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Abstract—Hardware architectures for modern hearing aid
devices have to provide ultra low power consumption at a small
silicon area and moderate computational performance to deal
with the continuously growing complexity of hearing aid signal
processing. At the same time, they need to remain flexible for
future algorithmic changes. These challenging design goals can be
achieved by using Application-Specific Instruction-Set Processors
(ASIPs), where a baseline architecture is customized to the target
class of applications. In this paper, hardware modifications of
a generic VLIW-SIMD processor architecture targeting audio
processing are described and their influence in area-performance
efficiency and power are evaluated. As exemplary hearing aid
signal processing application, the evaluated algorithms contain a
complex modulated filter bank and a noise reduction algorithm.
The proposed architecture requires 2 times less silicon area and a
6 times lower clock frequency than a Tensilica Xtensa LX4 when
running the same algorithms under real-time conditions.

I. INTRODUCTION

Over 360 million people worldwide suffer from disabling
hearing loss, i.e., a hearing loss greater than 40 dB in the better
hearing ear, which is about 5% of the world’s population [1].
An even greater number of people are affected by mild or
moderate hearing loss. Thus, many people could potentially
benefit from more advanced hearing aid devices. In digital
state-of-the-art devices, the embedded processing systems have
to meet a variety of stringent design goals:

• Moderate performance to meet real-time processing,
while at the same time being able to perform complex
signal processing (e.g., adaptive beamforming, feed-
back cancellation, noise reduction, or wide dynamic
range compression).

• Flexibility by means of programmability to take care
of short innovation cycles, research progress on audio
signal processing, and to adapt the device individually
to the hearing characteristic of the user.

• Low processing delay (less than 10 ms) between the
input and the processed audio signal required for a
proper audio perception [2].

• Ultra low power consumption for at least 50 hours of
run-time on a single battery. As hearing aid devices
should be very small for cosmetic reasons, this leaves
limited space for silicon area and battery [3].

The high number of people, whose life quality can be
improved by better devices, and the broad technical design
space, make hearing aid hardware systems a challenging field

of research. Dedicated hardware solutions, although having
advantages in energy and area efficiency, do not provide that
degree of flexibility required by hearing aid systems. Hence,
DSP-like solutions are necessary, representing the state-of-the-
art. However, it is essential to reduce their power consumption,
e.g., by using efficient data parallelism mechanisms such as
vectorized execution (SIMD). Approaching from a DSP-like
point-of-view, this paper follows the concept of Application-
Specific Instruction-Set Processors (ASIPs). A baseline RISC
or VLIW processor architecture is customized towards a target
application by performing efficient custom hardware modifica-
tions. On the one hand, these hardware modifications consist of
adding new dedicated hardware modules, e.g., functional units
(FUs). Hence, computation intensive parts of the application
code are optimized and the efficiency is increased. On the
other hand, removing unused parts of the processor can be
a successful way to reduce unnecessary power consumption.
Concerning performance and power, a specialized ASIP solu-
tion lies between pure DSP and dedicated hardware solutions
in the design space, while remaining programmable.

In the RAPANUI project [4], a generic VLIW-SIMD ASIP
for multimedia applications has been presented and archi-
tectural design alternatives have been analyzed. The pro-
posed processor architecture presents several generic parallel
mechanisms for full customization towards a specific target
application in terms of performance, silicon area, and power
consumption. Not only inserting new custom operations (e.g.,
new functional or co-processor units) is possible but also
deeper modifications inside the architecture (e.g., modification
of pipeline, register file, or forwarding fabric). In [3] and [5],
it has been shown, that the concept of an ASIP for hearing
aid devices is promising, because it fits the desired constraints
of both flexibility and low power consumption at moderate
performance. This paper describes and evaluates several hard-
ware mechanisms of this processor in the context of audio
processing.

The paper is organized as follows. First, Section II presents
processor approaches related to this work. Then, Section III
describes the explored VLIW-SIMD ASIP architecture, which
is evaluated in a case study in Section IV in the context of
hearing aid applications using an exemplary hearing aid signal
processing chain. Finally, conclusions are given in Section V.

