
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 3, W C H  1983  283 

R. P. Wishner, R. E. Larson, and M. Athans,  “Status of radar 
tracking algorithms,’’ presented at the  Symp.  on  Nonlinear  Estima- 
tion  Theory  and,cAppl., 1970. 

visited,” IEEE Trans. Automat. Contr., vol. AC-27,  pp. 247-251, 
R.  Henriksen, The truncated second-order  nonlinear filter re- 

Feb. 1982. 
B. T. Fang,  “A nonlinear  counterexample  for  batch and extended 
sequential  estimation  algorithms,” IEEE Trans.  Automat.  Contr., 
vol. AC-21,  pp. 138-139, Feb. 1976. 
B. E. Schutz, J. D. McMillan, and B. D. Tapley,  “Comparison of 
statistical  orbit  determination  methods,” AIAA 1.. Nov.  1974. 

Automat.  Contr., vol.  AC-16, pp. 736-747,  Dec.  1971. 
R. J. Fitzgerald, “Divergence of the  Kalman filter,” IEEE Trans. 

IEEE Trans.  Automat.  Contr., vol. AC-13,  pp. 751-753, Dec. 1968. 
M. L. Andrade  Netto, L. Gimeno, and M. J. Mendes, “On the 
optimal  and  suboptimal  nonlinear  filtering  problem  for  discrete-time 
systems,” IEEE Trans.  Automat.  Contr., vol. AC-23, pp. 1062-1067, 
Dec.  1978. 
P. J. Courtois, Decot~posabili~. New  York:  Academic, 1977. 

Symp. Eng. Appl. of Random  Function TheoT  and  Probability, F. 
R. E. Kalman. “New methods in Wiener  filtering  theory,”  in Proc. 

Kozin and J. L. Bogdanoff, E&. New York:  Wiley, 1963. 

- , “Graphical  transformations of 2 x 2  covariance  matrices,” 

Frederick E. D a m  was born  in Orange, NJ, on 
March 20. 1947. He received the B.S. degree in 
electrical  engineering  from  the  Newark  College 
of Engineering,  Newark,  NJ,  in 1969, and  the 
M.S. degree in decision  and  control  theory  from 
Harvard  University,  Cambridge, MA, in 1972. 

From 1972 to 1974 he  did  research on nonlin- 
ear  continuous-time  estimation  theor).  at  Harvard 
University.  He is currently  a  Principal  Engineer 
at Raytheon  Company,  Wayland. MA. on the 
staff of the Advanced System Enpeering De- 

partment.  He  has  developed,  analyzed,  and  tested  numerous  algorithms 
for  both  exoatmospheric  and  endoatmospheric  radar  applications,  includ- 
ing  Cobra  Dane, PAVE  PAWS, Cobra Judy, and Sentry, as well as air 
traffic  control and shipboard fire control  systems.  These  algorithms 
include  Kalman filters, track  initiation,  object  classification,  satellite 
versus missile discrimination, and  radar pulse  scheduling. In addition,  he 
has  analqzed  radar  system  performance  considering  the  effects of multiple 
target  interference,  jamming,  ducting,  Aurora,  tropospheric  refraction, 
ionospheric  perturbations,  target wake, and  rocket  exhaust  plume. His 
present  areas of interest  are  nonlinear  discrete-time  estimation  theory and 
the use of adaptive  Kalman filters for  pattern  recognition. 

Mr. Daum is a  member of Tau Beta Pi and  Eta  Kappa  Nu. 

Robert J. Fikgerald was born in Hamilton, Ont., 
Canada.  He received the B.A.Sc. degree  from  the 
University of Toronto,  Toronto,  Ont..  Canada, in 

. ’ 1956, and the S.M., Mech. E., and  Ph.D. degrees 
from  the  Massachusetts  Institute of Technology, 
Cambridge, in  1957.  1958, and 1964, respectively. 
He also studied at the Ekole Nationale  Superieure 
de I’Aeronautique. Paris,  France. 

Since  1964 he  has  been  employed  in  various 
divisions of the  Raytheon  Company.  Bedford. 
MA, where his principal  activities  have  been 

concerned with  the application of estimation and  control theory to radar 
tracking.  inertial  navigation.  and missile intercept  problems. 

Utilization of Modified Polar Coordinates 
for Bearings-Only Tracking 

Abstract -Previous  studies have  shown that  the  Cartesian  coordinate 
extended Kalman filter exhibits  unstable behavior characteristics rphen 
utilized  for  bearings-only  target motion analysis (TMA). In contrast, 
formulating  the Th24 estimation problem  in  modified polar (MP) coordi- 
nates  leads  to  an  extended Kalman filter which is both stable and asymptot- 

work was supported by  the Naval Sea Systems Command under Code 
Manuscript received March 12, 1982: revised August 27. 1982. This 

63-R,  Program  Element  62633N, Project-F33341/SF33323602. and the 
tiaval Material  Command  under  Code  08TI.  Program  Element 61 152N. 
ProJect ZROOOOI/ZROOOOIOI. 

