
Fixed-Point Feedforward Deep Neural Network
Design Using Weights +1, 0, and -1

Kyuyeon Hwang and Wonyong Sung
Department of Electrical Engineering and Computer Science

Seoul National University

Seoul 151-744, South Korea

Email: khwang@dsp.snu.ac.kr; wysung@snu.ac.kr

Abstract—Feedforward deep neural networks that employ mul-
tiple hidden layers show high performance in many applications,
but they demand complex hardware for implementation. The
hardware complexity can be much lowered by minimizing the
word-length of weights and signals, but direct quantization for
fixed-point network design does not yield good results. We
optimize the fixed-point design by employing backpropagation
based retraining. The designed fixed-point networks with ternary
weights (+1, 0, and -1) and 3-bit signal show only negligible
performance loss when compared to the floating-point coun-
terparts. The backpropagation for retraining uses quantized
weights and fixed-point signal to compute the output, but utilizes
high precision values for adapting the networks. A character
recognition and a phoneme recognition examples are presented.

I. INTRODUCTION

Feedforward deep neural networks (DNNs) with multiple

hidden layers have outperformed conventional machine learn-

ing algorithms in various fields including speech and image

recognition [1]–[3]. Implementation of deep neural networks

using VLSI or embedded computing systems is needed for

real-time and low-power applications. However, high perfor-

mance DNN algorithms contain many weights. For example,

a DNN for acoustic modeling of speech recognition employs

about 20 million weights [3]. VLSI based implementations

demand a large chip size for storing the weights, while soft-

ware based applications suffer from large memory accesses. It

is, therefore, very important for efficient implementations to

reduce the word-length of weights and internal signals.

In a general feedforward deep neural network with multiple

hidden layers as depicted in Fig. 1, each layer k has a signal

vector yk, which is propagated to the next layer by multiplying

the weight matrix Wk+1, adding biases bk+1, and applying

the activation function φk+1(·) as follows:

yk+1 = φk+1 (Wk+1 yk + bk+1) . (1)

One of the most general activation functions is the logistic

sigmoid function defined as

σ(x) =
1

1 + e−x
. (2)

In fully-connected feedforward deep neural networks, each

weight matrix between two layers demands N1×N2 weights,

where N1 and N2 are the number of units for the anterior layer

and the posterior layer, respectively. Considering a network

Fig. 1. Feedforward deep neural network with N hidden layers.

employing hidden layers with 1,024 units, each hidden layer

demands about one mega weights. The number of output

signals and that of biases are both N2. The signal word-length

affects the complexity of arithmetic units and interconnection

networks.

There have been many studies about efficient hardware

implementation of neural networks [4]–[8]. Instead of direct

weight quantization, retraining with backpropagation was de-

veloped in [7], [8]. The designed networks employed usually

3-8 bits for the weights and represented the signals in analog or

high precision fixed points using more than 7 bits. Recently,

a research work that tries to increase the sparseness of the

weights by pruning out small valued ones has been developed

in order to reduce the model size and the execution time with

a CPU [9].

In this paper, we propose a high performance fixed-point

optimization method that can greatly reduce the word-length

of weights and signals for implementing DNNs. The proposed

scheme allows design of DNNs for real-world problems only

with ternary (+1, 0, and -1) weights and 2 or 3 bits of fixed-

point signals. The developed training algorithm also retrains

U.S. Government work not protected by U.S. copyright

fixed-point networks using backpropagation but employs sev-

eral effective and practical techniques, such as elaborate signal

grouping through range and sensitivity analysis, quantization

of both weights and signals, optimum quantization parameter

search, and consideration of deep neural networks. We also

examine the performance of fixed-point DNNs with dropout

[10], [11], which is a recently developed strong regularization

technique. The early-version of the proposed fixed point

optimization method was successfully used in our single-

chip VLSI implementation of a DNN [12]. In this hardware,

weights are extremely quantized to only have three values

(+1, 0, and -1) to reduce the size of memory and simplify

processing units.

The paper is organized as follows. In Section II, we describe

a direct quantization approach as a baseline. Section III

contains the proposed scheme that retrains the network after

fixed-point quantization. Both the direct and the proposed

quantization schemes are evaluated in Section IV. Concluding

remarks follow in Section V.