II. RELATED WORK

In [5], an ASIP implementation of a digital hearing aid
system based on the Tensilica/Cadence Xtensa LX4 processor
is presented. This processor consists of a 32-bit RISC architec-
ture with configurable instruction/data cache size and number
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of instructions executed in parallel (Flexible Length Instruction
eXtension - FLIX). Moreover, the Xtensa framework provides
the ability to add custom instructions to the instruction-set
by using Tensilica Instruction Extensions (TIE). However,
the tools have limitations when enhancing the provided LX4
processor. Deep modifications in the pipeline structure (e.g.,
extreme reduction of pipeline stages) or register file archi-
tecture (e.g., modifying the number of ports of the general
purpose register file) and enhancements in the forwarding path
are not possible. It is shown, that the most efficient LX4
configuration for running a complex modulated filter bank [6]
and a noise reduction algorithm [7] requires several TIEs and
no FLIX. Its size is 0.623mm2 (TSMC40LP) and it requires
13.24MHz for real-time computation while consuming about
2mW.

The authors of [3] present a modified Silicon Hive Pearl 16-
bit 3-issue-slot VLIW-ASIP architecture with a 32-bit datapath,
40-bit registers for intermediate results, separated instruction
and data memory, fixed-point arithmetic units, and custom
instructions. The performed algorithms are beamforming, feed-
back cancellation, an FIR filter bank, compression, and noise
reduction. After voltage and frequency scaling the processor
needs only 0.964mW power at a silicon area of 0.49mm2

(TSMC C65G) and a clock frequency of 11MHz.
Moreover, in [8] a low power fixed-point DSP is proposed,

that contains a 16/32-bit data-path and twelve concurrent 16-bit
multipliers. The processor is optimized for FFT computation
using up to 128-bit wide-SIMD instructions, optimized in-
struction scheduling and bit-reversed addressing for enhanced
FFT processing. The performed algorithms are an FFT-based
filter bank, compression, and feedback cancellation. For these
algorithms, the DSP needs less than 40% of the specified real-
time processing time at a clock frequency of 8MHz.

Comparing to the above mentioned approaches, this paper
presents a custom VLIW-SIMD ASIP for audio processing,
which implements enhanced parallelism mechanisms and up
to two co-processors for processing a complex modulated filter
bank [6] and a noise reduction algorithm [7].

III. VLIW-SIMD ASIP PROCESSOR

In order to fulfill the design goals of ultra low power,
moderate performance, and high flexibility, a generic mul-
timedia ASIP architecture [4] has been used and optimized
towards an exemplary hearing aid application. Beginning with
this baseline architecture, ASIP customization is driven by
the two aspects of parallelization and specialization resulting
in an area-performance trade-off, which is essential in signal
processing ASIPs.

A. Parallelization Mechanisms

Since multimedia and signal processing applications provide
a high degree of inherent parallelism within the algorithms,
the baseline architecture extensively implements instruction-
level (VLIW) and data-level (SIMD) techniques. It is based
on a dual-issue vector unit, that can decode and execute
two 32-bit instructions in parallel (see Fig. 1). An enhanced
instruction scheduler distributes the application assembler code
into the different concurrent issue-slots to achieve a high
code compaction, i.e., few execution cycles and thus a high
execution performance.

Fig. 1. Structure of a vector unit of the VLIW-SIMD processor [4].

1 for (i=0; i<8; i++){

2 if (V0R0[i*8+7:i*8] == 0){

3 V0R3[i*8+7:i*8] = V0R1[i*8+7:i*8] + V0R2[i*8+7:i*8];

4 }

5 }

1 SMVI V0CONDSEL,#COND_ZERO // choose evaluated condition

2 SUBICS_8 V0R4,V0R0,#0 // store operation flags (CS)

3 ADDCR_8 V0R3,V0R1,V0R2 // cond. execution using flags

4 // and condition implicitly (CR)

Fig. 2. Assembler example of subword parallelism and conditional execution.
The addition is only executed on those 8-bit subwords with a valid condition.