The  authors  are with  the U.S. Naval Undemater Systems  Center, 
Ncwport. RI 02840. 

i c d y  unbiased. Exact state equations for the M P  filter are derived  without 
imposing any restrictions on  own-ship  motion; thus,  prediction  accuracy 
inherent in the  traditional  Cartesian  formulation is completely preserved. 
In addition,  these  equations reveal that MP coordinates  are well-suited for 
bearings-only TRlA because  they  automatically  decouple  observable and 
unobservable  components of the  estimated  state vector. Such decoupling is 
shown to  prevent  covariance  matrix ill-conditioning. wbich is the primaq 
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presented to support  these  findings and to compare  algorithm  performance 
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INTRODUCTION 

P ASSIVE localization and  tracking  problems arise in a 
variety of important  practical  applications [1]-[4]. In 

the  ocean  environment, two-dimensional  bearings-only 
target  motion analysis (TMA) is perhaps familiar [4]-[8]. 
Here,  a single moving  observer  (own-ship) monitors noisy 
sonar bearings from  a  radiating acoustic source  (target) 
assumed to be traveling with constant velocity, and subse- 
quently processes these measurements to obtain  estimates 
of source  position  and velocity. The geometric configura- 
tion is depicted in Fig. 1,  where  own-ship and target are 
presumed to lie in the same horizontal  plane. 

Unfortunately, t h s  particular  estimation  problem is not 
amenable to simple solution. Intrinsic system nonlinearities 
preclude  the rigorous application of conventional  linear 
analysis. When pseudolinear  formulations [9], [lo] are em- 
ployed,  the resulting algorithms exhibit biased estimation 
properties [ 1 11, [ 121. Moreover, since bearing measurements 
are  extracted from only  one  sensor,  the process remains 
unobservable  until own-shp executes a maneuver [5], [ 131. 
It is this prerequisite maneuver  which distinguishes bear- 
ings-only TMA from more conventional localization and 
tracking procedures (e.g., classical triangulation ranging. 
etc.)  and  introduces  added complexity to the problem. 

Despite the aforementioned difficulties, numerous tech- 
niques  have  been  devised for bearings-only TMA [6]. One 
method of solution which has received considerable  atten- 
tion in recent years  is the extended  Kalman filter [ 141. As  is 
well  known, utilization of this filter requires explicit 
mathematical models for both  the measurement  process 
and the state dynamics.  When addressing these modeling 
requirements, it is important  to recognize that  the  pertinent 
analytical  equations  often  acquire entirely dissimilar prop- 
erties when  expressed  in different  coordinate systems (eg.. 
linear  equations  are  transformed  into  nonlinear  equations 
and vice versa). Accordingly, the final filter configuration 
for any specific problem will ultimately depend  upon which 
reference frame is  employed during  problem  formulation. 
I t  is not  surprising  then,  to find that  Cartesian  coordinates 
are used extensively, if not  exclusively. to  formulate TMA 
estimation  problems in the context of an extended  Kalman 
filter. Indeed, this reference frame  permits  a simple linear 
representation of the  state dynamics; all system nonlineari- 
ties are  embedded  in  a single scalar measurement equation 
[lo]. Such a modeling structure is especially appealing for 
practical  applications because it minimizes filter computa- 
tional requirements. 

While the  question of choosing  "optimal" tracking coor- 
dinates  has been  previously  addressed  in the  literature [3], 
[6],  [15]. [16], until recently. sufficient evidence  was not 
available to legitimately infer  that  non-Cartesian filters 
may possess significantly different,  and  perhaps  better. 
performance  characteristics  than their Cartesian  counter- 
parts.  Furthermore. the underlying cause of these dif- 
ferences was  never clearly identified or well understood. 
Now. however,  new theoretical and experimental findings 
have  been  published [ 101. [ 171-[ 191 which conclusively 
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Fig. 1. 

demonstrate  that  the  Cartesian filter is unstable  for single 
sensor bearings-only TMA. Specifically. these results show 
that the unique  interaction  and feedback of estimation 
errors within this filter render  it highly susceptible to 
premature  covariance collapse and  solution divergence. 

One  method which has been successfully utilized to 
eliminate  Cartesian filter instability involves replacing the 
measured bearings with pseudolinear  measurement residu- 
als [9]. [lo]. While this procedure is particularly simple to 
implement, it has not  gained  widespread acceptance  within 
the TMA community because the resulting algorithm 
(pseudolinear filter) generates  biased estimates whenever 
noisy measurements  are processed [ 121. Instead, research 
efforts have  focused upon  the analysis and development of 
alternative  estimation schemes  which are  both  stable and 
asymptotically  unbiased. 

