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Closed-Form Solution for Determining Emitter
Location Using Time Difference of Arrival
Measurements

A direct and short derivation of an algorithm based on the

closed-form solution of the nonlinear equations for emitter

location using time difference of arrival (TDOA) measurements

from N +1 receivers, N 3, is given.

I. INTRODUCTION

The solution of the problem of locating a
signal source using time difference of arrival
(TDOA) measurements has numerous applications
in navigation, surveillance, and geophysics. Using
an array of multiple sensors, the TDOAs of the
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received signal are measured. The TDOAs are
proportional to the differences in sensor-source range,
called range differences (RDs). Conventionally, the
source location is estimated from the intersection
of a set of hyperboloids defined by the RD
measurements and the known sensor locations. The
approaches to the solution of the emitter location
problem include iterative least-squares (ILS) [1, 2]
and maximum likelihood (ML) estimation [3].
Closed-form solutions have been given in [4, 5], using
“spherical-intersection” and “spherical-interpolation”
methods, respectively. Closed-form solutions are
usually less computationally burdensome than
iterative, nonlinear minimization, or the ML method,
and achieve good accuracy.

In this correspondence a simple derivation of a
closed-form solution similar to [4] is given. In [4],
Schau and Robinson give a closed-form solution for
calculating the source location in three dimensions
using 4 sensors, viz., 3 TDOA measurements.
This correspondence provides a direct and short
derivation along the lines of [6] of the closed form
solution-based emitter location algorithm, and extends
this approach to the use of N TDOA measurements
(N 3). The existence of a solution and noise effects
are also addressed.

II. CLOSED-FORM SOLUTION

To obtain a 3D source location solution, at least
four sensors at known locations are needed. One
of the sensors is used as a reference for the RD
measurements. Also, without loss of generality, we
assume that the designated reference sensor is located
at the origin of our coordinates frame. We assume that
N +1 sensors are used, N 3.

Since a TDOA-based positioning system does not
measure absolute time, but instead measures the time
difference that a signal arrives at the TDOA sensors
with respect to the reference TDOA sensor, the N
TDOAs are expressed as

¢ti = ti to, i = 1, : : : ,N (1)

where to is the absolute time of arrival to the reference
sensor, ti is the absolute time that the signal arrives
at the ith sensor, and N is the number of sensors,
excluding the reference sensor (sensor 0). The TDOAs
are converted to RDs by multiplying by c, the speed
of light:

di = c¢ti = c(ti to), i = 1, : : : ,N: (2)

Thus, di is the RD between sensor i and the reference
sensor.

The spatial coordinate vectors of the N +1 sensor
are

xo
¢
=

xo

yo

zo

=

0

0

0

(3)
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and

xi
¢
=

xi

yi

zi

, i= 0,1, : : : ,N (4)

where xo is the reference sensor position and xi is
the ith sensor position. The unknown signal source
position is

x
¢
=

xs

ys

zs

: (5)

The Euclidian distance between the source and
sensor i is given by

Ris = xi x = (xi xs)2 + (yi ys)2 + (zi zs)2,

i = 1, : : : ,N (6)

and the distance between the reference sensor and the
source is

Rs = x = x2s + y2s + z2s : (7)

We use the RD notation di of (2). The RDs satisfy the
basic relationships:

di = Ris Rs, i= 1, : : : ,N (8)

which can be rewritten using (6) and (7) as

di = (xi xs)2 + (yi ys)2 + (zi zs)2 x2s + y2s + z2s ,

i = 1, : : : ,N: (9)

After algebraic manipulation, (9) yields

xixs+ yiys+ zizs+ di x2s + y
2
s + z

2
s =

1
2 (x

2
i + y

2
i + z

2
i d2i ),

i = 1, : : : ,N: (10)

For the general case of N +1 sensors, define the
regressor matrix

S
¢
=

x1 y1 z1
...

...
...

xN yN zN N 3

(11)

and the vectors

z
¢
=
1
2

x21 + y
2
1 + z

2
1 d21

...

x2N + y
2
N + z

2
N d2N N 1

(12)

and

d
¢
=

d1
...

dN N 1

: (13)

Hence, the data is encapsulated in the matrix S and
in the vectors z and d. Moreover, the possibly noise
corrupted measurements exclusively reside in the

z and d vectors, whereas the regressor matrix S is
“clean.”