The processor is pipelined into six basic stages. Since in
most cases the critical path lies in the execution stage, complex
functional units (FUs) can be implemented with two pipeline
stages for performance purpose. For more instruction level
parallelism, either identical FUs and/or the entire vector unit
could be replicated if the application is able to utilize this
degree of parallelization.

All FUs implement 64-bit SIMD instructions making use of
subword parallelism, i.e., the 64-bit operands can be divided
into two 32-bit, four 16-bit, or eight 8-bit operands to execute
the same operation in all these subwords simultaneously. In
addition, conditional instruction execution is used to transform
control flow dependencies into data dependencies. This leads
to higher code compaction as slow conditional branches are
avoided (see Fig. 2).

Both issue-slots in one vector unit share a flexible register
file (RF). Since in many cases in VLIW architectures the
register file ports are the bottleneck prohibiting a dense code
compaction, the register file can be partitioned into two small
register files with 32 registers each (see in Table I all available
register file configurations). The register file configuration also
has a large influence on the performance of one mechanism
special to this VLIW-architecture, which is the X2-mode [4].
It allows identical instructions that share the same opcode
to merge and access registers, which only differ in their last
address bit (see in Fig. 3 the implementation of the X2-mode
register file). Hence, more issue-slots are virtually created
since one X2-instruction only needs one issue-slot although it



TABLE I. AVAILABLE REGISTER FILE CONFIGURATIONS. AREA

RESULTS FROM TSMC40LP SYNTHESIS OPTIMIZED FOR AREA AND POWER

(APPROX. 50 MHZ MAXIMAL CLOCK FREQUENCY).

# Port Port #Parallel #Parallel Norm. Scheduling

config. width X1-accesses X2-accesses area flexibility

RF1 4r2w 64 2 1 1.00 normal

RF2 4r2w 128 2 2 1.06 high

RF3 2r1w 128 1 1 0.76 low

Fig. 3. Examples of RF configurations for architectures that implement X2-
mode operations. In (a) a basic RF with 4 read and 2 write ports is shown.
In (b), the data read/write port width is doubled to 128-bits. Two internal
16x64-bit RF are used, hence single 64-bit accesses can be performed to all
the positions of both RFs by using the 64 LSB of each port. Aligned (even
positions) 128-bit accesses can also be performed [9].

performs the instruction twice (assuming physically duplicated
FUs). Since still only one instruction is decoded, only slight
changes in the decode stage and the register file structure
are necessary to enable X2-mode execution with very low
overhead (see X2-mode code example in Fig. 4).

B. Specialization Mechanisms

In order to further enhance the processing performance,
silicon area, and/or energy efficiency of an ASIP architecture,
specialization is mandatory. This is performed by either adding
new or by removing unused hardware and functionality for the
target applications.

This VLIW-SIMD architecture not only provides the pos-
sibility to replicate but also to remove existing FUs within
the execution stage or unused SIMD-modes depending on
the requirements of the application. Naturally, modifying the
instruction-set by adding new custom FUs is another proper
way of specialization.

For even more complex operations, co-processors can be
instantiated. By default, the VLIW-SIMD architecture contains
a 2x32bit SIMD fixed-point division co-processor unit (DCU),
that implements an iterative non-restoring algorithm in dedi-
cated hardware. After storing the divisor operand, the processor
starts the division increasing the precision of the result in every
cycle, i.e., iteration. Thus, the desired minimal precision can
be controlled by the user-defined number of cycles between
storing the last operand and loading the result (see Fig. 5).