In this paper,  a  candidate TMA algorithm with the 
desired attributes is rigorously analyzed and  subsequently 
evaluated under realistic operating  conditions.  The  perti- 
nent  equations of state  and  measurement  are  formulated  in 
modified polar (MP) coordinates [20], [21],  while the algo- 
rithm itself is configured as an extended  Kalman filter [14]. 
This  coordinate system is shown to  be well-suited for 
bearings-only TMA because it  automatically  decouples  ob- 
servable and unobservable components of the  estimated 
state vector. Such  decoupling  prevents  covariance matrix 
ill-conditioning. which  is the  primary cause of filter insta- 
bility. Further investigation also  confirms that the resulting 
state  estimates  are asymptotically unbiased, as required. 

The MP state vector  is  comprised of the following four 
components: bearing. bearing rate. range rate divided by 
range. and  the reciprocal of range. In theory, the  first  three 
can be determined  from single-sensor bearing data without 
an own-shp maneuver; the  fourth  component, however, 
should remain unobservable  until this maneuver require- 
ment is satisfied. These theoretical observability properties 
are implicitly preserved in the MP filter formulation. In 
essence. the state estimates are  constrained to behave as 
predicted  by theory. even  in the presence of measurement 
errors.  Under similar conditions,  standard  Cartesian  filters 
often experience  covariance matrix ill-conditioning whch 
precipitates false observability. 

Exact state  equations for the MP filter are rigorously 
derived  without  imposing any restrictions on own-ship 
motion: thus. prediction accuracy inherent in the tradi- 
tional  Cartesian  formulation is  completely preserved. These 
equations  also reveal that  the choice of reciprocal range as 
the  fourth  state is optimal. at least from the viewpoint of 
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minimizing system nonlinearities. In  addition, the afore- 
mentioned expressions can  be readily generalized to satisfy 
the nonlinear differential equations of arbitrary particle 
motion. To the  authors' knowledge, these exact solutions 
have  not been previously documented in  the  literature. 

Realistic tactical scenarios are simulated to  illustrate  and 
evaluate MP filter performance. Employing an "idealized" 
filter, optimal  performance (i.e., the  Cramer-Rao lower 
bound [22]) is first determined, and subsequently used as 
an evaluation basis. Simulation data depicting relative per- 
formance  are  then presented. Finally, the MP filter is 
compared to the  standard  Cartesian  and pseudolinear 
filters, both of which are utilized in  operational systems. 
These results clearly demonstrate  the stability and overall 
efficacy of the  MP filter. 

11. DEVELOPMENT OF THE FILTER EQUATIONS 

As noted earlier, formulating the  TMA estimation 
problem in Cartesian coordinates leads to a linear repre- 
sentation of the  state dynamics and a nonlinear scalar 
measurement relation,' viz. 

x(t)  = A , ( t ,  t , ) x ( t , ) -  y&. to>  ( la> 

fiw = h,[x(dl+ 4 (1b) 

where x ( t )  defines the  Cartesian  state vector of unknown 
target motion parameters. To facilitate the ensuing analy- 
sis, it is implicitly assumed that w;(t, t o )  is deterministic 
and n ( t )  is zero-mean Gaussian white noise ~7ith variance 
u *( t). For completeness, initial estimates of the  state vector 
and  its associated error covariance matrix are also pre- 
sumed to be specified. 

Ostensibly, it is difficult to obtain  an equivalent repre- 
sentation of equation set (1) in MP coordinates. T h ~ s  is 
especially true if conventional modeling techniques are 
employed. Significant analytical complications arise be- 
cause  the transformed equations of motion are highly 
nonlinear and not readily amenable  to direct integration. 
These encumbrances can  be avoided, however, by recogniz- 
ing  that  the desired representation is also derivable entirely 
by algebraic manipulation (see Appendix B for details). 
Briefly, if y ( t )  denotes  the MP  state vector, then x ( t )  and 
y ( t )  will be related at all instants of time by the  nonlinear 
one-to-one  transformations 

Substitution of (3) into (2b) subsequently leads  to  the 
relation 

A t )  = f [y ( t , ) ;  t ?  Ll (4) 

where 

f [ s ( d ;  t Jo l  &A f , - [A.~(r , t , ) f ,Cy(t , ) l -H' , ( t , t , ) l .  

( 5 )  

In  a similar manner,  the measurement relation  can be 
formally expressed in MP coordinates by substituting (2a) 
into  (lb), viz. 

f i ( f ) = h , [ J ' ( t ) l + f 4 t )  (6) 

~ ~ , [ ~ ( ~ ) l ~ ~ . ~ [ f , ~ ~ ~ ( ~ ) l l = [ 0 ~ 0 :  1,0IY(t) .  (7) 

where 

Equations (4) and (6) are  the exact MP analogs of (la) 
and  (lb), respectively. As might be expected, the state 
equations now exhibit nonlinearities and  are considerabIy 
more complicated than their Cartesian  counterparts.  The 
derivation outlined here, however, remains comparatively 
simple; all difficulties associated with integrating  the  trans- 
formed equations of motion have been expeditiously 
circumvented without sacrificing mathematical rigor. 
Moreover, since (4) is valid for arbitrary own-ship motion, 
prediction accuracy inherent  in  the  traditional  Cartesian 
formulation is completely preserved. 