II. DIRECT QUANTIZATION WITH EXHAUSTIVE SEARCH

A deep neural network usually contains millions of weights

and thousands of internal signals. Since applying a different

data format for each weight or signal is too complex, it

is needed to group them according to their range and the

quantization sensitivity [13]. In a deep neural network with

several layers, it is convenient to separate each layer for the

grouping. Among the weights in each layer, we notice that

the biases need to have high precision because their range is

usually much larger than that of other weights. Assigning a

high precision fixed-point format, such as 8 bits, to the biases

does not increase the hardware complexity much because the

number of them is small. The quantization sensitivity can also

be determined from simulations that apply quantized weights

for a specific group while using the floating-point data type for

other groups [13]. We found that the quantization sensitivity of

signals in the hidden layers is mostly the same and very low,

but that in the input of the network depends on applications

very much.

Uniform quantizers depicted in Fig. 2 are used for repre-

senting weights except for the biases. Since each layer has

its own uniform quantizer, the hardware or software based

implementations can be conducted mostly using addition or

subtraction operations.

Once the number of quantization points for each weight

matrix is given, the goal is to minimize the output error of

the network. A conventional approach is directly quantizing

the trained floating-point weights by finding the optimum step

size, Δ. The floating-point weights are obtained by employing

unsupervised greedy learning with restricted Boltzmann ma-

chines (RBMs) as pre-training followed by fine-tuning with

error backpropagation [2]. During RBM learning, a penalty

term with L2 weight cost is applied to prevent weights from

becoming too large.

In the direct quantization method, determining the optimum

step size, Δ, is however a very difficult problem because

Fig. 2. Histograms of weights before and after applying 3-point and 7-point
symmetric uniform quantization where Δ denotes a quantization step size.

there is no clear relation between the parameters and the

final output errors resulted in by the quantization. Therefore,

the optimum step size is initially determined by using an

L2-error minimizing approach that is similar to Lloyd-Max

quantization, and then the quantization step size is fine tuned

by using exhaustive search. See Appendix for the details of

the L2-error minimizing approach.

To reduce the search dimension, the greedy approach is

applied as follows:

1) Prepare a fully trained floating-point weights.

2) Quantize all input data and signals of hidden layers.

3) Starts with the weight quantizer between the input layer

and the first hidden layer, try several step sizes around

the initial step size and measure the output error of the

network with the training set. The initial step size is

determined using the L2-error minimizing approach.

4) Choose the step size that minimizes the output error and

quantize the weights.

5) Perform the third and fourth steps for the next layer until

it reaches the last layer.

The output error can be the mean cross-entropy for classifi-

cation or the mean squared error for regression. We usually

obtain the best result when Δ is about 1.2-1.6 times of the

value determined by the Lloyd-Max algorithm.

III. RETRAIN WITH ERROR BACKPROPAGATION ON

QUANTIZED DOMAIN

As discussed in Section IV, the direct quantization approach

results in high output error when the precision of weights is

very low, such as 3 or 7 levels. To address this issue, we use

a fixed-point optimization scheme that retrains the quantized

neural network. This method reapplies the error backpropa-

gation that is modified to deal with quantized weights and

signals.

The error backpropagation is basically a gradient descent

method that minimizes the output error, where the error gra-

dient is calculated by propagating the error signal δ backward

from the output units to the input units. However, applying

this algorithm directly to neural networks with quantized

weights usually does not work. This is because the amount

of weights to be changed after each step is much smaller than

the quantization step size, and most of the weight changes are

ignored. Therefore, we need to modify the backpropagation

algorithm to properly accumulate the small amount of weight

changes. For this, we maintain both the high-precision and

low-precision weights and signals to accumulate the effects of

small adaptation error.

The mini-batch based backpropagation algorithm [14] up-

dates the weight wij , the synaptic strength from the unit j to

the unit i, by

wij,new = wij − α

〈
∂E

∂wij

〉
= wij + α 〈δiyj〉 (3)

where E is the output error, α is the learning rate, δi is the

error signal of the unit i, yj is the output signal of the unit j,

and < · > averages the value over a mini-batch. Note that (3)

cannot be directly applied to update the low-precision weights

because the amount of update, α 〈δiyj〉, is much smaller

than the quantization step size, Δ. Thus, we also store high

precision weights for adaptation. The high precision weights

are used for accumulating errors and generating quantized

ones. The low-precision weights are obtained by quantizing the

high-precision weights and used in the forward and backward

steps of the backpropagation algorithm.