Another aspect is the specialization of the complete pro-
cessor, e.g., choosing one of the above mentioned register file

1 // Issue-slot #0 ; Issue-slot #1

2 (0x00) ADD_16 V0R0,V0R2,V0R4 ; NOP

3 (0x01) ADD_16 V0R1,V0R2,V0R5 ; NOP

4 (0x02) ADD_16 V0R6,V0R8,V0R10 ; NOP

5 (0x03) ADD_16 V0R7,V0R9,V0R10 ; NOP

1 (0x00) ADD_16 V0R0,V0R2,V0R4 ; ADD_16 V0R1,V0R2,V0R5

2 (0x01) ADD_16 V0R6,V0R8,V0R10 ; ADD_16 V0R7,V0R9,V0R10

1 (0x00) ADD_16_X2 V0R0+V0R1,V0R2,V0R4+V0R5 ; NOP

2 (0x01) ADD_16_X2 V0R6+V0R7,V0R8+V0R9,V0R10 ; NOP

Fig. 4. Scheduled assembler example using X2-mode. Four additions with just
one physical arithmetic unit (top), replication of arithmetic unit (middle) and
using X2-mode (bottom). Note the two emerging empty issue-slots (NOPs)
when using X2-mode. Those can be used by the scheduler for remaining
operations, that do not use the arithmetic unit e.g. LOAD/STORE-operations.

1 //store dividend

2 STOREDCU 0x200,V0R0,#0

3 //store divisor / start

4 STOREDCU 0x201,V0R1,#4

5 //delayed load of result

6 LOADDCU V0R2,0x200

(a) Coded assembler operations

1 (0x00) STOREDCU 0x200,V0R0,#0

2 (0x01) STOREDCU 0x201,V0R1,#4

3 (0x02) NOP

4 (0x03) NOP

5 (0x04) NOP

6 (0x05) LOADDCU V0R2,0x200

(b) Scheduled assembler operations

Fig. 5. Exemplary use of division co-processor unit (DCU). After storing both
operands, the DCU starts operating. The user-defined delay (#4) determining
the DCU iterations is automatically considered during instruction scheduling.
In this example, one DCU iteration is performed in each clock cycle.

architectures or the best pipeline configuration. The register file
ports can be reduced for reducing the silicon area requirements
in cases where a higher degree of flexibility is not needed
by the instruction scheduler to achieve a high performance
(see Table I). When a high clock frequency is necessary, it is
possible to increase the number of execution stages to reduce
the critical path. In the case of a low power design such as a
hearing aid system, the clock frequency is low, so removing
pipeline stages and saving the area and power required for
pipeline registers is beneficial.

In addition, the processor system can be configured with
different peripheries and interfaces. It contains separated in-
struction and data memory of configurable size and a DMA
controller for reading from an audio buffer and communication
with an external memory.

C. Customization Trade-off

The customization of the processor with respect to ultra
low power and hearing aid systems can be summarized in an
area-performance trade-off shown in Fig. 6. Due to continuous
audio sampling, the system has to meet a real-time constraint.
A higher performance in this context means being able to
execute equal software tasks in less time or to run with a lower
minimal clock frequency for less dynamic power consumption.
The minimal frequency Fmin is defined as

Fmin,Processor =
#CyclesAudioblock

#SamplesAudioblock

· FSampling. (1)

Applying X2-mode and changing the register file or the
pipeline influences the baseline architecture slightly, whereas
implementing new functional units and co-processors results in
large changes in area, execution cycles and thus performance.
As an efficiency measure, the inverse product of area and
minimal clock frequency can be considered. During ASIP
customization this product needs to be minimized, which
results in an overall reduction of total power consumption.
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Fig. 6. During ASIP customization, additional area (higher static power)
is traded against less execution cycles and less necessary minimal clock
frequency for real-time processing (less dynamic power). The product of area
and Fmin needs to be minimized and can be considered as inverse efficiency.

IV. CASE STUDY

The above presented VLIW-SIMD architecture has already
been evaluated in the context of video processing [9]. By using
its X2/X4 instruction merging mechanisms (code up to four
operations into one instruction) and custom functional units it
became possible to process a stereo video algorithm under
real-time conditions, resulting in very high computational
efficiency. The same baseline architecture is explored in this
paper in a case study of a typical hearing aid processing
chain, i.e., a filter bank and a noise reduction algorithm using
fixed-point arithmetic and a target maximal clock frequency of
10MHz.