Although the preceding results are expressed in  continu- 
ous form, discrete time equations of state  and measurement 
may be readily deduced by assigning appropriate values to 
t and to. In particular: if t = kT and to = ( k  - l )T  where 
k = 1,2,3, . . . and T = constant sampling period, straight- 
forward application of the extended Kalman filter [14] to 
(4) and (6) will yield the MP estimation algorithm given 
below : 

y(O/O) = initial  estimate of the MP  state vector 

P(O/O) = initial estimate of the MP state vector 
error covariance matrix 

y ( k / k - I ) =   f [ y . ( k - l / k - l ) ;   k T , ( k - 1 ) T ]  (8a) 

x ( t )  = L [ Y ( d l  ( 2 4  ( 8 4  

Y ( d  = f , : [ x ( r ) l .  (2b) H =  [o, 0, 1 , 0 ]   ( 8 4  

Letting t = t ,  in (2a), and  substituting  the result into (la) to 
eliminate x( to) ,  yields ( 8 4  

G(k)=P(k/k-l)H'[HP(k/k-l)H'+~*(k)]-' 

'Mathematical  details of the  Cartesian and modified  polar  coordinate p (  k / k )  = [ I  - G( k ) H ]  P( k / k  - 1 )  k = 1,2,3, . . . 
modeling  processes  are  presented in Appendix A and B. respectively. 
along with a  precise  description of the  various  quantities. (8g) 
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where the “prime” symbol (’) denotes  matrix  transposition. 
Here, y ( i / j )  and P ( i / j )  for i, j = 112,3, . . denote esti- 
mates of the  true  state vector y( i) and  its associated error 
covariance matrix P( i ) ,  respectively. based upon j data 
measurements. 

While equation set (8) is well-suited for numerical  work, 
it is not readily amenable to analysis. In  contrast,  nonre- 
cursive representations of this filter are  often more tract- 
able,  despite their computational inefficiency. One  such 
representation  is  obtained by reformulating the original 
dynamic  estimation  problem  for y ( t )  as  a  static  estimation 
problem  for y ( t , ) .  Note  that since H;( t ,  t o )  is deterministic, 
(4) allows the  unknown  state vector to  be uniquely speci- 
fied at any arbitraty time t in  terms of its value at  some 
fixed time t o .  The required measurement relation then 
follows  by substituting (4) into (6) .  It is  unnecessary to 
explicitly specify state  equations because y ( t , )  is  time 
invariant.  Subsequent  application of the  extended  Kalman 
filter to the discretized expressions obtained by letting 
t = kT and t ,  = 0 yields a recursive algorithm  which  may 
be algebraically recast into the nonrecursive  form shown 
below : 

y(O/O) = initial  estimate of the MP state vector 
P(O/O) = initial  estimate of the MP state vector 

error  covariance  matrix 

Y ( O / k )  = m / f W  - ‘ ( o / o > Y ( o / o )  
k 

+ P ( O / k )  c ” t j ) o - 2 ( j ) M ( j ) y ( O / j - 1 )  

+ P ( O / k )  c M ’ ( A f l - 2 ( A  

- [ P < i ) - m j / j - 1 ) 1   ( 9 4  

J = 1  

k 

j = l  

k 

P(O/k)  = [P-’(O/o)+ M ‘ ( j ) o - * ( j ) A f ( j ) ] - ’  (9b) 

where H is given by (8d), and 

j = l  

M ( j )  = HA,(j,O) ( 1 0 4  

Finally,  discrete  estimates of the current  state vector and 
its associated error covariance matrix  can be  obtained via 
the  relations 

We remark that  the  static  and  dynamic  estimation algo- 
rithms described here possess similar mathematical  proper- 
ties and exhibit virtually identical behavior characteristics. 

111. BEHAVIOR CHARACTERISTICS OF THE FILTER 

In practical  applications, y ( k / k )  and P ( k / k )  are of 
special interest since they statistically characterize  the cur- 
rent state vector. For analysis purposes,  however: it is  more 
convenient to work directly with y(O/k)  and P(O/k)  which 
do not vary explicitly with time. By utilizing this  approach, 
extraneous time variations  are  automatically surpressed. 
There is no loss of generality either because all  four  quanti- 
ties are related by equation set (1  1). Pertinent behavior 
characteristics of y ( k / k )  and P ( k / k )  can  always be  de- 
termined a posteriori from knowledge of the behavior of 
y ( O / k )  and P(O/k) .  Consequently, an examination of 
equation set (9) will reveal the  underlying  mechanism 
governing MP filter stability. 