In matrix notation, (10) for multiple sensors
becomes

Sx= z dRs: (14)

Equation (14) represent a linear system in the four
unknowns: xs, ys, zs, and Rs. Hence, solving for source
position x we obtain the preliminary emitter position
estimate

x= (STS) 1ST(z dRs)

= (STS) 1STz (STS) 1STdRs: (15)

When not all RDs are measured to the same accuracy,
a weighting matrix RN N is in order, in which case the
preliminary emitter position estimate is

x̂= (STR 1S) 1STR 1z (STR 1S) 1STR 1dRs:

(16)
Defining the new vectors

a
¢
=(STR 1S) 1STR 1z=

a1

a2

a3

(17)

and

b
¢
=(STR 1S) 1STR 1d=

b1

b2

b3

(18)

(16) becomes
x̂= a bRs: (19)

Using the definitions (17) and (18), and (19), the
following relationship holds:

x=

xs

ys

zs

=

a1 b1Rs

a2 b2Rs

a3 b3Rs

: (20)

Inserting (20) into (7) and applying algebraic
manipulations, yields the following quadratic equation
in Rs:

(b21 + b
2
2 + b

2
3 1)R2s 2Rs(a1b1 + a2b2 + a3b3)

+ a21 + a
2
2 + a

2
3 = 0 (21)

which has two solutions given by

R̂s =

a1b1 + a2b2 + a3b3

(a1b1 + a2b2 + a3b3)
2 (b21 + b

2
2 +b

2
3 1)(a21 + a

2
2 + a

2
3)

b21 + b
2
2 + b

2
3 1

:

(22)

The solutions to (22) are used as the solution to
the estimated source-to-reference-sensor distance R̂s.
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Substituting this value for R̂s into (19) finally yields
the estimated signal source location x̂.

III. EXISTENCE OF A SOLUTION

In 3D space, if at least four sensors are not
coplanar and there is a subset of three sensors which
are not collinear, then the matrix S has full rank. It
should be noted that there remains the possibility that
(22) has imaginary roots, in which case the solution to
R̂s, and thus x̂s, cannot be determined.
Consider the case of N +1 sensors.

ASSUMPTION 1
In 2D: N 2, and at least 3 sensors are not

collinear.
In 3D: N 3, and at least 4 sensors are not

collinear.

Assumption 1 assures the regressor matrix SN 2 (in
2D) and SN 3 (in 3D) is full rank. The measurement
information is contained in the vectors d,z RN . The
solutions of the quadratic equation are explicitly given
by

R̂s =

dTs(sTs) 2sTz

[dTs(sTs) 2sTz]2 + zTs(sTs) 2sTz [1 dTs(sTs) 2sTd]
dTs(sTs) 2sTd 1

:

(23)

PROPOSITION 1 Assume that Assumption 1 holds. If

dTs(sTs) 2sTd< 1 (24)

then there exists a unique, real, positive solution to the
quadratic equation (23) and the minus sign applies.

PROPOSITION 2 Assume that Assumption 1 holds. If

dTs(sTs) 2sTd> 1 (25)

and

[dTs(sTs) 2sTz]2 zTs(sTs) 2sTz [dTs(sTs) 2sTd 1]

(26)
then

dTs(sTs) 2sTz< 0 (27)

implies that there exists a unique, real, positive solution
to the quadratic equation (23) and the plus sign applies.
If, however,

dTs(sTs) 2sTz> 0 (28)

then there exists two real, positive solutions to the
quadratic equation (23) because both the plus and
the minus signs apply. In this case, at least 4 sensors
in 2D and 5 sensors in 3D are needed to resolve the
ambiguity. If condition (26) does not hold, then a real
solution does not exist. Such a case is an artifact of
measurement noise and/or modeling error.

Note that this derivation is deterministic. Any
errors in the TDOA measurements, whether random
or bias-like, would propagate into the solution,
and further development would need to be done to
characterize this problem from a stochastic point of
view.

IV. CONCLUSION

A direct and short derivation of an algorithm based
on the closed-form solution of the nonlinear equations
for emitter location using TDOA measurements from
N +1 sensors, N 3, was given. The existence of a
solution and noise effects were also addressed.
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