A. Filter Bank

1) Algorithm: To apply separate gain values in different
frequency bands, a complex modulated weighted overlap-add
(WOLA) filter bank [5-6] performs the split into subbands
here. The WOLA algorithm is an extension of the short-
time Fourier transform, containing multiplication with window
functions and an FFT/IFFT. By performing a time-folding
step, the analysis and synthesis filter sizes La and Ls can
be adjusted independently to the FFT size N .

2) Implementation: For operating with a low processing
delay (6.5ms), the selected parameters are La(128), Ls(64),
and N (32). The filter bank processes blocks of audio samples
with size R(8), which results in an oversampling factor of
4. The implementation is performed for 16-bit audio samples
and using a target sampling frequency of 16 kHz. Analysis
window multiplication and time-folding are implemented with
16-bit SIMD MAC-operations, that store their real-valued
accumulation results into registers partitioned into two 32-bit
subwords ([Re|Re], see Fig. 7). The circular shift, necessary in
WOLA, is done inside the FFT. The FFT continues working on
these 32-bit subwords storing the final complex-valued results
in a [Re|Im] subword format. The synthesis again performs
16-bit operations, which makes shifts necessary after IFFT and
synthesis window multiplication.

For WOLA analysis and synthesis, circular buffers are
required to store new 8-sample blocks and iterate over memory.
Since checking the end of the buffer and wrapping the address
pointer around at the highest buffer address is inefficient when
using assembler instructions, the following circular buffer
mechanism is executed in hardware whenever a pointer is
incremented in software:

addrnew = (addrprev∧mask)∨(inc(addrprev)∧mask) (2)

Wai+3 Si+3 Si+1Si+2Wai+2 Si

Audio sample bufferWindow buffer

Wai+1 Wai

FFT1 FFT0FFT3 FFT2

16 accumulation 
registers as FFT 

inputs
(32-bit subwords)

16-bit subword 
registers

(time-folding,
i = 0, 4, 8 )

Fig. 7. One single MAC 16 SIMD instruction is used for window multi-
plication and time-folding in WOLA analysis before FFT. WOLA analysis
(synthesis) requires La/4 (Ls/4) MAC 16 operations.

TABLE II. EVALUATION OF WOLA FILTER BANK IMPLEMENTATIONS.

Processor Configuration Cycles Dyn. IPC Fmin [MHz]

baseline (maxPipe RF1 X1 1F) 898 1.57 1.80

perf optimized (minPipe RF2 X2 2F) 551 2.58 1.10

baseline + CMU 562 1.64 1.12

perf optimized + CMU 341 2.53 0.68

A mask splits the address into an upper and a lower part.
The new content of the address pointer after incrementation is a
concatenation of the upper part (mask=1) of the unincremented
address and the lower part (mask=0) of the incremented
address. The size of the buffer is determined by the number
of bits in the lower part of the mask. The address of the first
buffer position has to be aligned accordingly.

To accelerate the FFT butterfly computation, a com-
plex multiplication unit (CMU) has been implemented for
instruction-set extension. The CMU can perform the following
operation in just one cycle due to the low clock frequency:

C = [ARe ·BRe;x −AIm ·BIm;x|ARe ·BIm;x +AIm ·BRe;x]

= [ARe|AIm]× [BRe;high|BIm;high|BRe;low|BIm;low]

(3)

The complex operand A and the result C both have 32-
bit subwords, whereas the FFT twiddle factors B are 16-bit
subwords. It can be selected to take either Bhigh or Blow into
account. This allows loading two complex twiddle factors with
a single LOAD-instruction.

Further, the above mentioned processor specialization fea-
tures are applied systematically to evaluate their influence
on the execution performance and the processor area (see
below). This includes replication of all FUs (1F vs. 2F) for
more parallel resources, removing all pipeline stages up to a
last stage RA/EX to ensure synchronous register file access
(maxPipe vs. minPipe), which accelerates the execution of
MAC- and branch-operations, and using X2-instructions (X1
vs. X2) with the register file modifications indicated in Table I
(RF1, RF2, RF3). Exemplary software modifications are given
in Fig. 8 and 9 showing the performance-increasing ability of
the X2-mode in the WOLA implementation.