To begin the discussion, consider  the closed form expres- 
sion for P(O/k)  given  by (9b). Utilizing conventional 
matrix  multiplication rules, it  can  be shown that 

k 

M ’ ( j ) ~ - ~ ( j ) M ( j )  = C ‘ ( k ) D - l ( k ) C ( k )  (12) 
J - 1  

where D ( k )  is a k X k diagonal  matrix given  by 

D(k)=diag[o2(1) ,o2(2); . . ,o2(k)]  (13) 

and C( k )  is a k X 4  matrix which  may be  written  in  the 
partitioned form 

c( k )  = [ ”( 1)IM’(2)1 . . * I”( k)] ’ .  (14) 

Important  structural  characteristics of P(O/k)  can now be 
discerned by analyzing the  ancillary matrix C( k) .  Combin- 
ing  equation set (IO) with  (B10) of Appendix  B yields 

where 

and 
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The quantities wo3(jT,0) and wo4(jT,0)  that  appear  in 
equation set (1 8) depend  upon own-ship acceleration and 
can  be deduced from (A9) of Appendix A by letting t = j T  
and to  = 0. It is especially important  to recognize that 
w03(J'T. 0) = 0 and wo4(jT,0) = 0 prior to the first own-ship 
maneuver. In  addition,  the  fourth element of M ( j )  will 
also vanish under these circumstances, as  can be seen by 
performing the indicated differentiation, viz. 

81'3 ( j / j  - 1) 
JY,(O/j - 1) 

- - wo4 ( j T ,  0 )  sin y3 ( j / j  - 1) - w 0 3  ( j T ,  0 )  cos y3 ( j / j  - 1) 
( j T ,  0 )  + S,' ( j T ,  0 )  

(19) 

These important null characteristics may be exploited 
further by repartitioning  the matrix C ( k )  as follows: 

C ( k )  = [CIl(k)lC,,(k)l (20) 

C , , ( k ) =  [M;,(1)IM;,(2)1.-.IM;,(k)]' ( 2 1 4  

where C, , ( k )  is a k X 3 matrix given by 

and C12( k )  is a k X 1 column matrix of the  form 

I JY4(0/0) ' ?Y4(0/1) ' ' 8 y 3 ( k / k  JY4(O/k - - 1) l )  I .  
&Y3(1/0) M 2 / 1 )  . . . 

C12(k) = 

(2 Ib) 

Next, assume that P(O/O) is chosen so as to satisfy the 
relation 

where ro is a 3 X 3 positive definite symmetric matrix and 
uo is a nonzero scalar. Note  that this covariance matrix 
structure is physically realistic and implies that  errors 
associated with observable and unobservable components 
of the initial state vector are uncorrelated. Combining (9b) 
with (12),  (20), and (22) subsequently yields 

motion. In this case, the off-diagonal terms in (23) vanish 
and  the lower diagonal term reduces to aOp '. Straightfor- 
ward inversion [23] of the resulting simplified matrix leads 
to 

(24) 

Examination  of (24) reveals that  the variance associated 
with y4(O/k) remains unchanged (i.e., equal to u,') prior  to 
the first own-ship maneuver. The  automatic  decoupling 
that accrues from utilizing MP coordinates thus prevents 
covariance matrix ill-conditioning and  premature collapse. 
As a result, P(O/k)  will behave exactly as predicted by 
theory, even in  the presence of measurement errors. 

The implications of component decoupling on y(O/k) 
are  also readily exposed by substituting (15): (19). (22): and 
(24) into (9a). Assuming no own-ship acceleration, and 
partitioning  the  state vector into observable and  unob- 
servable components, leads to  the expression 

where 

L 

Recall that, in theory, the first three  components of 
y(O/k) can  be  determined without an own-ship maneuver, 
whereas the  fourth  component remains unobservable until 
this maneuver requirement is satisfied. Formulating  the 
TMA estimation problem in MP coordinates leads to  a 
natural decoupling of observable and unobservable states. 
The resulting structure of P(O/k)  depicted by (23) il- 
lustrates  this decoupling property  and provides the key to 
MP filter stability. From (19) and (21b) it is evident that 
C, , (k )  reduces to  a null matrix for unaccelerated own-ship 

and / 3 ( j / j  - 1) is given by the  formula 

(27) 

which follows from (17) for w O 3 (  jT,  0) = 0 and wO4( jT ,  0) 
= 0. 

Note  that any measurements processed before  the first 
own-ship maneuver will affect only yO(O/k), while y 4 ( 0 / k )  
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remains unaltered. This result is not surprising since data 
acquired under  such  conditions  cannot realistically yield 
information  about  the unobservable component.  In  fact, 
for unaccelerated own-ship motion, (27) clearly shows that 
bearings extracted from a single sensor are  independent of 
the  fourth  state. Hence, y(O/k) exhibits theoretically con- 
sistent behavior characteristics analogous  to P(O/k) .  

