  which 
computes  the  coupling  quotient along  any radial axis  through- 
out  the  Fresnel region. Also, the first program  takes less time 
for  separation  distances  larger  than  the  sum of the  antenna 
diameters. 

One  can determine  the  dependence of computer  time  and 
storage upon dimension-to-wavelength ratio of the  antennas 
by  looking  at  (12a)  for  the  first  program  and  (18), (25), 
and (26) for  the  second program. 

The  predominant  computation  time  required  by  the  first 
program in  the  evaluation of (12a)  for  two  orthogonal  cuts 
is  contributed  by  the collapsing of the data.  For  each  cut, 
2L terms  are  summed 2M times  resulting in a  computer  time 
for electrically large antennas  proportional to LM or 

(31) 

F ( e O p )  again amounting to  a  required  computer  storage 
proportional  to  the  ratio  (32). 

Some  qualification to  the  stated  computer  times  should 
be made  for  antennas  which have their  far  fields  stored  numer- 
ically in an  external file. In such  cases  a subroutine  must  be 
supplied to retrieve the far fields from  the  external file and  this 
retrieval plus rollout  time can  add  significantly to  the  total 
turn-around  time,  depending  on  the accessibility of the file 
and the efficiency of the rgtrieval subroutine.  Also.with  some 
antennas  for which  coupling of Fresnel-region fields are  desired, 
aperture fields are  more  readily  available  or easier to  estimate 
than  the  far fields. In such cases efficient FFT programs [ 371, 
[38]  can be applied to  the  aperture  fields to  compute  the far 
fields which  can then be  supplied to  the present  computer  pro- 
grams. 

Finally,  although  little  effort has been  devoted to  date  to 
compare  directly  measured  and  computed  values of coupling, 
the few  preliminary  comparisons  which  have  been  made  show 
agreement to  within the  experimental Limits  of error [24] ,  
I251. 

APPENDIX 
EULERIAN  ANGLE  TRANSFORMATIONS 

The basic transformation  for  the  left  antenna  required to 
evaluate (8)  or (22) explicitly  expresses the x - y - z rec- 
tangular  components of the  vector f in terms of the given 
x A  - y A  - ZA compoiients  and  Eulerian angles (@, 6, $). 
Specifically, 

L 

for  a  separation  distance  on  the  order of ( D  + D ' ) ,  i.e., in the 
very near field. 

The  two  FFT's used in the collapsed data  evaluation  of 
(12a)  require  computer  storage  proportional  only to  L andM, 
ie.,  proportional  to 

D + D '  

h 
(3  2) 

again for  separation  distances in the very near field of elec- 
trically large antennas.  (For larger  separation  distances  these 
computer storage  and time  requirements  for  this  first program 
are  diminished  by the  ratio ( D  + D') /d  and the  square of this 
ratio,  respectively.) 

The  second  program  also  takes  computer  time  and  storage 
proportional  to  (31)  and (32), respectively. Equation (25) 
sums L terms P times;  (26)  sums P termsN times  and  takes N 
recursions to  compute  the  required N Legendre  polynomials 
for  each of the P arguments; (1 8) sums N terms Nd times  for 
coupling  throughout  the Fresnel  region,  and also takes N re- 
cursions to  compute  the required N spherical  Hankel  functions 
for  each of the h-d arguments.  Thus  computer  time  for  the 
second  program  becomes  proportional to  LP + 2NP + m A r d ,  
or  proportional  to  (31) since  Section 111-D showed that 
each of these  integers, L ,  N, N d ,  and P, become  proportional 
to  (D' + D')/X for electrically large  antennas.  The  major  in- 
core  computer  memory  requirements of the second  program 
are  for  storing  the N coefficients B,,  the N spherical  Hankel 
functions  and Legendre  polynomials,  and  the P elements of 

or  in  dyadic  notation, 

f = ? . f A .  (A1  b) 

The  counterpart  equation  for ( f r X , ,  fy,;.. f'z'! of the  right an- 
tenna is the  sade- as (Al)  but with ($, 8 , $') and ( f f x p ,  

f ' Y p , f ' z p )  rep!acing ( 6  8 ,  $1 and U ~ A ,  f y ~ ,   f z ~ ) ,  respec- 
tively. It should dso be noted  that  the x, y ,  and z components 
of the  far field p-e not  .independent because there is no radial 
component of far field. Using fA ,  for in example,  the  rec- 
tangular  components  are  related  by cos @A kn e ~ f ~ ~  -k 

The far-field dot  product, f'sf = -.%'x'fx +ffY'fY - f Z r f z ,  

is found directly from ( A l )  and it5 counterpart  equation  for 
the right  antenna.  The  spherical angles ( @ A ,  0,) and (@,, e,) 
in  which the  far  fields of the  left  and.  right  antennas  are given 
can also be  determined  from (Al)  and  its  counferpart  through 
the  relations 

sin @A sin O A f y A  + cos OAfZA = 0. 

and 

One other  set of transformations  often proves  useful. 
Often,  the fai: field of  an antenna is given not in terms of rec- 
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tangular  components  but  in  terms of spherical  components. 
If the  electric far-field pattern of the  left  antenna of  Fig. 1 is 
known  in  terms of C ~ O A ,  f e ~ ) ,  then  the  rectangular  compo- 
nents  are  related  to  these  spherical  components by the  spheri- 
cal angles: 

The  counterpart  equation  for  the right antenna giving ( f f x p ,  
f y p ,  f Z p )  as  functions of ( f ~ ~ ,  f o p )  is  formed  from  (A3) 
merely  by  replacing ( @ A ,  0,) in  the  matrix  with (&,, O P ) .  