We further modify the backpropagation algorithm to quan-

tize the signals or the outputs of the units. When propagating

the error signals backward, the derivative of the activation

function is multiplied to the incoming error signals. For the

sigmoid activation function in (2), the derivative is usually

calculated by

φ′(x) = φ(x)(1− φ(x)) = y(1− y) (4)

where φ(x) is the activation function and y = φ(x) is the

output signal of the unit. However, using the quantized signal

for y in (4) often fails especially with the small number of

quantization points. For example, when the binary quantizer

is used for the signals, the derivative of the activation function

is always zero. Then, no error signals can be propagated

backward because they are multiplied by the derivative, which

is always 0. Therefore, the derivative should be calculated

using high-precision signal values. The overall algorithm is

summarized in Fig. 3.

IV. EVALUATION

The proposed quantization strategy is evaluated with two

neural network examples: handwritten digit recognition and

phoneme recognition. We also examine the effects of dropout

[10], [11], which is known as very strong regularization

technique, and show that dropout can be used together to

further increases the performance of the quantized neural

network. In each experiment, the input signal is quantized

with fixed 8-bit word-length. Output signals of the networks

are not quantized because they barely increase the hardware

complexity. For every logistic unit, the quantized output is

equally divided between 0 and 1. For example, if the word-

length is 2 bits, the quantization points are 0/3, 1/3, 2/3, and

Definition of error signal:

δi = − ∂E

∂neti

Forward step:

neti =
∑
j∈Ai

w
(q)
ij y

(q)
j

y
(q)
i = Ri (φi (neti))

Backward step:

δj = φ′j (netj)
∑
i∈Pj

δiw
(q)
ij

Gradient calculation:

∂E

∂wij
= −δiy

(q)
j

Weight update:

wij,new = wij − α

〈
∂E

∂wij

〉

w
(q)
ij,new = Qij (wij,new)

Fig. 3. Summarization of the proposed retrain algorithm, where E is the
output error, neti is the summed input value of unit i, δi is the error signal
of unit i, wij is the weight from unit j to unit i, yj is the output signal of
unit j, α is the learning rate, Ai is the set of units anterior to unit i, Pj is the
set of units posterior to unit j, R(·) is the signal quantizer, Q(·) is the weight
quantizer, and φ(·) is the activation function. The superscript (q) indicates
that the value is quantized and < · > averages the value over a mini-batch.
Biases can be regarded as weights from the constant input value of 1.

3/3. However, signals of linear units are not bounded and

their quantization range should be determined carefully. In our

phoneme recognition example, each component of the input

data is normalized to have zero mean and unit variance over

the training set. The input range is chosen to be from -3 to 3.

A. Handwritten Digit Recognition

1) MNIST Database: The MNIST database consists of 28

by 28 grey level images of handwritten digits. A training set

has 60,000 examples and a test set has 10,000 examples. This

database has been widely used for evaluation of various image

classifiers [2], [15], [16].

2) Neural Network Configuration: The neural network con-

figuration is the same as in [2]. The input layer has 784 units,

which is followed by two 500-unit and one 2,000-unit hidden

layers. The output layer has 10 units, which correspond to 10

target digit labels. All layers contain logistic units.

3) Training: The network is pre-trained with unsupervised

greedy RBM learning. Each RBM is trained by 50 epochs

of 10-step contrastive-divergence based stochastic gradient

descent with the mini-batch size of 100, the fixed learning rate

of 0.1, and the momentum of 0.9. Then, we ran 100 epochs

of the backpropagation with stochastic gradient descent using

TABLE I
MISS CLASSIFICATION RATE (%) ON THE TEST SET WITH THE MNIST

HANDWRITTEN DIGIT RECOGNITION EXAMPLE USING M -POINT WEIGHT

QUANTIZATION.