Unlike  its MP counterpart,  the  Cartesian filter does not 
provide a  natural decoupling of observable and unobserv- 
able states. Consequently, there is no internal mechanism 
to effectively prevent covariance matrix ill-conditioning 
and  premature collapse. The unimpeded feedback and 
interaction of estimation  errors resulting from this de- 
ficiency often  precipitate false observability. Under such 
conditions,  the filter erroneously attempts  to  estimate all 
four  state  components, even though only three are theoreti- 
cally observable. Since fundamental uniqueness require- 
ments  are violated, the  corresponding  state  estimates will 
necessarily exhibit unstable behaLior characteristics. In es- 
sence, Cartesian filter instability is intrinsically related to 
its development. 

IV. SIMULATION RESULTS 

To illustrate MP filter performance characteristics, the 
estimation algorithm described by equation set (8) was 
programmed on a digital computer  and subsequently tested 
with simulated data. Representative results for two typical 
TMA scenarios are summarized in Figs. 2-4 (additional 
data depicting MP, Cartesian, and pseudolinear filter per- 
formance may also be found in [7], [lo]-[12], [17], [20], 
[21]). Fig. 2 describes the target and own-ship trajectories 
for  both scenarios, which differ only in their respective 
values of initial range. The solution errors  plotted in  Fig. 3 
correspond to an initial range of 2700  yds,  while those in 
Fig. 4 correspond to  an initial range of 27 000 yds. The 
initial bearing is 0", and the target maintains  a  steady 
course of 0" with a  constant speed of 20 knots. Own-ship 
also maintains  a  constant speed of 28.28 knots,  but period- 
ically executes 90" course changes as follows: 

from 45" to 315" at f = (4+ 17k)min 

[ k  = 0.1,2,3,4] 

from 315" to 45" at t = (12.5+ 17k)min 
[ k  = 0,1,2,3,4]. 

Own-shlp turning  rate is constrained to 3"/s; thus, each 
maneuver requires 0.5 min to complete. 

To realistically simulate measurement errors  and  account 
for  the effects of data preprocessing, all raw bearings were 
corrupted by additive zero-mean Gaussian noise and then 
sequentially time-averaged in blocks of twenty 1 s samples. 
Three different noise levels  were used.2 The  graphs labeled 
( A  -a)-( A - d )  depict TMA solution errors obtained with 

'Note that - data preprocessing reduces  the rms random  noise  level by a 

I 

Fig. 2. 

a rms noise level of 2"; those labeled (B-a) - (  B - d )  and 
(C- a)-( C - d )  correspond  to rms noise levels of 4" and 
6". respectively. Estimation errors associated with four 
different TMA filters are  plotted simultaneously on each 
graph labeled as follows: 

A-the "idealized" MP filter, viz. an  extended  Kalman 
filter formulated in MP coordinates and linearized about 
the true state vector. This filter provides a measure of 
optimal  performance since the error covariance matrix 
coincides with the  Cramer-Rao lower bound [22], 

B-the MP filter defined by equation set (8), 
C - the pseudolinear filter described in [IO], [ 121, 
D -the Cartesian filter described in [ 101. 
Finally, all results have been ensemble averaged over 25 

Monte  Carlo  runs. 
Some comments  on filter initialization are perhaps in 

order here. Under  actual  operating  conditions, it is ex- 
tremely difficult, and indeed rare, to obtain reliable initial 
estimates of the state vector and associated covariance 
matrix. Consequently, existing procedures for accomplish- 
ing this task are necessarily ad hoc and somewhat arbi- 
trary. While no claim of optimality is implied, the MP filter 
and its "idealized" counterpart were found  to perform 
quite satisfactorily when initialized according to the scheme 

y ( ~ / ~ )  = [ o ~ o ,  p(0),10 - 41, 

P(O/O)=diag[10~4,10-4,10-4,10-s]. 

The pseudolinear and  Cartesian filters were subsequently 
initialized in accordance with commonly prescribed proce- 
dures [lo], viz. 

x(O/O) = [O,O,O,O]'  
P (O/k )=d iag [ l , l , l , l ]  

for  the pseudolinear filter, and 

X(O/O) = [o,o,  10~-sin&0),  ~ O ~ . W S B ( O ) ] ~  
P(O/O) = diag[ 15', 15'. lo8,  los] 

for  the Cartesian filter. 
Examination of Figs. 3 and 4 reveals that  the MP filter 

Derforms exactly as predicted by theory. Indeed, for both factor of 1/\lZ0. . . .  
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short  and  long  range scenarios, the  state  estimates begin 
converging to their true values immediately after own-ship 
executes a maneuver. There is also no evidence of instabil- 
ity;  subsequent own-ship maneuvers simply enhance  con- 
vergence so that the final  estimates  become  asymptotically 
unbiased. Overall efficacy of the MP filter can also be 
discerned by noting how rapidly it approaches  "idealized" 
filter  performance. 