These transformations  (Al),  (A2),  and  (A3)  must  be  done 
for  each ( k x ,  k,,) within the  limits of integration  needed to  
evaluate (8) or (22). They  look  rather  cumbersome  at  first 
sight, yet  computationally  they are quite manageable  because 
they involve  only  sines  and  cosines of the  Eulerian angles 
and  linear  dependence  upon k,, k,, and y (which  equals 

- (k,’ -k k y 2 ) ) .  The  computer  program merely  con- 
tains  subroutines  which yield ( @ A ,  e,) and ( Q p ,  &) from 

’ (A2)  and f’mf from ( A l )  and (A3) given the Eulerian  angles 
(@, 8 ,  $), ( Q f ,  e’, $’), the  integration variables ( k x ,  k,,), and  of 
course,  the  far  fields fA and fc‘ 
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Adaptive Arrays:  A  New  Approach to the Steady-State Analysis 

SHALHAV ZOHAR, SENIOR MEMBER, IEEE 

Abstract-Our main  goal  is  a  closed-form  expression for the  steady- 
state  output signai-to-noise ratio (SNR) of an n-element  adaptive 
array excited by one desired narrow-band  signal  and K - 1 narrow- 
band jammers. This is  facilitated by representing  each  excitation by a 
complex  n-dimensional  vector-the  excitation  vector. We show that 
the important system parameters are functions of scalar  products of 
pairs of these  exctiation  vectors. In particular, the  normalized  output 
SNR of the  array, is shown to be the ratio of determinants whose 
elements  involve these scaler  products.  Such  determinants are also 
shown to be  involved  in the  expressions for the  optimal array weights. 

I. INTRODUCTION 

T HE MAIN function of an adaptive  array is to maximize its 
output signal-to-noise ratio  (SNR)  in  the  presence  of a 

time varying configuration  of signals and  jammers.  Our  pur- 
pose  here is to  derive a closed-form expression for  the  steady- 
state  output  SNR  in a configuration of one signal and  an ar- 
bitrary  number  of  jammers.  Our  result is quite general, being 
valid for  an array  consisting  of an  arbitrary  (three-dimensional) 
arrangement of arbitrary  antenna  elements. We also obtain  the 
optimal  weights for  such a general type of array.  Both  these re- 
sults  are  expressed  as  ratios of determinants involving scalar 
products of the basic system  vectors. 

Consider  an  adaptive  array  consisting of n arbitrary  antenna 
elements  operating  in  an  environment  of K spatially  distinct 
narrow-band  sources.  One of these  (source  number 1) is the 
desired signal while the remaining ( K  - 1) sources  are  jammers. 
The  array  processor  constructs the (single) array output volt- 
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age as a linear  combination of the n individual  antenna  volt- 
ages. The main challenge here is to choose the [complex)  coef- 
ficients of this  linear  combination  (known as the weights) in 
such a way that  the  jammers will be  attenuated  with  respect 
to the desired signal. More  precisely, the weights are  chosen 
to maximize 

output signal power 

output noise  power 
y = .  (1) 

where the  term “noise power”  covers the  jammers as well as 
thermal noise. The  solution  to this problem  has  been  known 
for  quite  some  time [ 1 1 ,  [4 ] ,   [6 ] .  In  Section I11 we  present a 
short  derivation of this  solution which is tailored to   our  specific 
requirements. Building on this  foundation,  we  then  proceed to 
obtain  the  closed-form  expression  for  the SNR. 

The main feature distinguishing our  approach  from earlier 
work is the base adopted  for  the  representation  of  the  weights 
vector. Whereas the eigenvectors of the noise covariance ma- 
trix  adopted  in [ 6 ] ,  [4] are very suitable for  the analysis  of 
the  transient  behavior of the  array,  it  turns  out  that  the  steady- 
state  analysis is much  better served by a base  consisting  of the 
excitation vectors’ of  the sources  exciting the array. We have 
found  that  this  formulation  provides  insight which has  already 
shed  light on a failure  mechanism of adaptive  arrays [71 as 
well as the  structure  of  the  adapted beam pattern.  Further- 
more,  this  formulation  provides  the  foundation  for  an im- 
proved  algorithm for a multiple-access communication  system 
based on adaptive  arrays [ 8 ] .  

11. ADOPTED LINEAR-ALGEBRA  FORMALISM 
In our  mathematical  manipulations  we  use  dyadics  through- 

out.  For  the  reader  who is not familiar  with the  subject,  we 
provide all the necessary background  in  Appendix A. At  this 

1 Precise  definitions  are  given  later. 
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