Approach Signal word-length M = 3 M = 7 M = 15

Direct

1 bit 7.60 1.72 1.38

2 bits 4.85 1.28 1.06

3 bits 4.28 1.20 0.99

8 bits 4.20 1.21 0.95

Retrain

1 bit 1.45 1.27 1.10

2 bits 1.11 0.99 1.00

3 bits 1.08 0.95 0.94

8 bits 1.11 0.95 0.95

TABLE II
WEIGHT DISTRIBUTION OF THE MNIST HANDWRITTEN DIGIT

RECOGNITION EXAMPLE BEFORE AND AFTER RETRAINING WITH 3-POINT

WEIGHT QUANTIZATION AND 3-BIT SIGNAL QUANTIZATION.

Weight distribution (%)
After retraining

Sum−Δ 0 +Δ

Before retraining

−Δ 7.7 0.4 0.0 8.1

0 1.2 85.2 1.2 87.6

+Δ 0.0 0.2 4.1 4.3

Sum 8.9 85.8 5.3 100.0

the mini-batch size of 100, the fixed learning rate of 0.1, and

the momentum of 0.9. Also, the same parameters are used for

the proposed retraining algorithm.

4) Experimental Results: The experimental results with

various weight and signal quantization are summarized in

TABLE I. The original miss classification rate for the test set

was 0.97% with floating-point arithmetic. The direct quanti-

zation shows a miss rate of 4.28% with 3-point weights, and

1.20% with 7-point weights. On the other hand, the retraining

approach shows the result that is quite close to the original

one. The miss rate with 3-point weights and 3-bit signal

quantization is 1.08%. Applying 8-bit signal quantization

does not show significant difference compared to 3-bit signal

quantization, which means 3 bits for signal word-length is

enough for hidden layers. Even 2-bit quantization for signals

does not show much increase in the miss classification rates

when the developed retrain algorithm is used. From this table,

we can notice that the retrain algorithm helps reducing not

only the word-length of weights but also that of signals.

Distribution of all the weights in the network before and

after retraining is shown in TABLE II in the case of 3-

point weight and 3-bit signal quantization. Note that weights

are changed in both direction, that is, some weights are

changed from 0 to Δ whereas other weights are changed

in the opposite direction. This clearly shows that fixed-point

optimization with retraining is not just adjustment of the

quantization boundaries, but slightly moving weights around

the quantization boundaries in both directions.

TABLE III
FRAME-LEVEL PHONE ERROR RATE (%) ON THE TEST SET WITH THE

TIMIT PHONEME RECOGNITION EXAMPLE USING M -POINT WEIGHT

QUANTIZATION.

Approach Signal word-length M = 3 M = 7 M = 15

Direct

1 bit 66.58 46.53 38.34

2 bits 56.15 34.56 30.44

3 bits 54.10 33.36 28.85

8 bits 50.20 32.85 28.55

Retrain

1 bit 29.97 29.76 29.67

2 bits 28.35 28.46 28.02

3 bits 27.63 27.90 27.73

8 bits 27.37 27.87 27.84

B. Phoneme Recognition

1) Speech Database: We used the TIMIT corpus that

contains a training set from 462 speakers and a test set

from 168 speakers. All SA recordings, utterances of the

same sentences from every speakers, were removed since they

might bias the results. We used 12th-order Mel-frequency

cepstral coefficients (MFCCs), energy, and their first and

second temporal derivatives, which are extracted using 25-ms

Hamming window with 10-ms frame rate. Each component

of the feature vectors is normalized over the training set

to have zero mean and unit variance. For the input to the

neural network, 11 consecutive frames are used, which results

in total 429 dimensional input features [17]. For evaluation,

the original 61 phones are folded into standard 39 classes as

proposed in [18].

2) Neural Network Configuration: The input layer consists

of 429 linear units to deal with real value inputs. Four hidden

layers have the same number of 1,024 logistic units. The

output layer consists of 61 logistic units that correspond to

61 target phoneme labels. For simplicity, no other optimiza-

tions nor a language model is used. A similar structure with

Gaussian input units, softmax output units, three-state mono-

phone classes, and a bigram language model over phones can

be found in [17].

3) Training: The network is pre-trained with unsupervised

greedy RBM learning. Each RBM except the linear-logistic

RBM is trained by 20 epochs of 1-step contrastive-divergence

based stochastic gradient descent with the mini-batch size of

128, the fixed learning rate of 0.05, and the momentum of 0.9.