Behavior characteristics exhibited by the  pseudolinear 
filter were also in agreement with previously documented 
theoretical and  experimental  findings [ 121. Specifically, t h s  
filter generated biased range  estimates which are readily 
apparent in the long range  scenario data (see Fig. 4). 
However, the pertinent  bias  errors  are  known  to be gw- 

metrically dependent  and  become neghgibly small for TMA 
scenarios characterized  by high bearing  rates  and/or low 
measurement noise levels. This  fact is substantiated  by  the 
simulation results presented in Fig. 3. Under such condi- 
tions, the pseudolinear  filter possesses excellent tracking 
capabilities,  comparable even to  the MP filter. 

In contrast with the  other  filters  tested,  Cartesian  filter 
performance was generally poor, and erratic at best. For 
the short  range  scenario, this filter converged very  slowly, 
despite relatively favorable  tracking  conditions.  Indeed, 
five own-ship maneuvers were required to obtain steady- 
state  range  estimation  errors of less than 5 percent. 
Abnormal behavior was also manifest in the long range 
scenario.  Here,  the  Cartesian  filter converges to  the wrong 
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solution  after  erratic  transient response. The unstable vector are  automatically  decoupled  prior  to  the first own- 
ship maneuver. It was further shown that  the  covariance 
matrix  structure  accurately reflects this  decoupling  prop- 
erty. As a result, estimates generated  by  the MP filter are 
constrained to behave exactly as predicted  by theory, even 
in  the presence of measurement  errors. 

A realistic description of MP filter performance is pro- 
vided  by the  data shown in Figs. 3 and 4. While  only  a 
small  representative sampling of results is  presented here, 
additional  experiments have also been conducted elsewhere 
[24], [25] using both real and  simulated measurements. A 
wide variety of geometries and noise levels  were  examined. 

estimation  characteristics of this  filter  are clearly evident. 

V. SUMMARY AND CONCLUSIONS 

We  have attempted  to  elucidate  the  advantages of utiliz- 
ing MP coordinates for bearings-only tracking via an 
extended  Kalman filter. Exact state  and  measurement rela- 
tions were rigorously derived for  the general case of arbi- 
trary vehicle motion.  Subsequent analysis revealed that 
observable  and  unobservable  components of the MP state 



In all these tests, the MP filter behaved in  a completely 
predictable  manner. No evidence of instability was ob- 
served. and the state estimates were  always  asymptotically 
unbiased.  Under  actual  operating  conditions,  it is im- 
portant  to recognize that filter performance will still be 
affected by  such factors  as own-ship tactics, environmental 
disturbances, measurement errors, etc.. However, estima- 
tion difficulties associated with  bearings-only TMA unob- 
servability have  been eliminated. 

The foregoing theoretical and experimental findings 
demonstrate  that filter performance is intrinsically related 
to its development. Since other reference frames  that  per- 
mit a  natural  decoupling of observable  and  unobservable 
components also lead to more  complicated  equations of 
state and  measurement, it is concluded  that MP coor- 
dinates  are ideally suited for bearings-only TMA. 

APPENDIX A 

BEARIKGS-ONLY TMA  PROBLEM 
CARTESIAN  COORDINATE FORMULATION OF THE 

Derication of the State Equations 

Consider the geometry depicted in Fig. 1,  with target 
and own-ship confined to the same  horizontal plane.3 The 
Cartesian  state vector for  this two-dimensional  configura- 
tion is  defined  by 

where 

and 

denote relatitle target velocity and position, respectively. A 
mathematical model of the system dynamics may  now be 
specified in general form via the  linear  differential  equa- 
tions of motion 

'The bearingb-onlv TMA problem is tlpically formulated under this 

where 

depicts relative acceleration.  Integrating (A3) directly and 
expressing the result in  matrix  notation  subsequently yields 

X ( t )  = A , ( t ,  t , )x ( t , )+ w ( t ,  t o )  (A5) 

where 

and t ,  denotes  any  arbitrary fixed value of time. 
Although  (A5) remains valid for unconstrained vehicle 

motion,  solution uniqueness requirements necessitate that 
the bearings-only TMA  estimation  problem be formulated 
under more restrictive assumptions [5],  e.g., constant  target 
velocity. In this case at,(t)  = a,(t) = 0 and w ( t ,  f , )  re- 
duces  to  a  deterministic  input vector  which depends  only 
upon the characteristics of own-ship acceleration. Specifi- 

(A9) 

The Cartesian state equations  then  take  the  familiar form 

x ( t >  = A , ( t ,  t , )x ( t , ) -  w,(t ,  t o ) .  (A10) 

Derivation of the  Measurement Equation 

As  the  name implies, bearings-only TMA is dis- 
tinguished by  the  fact  that measured data consist  entirely 
of passive sonar bearings extracted  from  a single sensor. 
Conseauentlv.  the  measurement Drocess  is described bv a 
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and & t )  represents the measured target  bearing  corrupted 
by additive measurement noise ~ ( t ) .  If the  pertinent acous- 
tic sensor is properly aligned and  calibrated, it may be 
realistically assumed that q( r )  is zero-mean Gaussian white 
noise with variance a 2 ( t ) ,  i.e., 

where E [  a ]  denotes the  statistical expectation operator. 

APPENDIX B 
MODIFIED POLAR COORDINATE FORMULATION OF 

THE BEARINGS-ONLY TMA PROBLEM 

Derivation of the State Equations 

Again referring to  the geometric configuration depicted 
in Fig. 1, the MP  state vector is defined by 

where 

represent the relative target range and bearing angle, re- 
spectively. In this coordinate system, the differential equa- 
tions  for  arbitrary vehicle motion take  the form 

to direct integration. Despite this apparent difficulty, the 
exact general solutions of these differential equations  can 
be obtained by straightforward algebraic manipulation. To 
this end, observe from Fig. 1 that 

r,(t> = r ( t ) s inb( t )   0344 

r,.(t) = r ( t ) c o s @ ( t ) .  (B4b) 

Differentiating these expressions with respect to time yields 
the familiar relations 

ux(t)=i . (r)s in ,8( t )+r(t) j3( t )cos , !3( t )  (Ma) 

u , - ( t )  =i.( t )cos ,8(r)-r( t ) ,&(t)s in ,8( t ) .  (B5b) 

A one-to-one transformation which maps  the MP state 
vector into  its  Cartesian  counterpart  can now be deduced 
by combining (Al) with (Bl), (B4), and (€35). The result is 

J 
Observe that (€36) is  valid for all values of t such that 

y4(t) * 0. Accordingly, letting I = t o ,  this transformation 
may be applied to the right-hand side of (A5) to eliminate 
x( to ) .  Performing  the required algebraic operations eventu- 
ally yields 

- 

x 2 W  

x 3 ( 0  

- X 4 ( 4  - 

W ,  ~ , ) c o s Y ~ ( ~ , ) + ~ ~ ( ~ ~  t , ) s i n ~ ~ ( t , )  
s 2 ( t ~ t o ) c o s ~ 3 ( t ~ ) - ~ ~ ( t , t ~ ) s i n ~ 3 ( f o )  

S 3 ( t 3  t,)cosJJ3(to)+S4(t,  to)siny3(to) 
~ 4 ( t , t , ) c o s ~ ~ 3 ( t , ) - ~ 3 ( t , t , ) s i n ~ 3 ( t , )  

where a,(t)  and a , ( t )  are  the Cartesian components of where 
relative acceleration defined in  Appendix A by (A4). 

A comparison of (A3) to (B3) reveals that  the  MP 
equations of motion are considerably more complicated 
than their Cartesian  counterparts  and  not readily amenable - y ( t .  t o )  sin y3 ( t o ) ]  ( B W  

s l ( t , ~ , ) = I ? , ( t o > + ~ 4 ( t , > [ M ’ . l ( t , t o ) C O S ~ 3 ( t o )  
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039) 

Substituting (B7) into (B9) finally yields, after  some ele- 
mentary  algebra, the exact general solution to (B3), viz. 

where 

h y [ J ’ ( t ) l =  [0?0,1,01 Y O )  ( W  

and &t),  q ( t )  are defined in  Appendix A. 
Although (B1  1)  follows directly from  geometric  consid- 

erations (see Fig. 1): it  can also be rigorously derived by 
combining  (Al), (A1  1); and (A12) with (B6). Utilization of 
this latter  procedure  leads  to  the  important  functional 
relation 
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Estimation and Prediction  for 
Maneuvering Target Trajectories 

Abstract -The K h a n  filter is well suited for application to  the problem 
of anti-aircraft gun f i e  control. In this paper we make use of the Kalman 
filter theory to develop an accurate, numerically efficient scheme for 
estimating and predicting the present and future position of maneuvering 
fixed-Ning aircraft. T h i s  scheme was implemented in a  radar  tracker gun 
fire control system and tested against a variety of fhed-wing  aircraft 
targets. Actual field test results are presented to demonstrate the high 
accuracy pointing d i c h  can be achieved by this approach. 

Manuscript received February 24, 1982; revised August 17.  1982. 
The  author is with the General Dynamics Corporation. Pomona. CA 

9 1766. 

I.  INTRODUCTION 

T HE classical problem of anti-aircraft  gun  fire  control 
is the  accurate  prediction of the future position of a 

given target at the  time of projectile intercept.  Having 
obtained  this  information, the correct gun-pointing angles 
can  be ascertained.  Current  approaches  to  the  solution of 
this  problem typically employ the use of modem estima- 
tion techniques (Kalman filtering) to estimate target veloc- 
ity  and  acceleration  on  the basis of target  position 
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