For the linear-logistic RBM, we used 40 epochs with the fixed

learning rate of 0.005. For fine-tuning, we ran 10 epochs of

the backpropagation with stochastic gradient descent with the

mini-batch size of 128, the fixed learning rate of 0.05, and

the momentum of 0.9, which are the same for the retraining

algorithm.

4) Experimental Results: The original frame error rate

of phonemes was 26.24% before any quantization. As in

TABLE III, the proposed approach results in very close per-

formance to the original one, even when the network employs

only 3-point weights and 3-bit signals for the hidden layers.

This shows that two bits are sufficient to represent a single

TABLE IV
COMPARISON OF FRAME-LEVEL PHONE ERROR RATES AND THE

PERCENTAGES OF NONZERO WEIGHTS AFTER QUANTIZATION WITH

VARYING NUMBER OF UNITS PER HIDDEN LAYER WHEN 3-POINT WEIGHT

AND 3-BIT SIGNAL QUANTIZATION IS APPLIED.

Hidden layer size
Frame-level phone error rate (%)

Nonzeros (%)
Floating-point Fixed-point

128 30.38 37.35 (+6.97) 56.26

256 28.19 32.53 (+4.34) 47.56

512 26.84 28.91 (+2.07) 40.04

1024 26.24 27.63 (+1.39) 37.19

TABLE V
COMPARISON OF FRAME-LEVEL PHONE ERROR RATES WITH AND

WITHOUT DROPOUT WHEN THE HIDDEN LAYER SIZE IS 1024. FOR

FIXED-POINT EXPERIMENTS, 3-POINT WEIGHT AND 3-BIT SIGNAL

QUANTIZATION IS APPLIED.

Dropout
Frame-level phone error rate (%)

Floating-point Fixed-point

No 26.24 27.63 (+1.39)

Yes 22.04 22.70 (+0.66)

weight in neural networks of which application is as complex

as the phoneme recognition.

TABLE IV compares the performance of floating-point and

fixed-point DNNs for phoneme recognition when the number

of units in each hidden layer varies from 128 to 1024. For

DNNs of hidden layer size 128 and 256, we ran 30 and 20

epochs, respectively, for both fine-tuning and retraining thanks

to less severe overfitting. The fixed-point networks employ 3-

level weights and 3-bit signal representation. Note that deep

neural networks usually employ a relatively large number of

units in each layer compared to shallow neural networks. We

can find that the gap between the floating-point and fixed-

point networks rapidly shrinks as the number of units in

each layer increases. The results are not surprising because

summing many signals from the previous layer helps lowering

the effects of quantization errors. We consider that increas-

ing the dimensionality of a network contributes to correctly

identifying patterns when the weights are severely quantized.

Also, the percentage of nonzero weights decreases when the

hidden layers become larger. The sparseness of weights can

allow further optimization in hardware and software based

implementations.

5) Experimental Results with Dropout: Dropout is applied

to prevent the overfitting problem, which usually observed

when training large-sized neural networks with not enough

training data. For floating-point training, we applied 20%

dropout for the input layer 40% dropout for the hidden layers

with the increased learning rate of 0.02. The floating-point

training is terminated after 200 epochs of backpropagation.

For the fixed-point retraining, we reduce the number of epochs

to 50, and the dropout rate to 0% and 20% for the input and

the hidden layers, respectively. Overfitting is hardly observed

in both floating-point training and fixed-point retraining stage.

The frame-level phone error rates of resulting floating-point

and fixed-point networks are shown in TABLE V when the

hidden layer size is 1024. With dropout, the error rate increases

only 0.66%, which is smaller than the result when dropout

is not used (+1.39%). This is because dropout also prevents

overfitting in retraining stage. Therefore, with proper dropout

rates, the proposed fixed-point optimization method can be

efficiently used with dropout.

V. CONCLUDING REMARKS

We have developed a training procedure to reduce the word-

length of weights and that of signals in deep neural networks.

The proposed procedure yields superior results compared to

the direct quantization method, especially when only 3-point

(+1, 0, and -1) weights are used. The signal word-length

that affects the complexity of interconnection and arithmetic

units can also be reduced to 3 bits without sacrificing the

performance much. We find that the performance gap between

the floating-point and fixed-point networks shrinks as the

number of units in each layer increases. Also it is shown that

dropout can be employed together to generalize the network

and further increase the performance. This research is useful

for not only hardware based implementations but also real-

time software development.

APPENDIX

The L2-error minimization approach is similar to Lloyd-

Max quantization except the quantizer is uniform. To apply

Lloyd-Max algorithm to the uniform quantizer, we first divide

the quantization function Q(x) into two functions using the

integer membership z as

Q(x) = f(z) (5)

z = g(x). (6)

For M -point symmetric uniform quantizer with the quantiza-

tion step size Δ and the odd integer M ,

f(z) = Δ · z (7)

g(x) = sgn(x) ·min

{⌊ |x|
Δ

+ 0.5

⌋
,
M − 1

2

}
. (8)

Before performing the exhaustive search for the weight

quantizers, the quantization step size Δ is determined to

minimize the error,

E =
1

2

N∑
i=1

(Q(xi)− xi)
2
=

1

2

N∑
i=1

(Δ · zi − xi)
2

(9)

where N is the number of weight coefficients, xi is the original

i-th weight value, and zi is the membership of xi determined

by the quantizer.

The error can be minimized by the following two-step

iterative approach, which is similar to Lloyd-Max algorithm.

z(t) = argmin
z

E(x, z,Δ(t−1)) (10)

Δ(t) = argmin
Δ

E(x, z(t),Δ) (11)

where the superscript (t) indicates the iteration step. By Lloyd-

Max algorithm, the first step is equivalent to z(t) = g(t−1)(x)
where g(t−1)(x) is the vector version of g(x) in (8) with the

previous step size Δ(t−1). The second equation can be solved

by letting the derivative of the error with respect to Δ(t) to

zero, which leads to

Δ(t) =

∑N
i=1 xiz

(t)
i∑N

i=1

(
z
(t)
i

)2 . (12)

The iteration stops when Δ(t) converges to one of the local

minima.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea government

(MEST) (No. 2012R1A2A2A06047297).

REFERENCES

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[2] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 20,
no. 1, pp. 30–42, 2012.

[4] P. Moerland and E. Fiesler, “Neural network adaptations to hardware
implementations,” Handbook of neural computation, vol. 1, p. 2, 1997.

[5] J. Holi and J.-N. Hwang, “Finite precision error analysis of neural
network hardware implementations,” Computers, IEEE Transactions on,
vol. 42, no. 3, pp. 281–290, 1993.

[6] G. Dundar and K. Rose, “The effects of quantization on multilayer neural
networks,” Neural Networks, IEEE Transactions on, vol. 6, no. 6, pp.
1446–1451, 1995.

[7] E. Fiesler, A. Choudry, and H. J. Caulfield, “Weight discretization
paradigm for optical neural networks,” in The Hague’90, 12-16 April.
International Society for Optics and Photonics, 1990, pp. 164–173.

[8] C. Z. Tang and H. K. Kwan, “Multilayer feedforward neural networks
with single powers-of-two weights,” Signal Processing, IEEE Transac-
tions on, vol. 41, no. 8, pp. 2724–2727, 1993.

[9] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in deep
neural networks for large vocabulary speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on. IEEE, 2012, pp. 4409–4412.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[11] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvcsr using rectified linear units and dropout,” in Proc.
ICASSP, 2013.

[12] J. Kim, K. Hwang, and W. Sung, “x1000 real-time phoneme recognition
VLSI using feed-forward deep neural networks,” in Proc. ICASSP, 2014.

[13] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,” Signal Pro-
cessing, IEEE Transactions on, vol. 43, no. 12, pp. 3087–3090, 1995.

[14] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural Networks, 1989. IJCNN., International Joint Conference on.
IEEE, 1989, pp. 593–605.

[15] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel,
Y. LeCun, U. A. Muller, E. Sackinger, P. Simard et al., “Comparison
of classifier methods: a case study in handwritten digit recognition,”
in Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision
& Image Processing., Proceedings of the 12th IAPR International.
Conference on, vol. 2. IEEE, 1994, pp. 77–82.

[16] K. Labusch, E. Barth, and T. Martinetz, “Simple method for high-
performance digit recognition based on sparse coding,” Neural Networks,
IEEE Transactions on, vol. 19, no. 11, pp. 1985–1989, 2008.

[17] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 14–22, 2012.

[18] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden markov models,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 37, no. 11, pp. 1641–1648, 1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