A WOLA performance evaluation for a baseline and per-
formance enhanced processor configuration, both with and
without CMU, is summarized in Table II. The number of
execution cycles, the dynamic instructions per cycle (IPC) and
the necessary minimal clock frequency (Fmin) for real-time
processing are presented. Note, that the use of X2-mode allows
to execute up to four instructions in parallel resulting in an IPC
above two on the dual-issue VLIW architecture.



1 MV V0R0,(WaAPtr)+

2 MV V0R2,(SmplAPtr)+

3 MAC_16 V0R4+V0R5,V0R0,V0R2

4

5 MV V0R1,(WaAPtr)+

6 MV V0R3,(SmplAPtr)+

7 MAC_16 V0R6+V0R7,V0R1,V0R3

(a) Loading data in normal mode

1 MV_X2 V0R0+V0R1,(WaAPtr)++

2 MV_X2 V0R2+V0R3,(SmplAPtr)++

3

4 MAC_16 V0R4+V0R5,V0R0,V0R2

5 MAC_16 V0R6+V0R7,V0R1,V0R3

6

7

(b) Loading data in X2-mode

Fig. 8. Loading data using indirect memory access (address pointers) and
X2-mode. By using MV X2 two 64-bit registers are loaded in one instruction.
MAC- instructions have two destination registers by default.

1 ADD_32 V1R0,V0R0,V0R2 // [FFT1+FFT17 | FFT0+FFT16]

2 MIXRI_32 V0R4,V1R0,#0 // [FFT0+FFT16 | 0]

3 MIXLI_32 V0R5,V1R0,#0 // [FFT1+FFT17 | 0]

4

5 SUB_32 V1R2,V0R0,V0R2 // [FFT1-FFT17 | FFT0-FFT16]

6 MIXRI_32 V0R6,V1R2,#0 // [FFT0-FFT16 | 0]

7 MIXLI_32 V0R7,V1R2,#0 // [FFT1-FFT17 | 0]

8

9 ADD_32 V1R1,V0R1,V0R3 // [FFT3+FFT19 | FFT2+FFT18]

10 MIXRI_32 V0R8,V1R1,#0 // [FFT2+FFT18 | 0]

11 MIXLI_32 V0R9,V1R1,#0 // [FFT3+FFT19 | 0]

12

13 SUB_32 V1R3,V0R1,V0R3 // [FFT3-FFT19 | FFT2-FFT18]

14 MIXRI_32 V0R10,V1R3,#0 // [FFT2-FFT18 | 0]

15 MIXLI_32 V0R11,V1R3,#0 // [FFT3-FFT19 | 0]

1 ADD_32_X2 V1R0+V1R1,V0R0+V0R1,V0R2+V0R3

2 MIXRLI_32_X2 V0R4+V0R5,V1R0,#0

3 MIXRLI_32_X2 V0R8+V0R9,V1R1,#0

4

5 SUB_32_X2 V1R2+V1R3,V0R0+V0R1,V0R2+V0R3

6 MIXRLI_32_X2 V0R6+V0R7,V1R2,#0

7 MIXRLI_32_X2 V0R10+V0R11,V1R3,#0

Fig. 9. Due to SIMD operations, two stage-1 FFT butterflies of the 32-point
FFT can be compactly processed 2-in-1 using 32-bit subwords (top). With
X2-mode, even a dense 4-in-1 execution becomes possible when choosing
the right register allocation (bottom). MIX-operations are typical in SIMD
processors to reorder subwords of two input registers. The MIXRL X2 can
merge a right- and a left-oriented MIX, named MIXR and MIXL respectively.

B. Noise Reduction

1) Algorithm: In this case study, the Adaptive Gain Equal-
izer (AGE) is used for noise reduction [7]. More precisely,
the AGE performs speech enhancement by estimating signal
activity in different subbands k and attenuating those bands,
when there is no activity at the current time instant.

The attenuation gain factors for every subband k are calcu-
lated as:

gk(n) = min

(
1,

(
Ak(n)

L ·Ak(n)

))
(4)

Ak(n) = (1− αk) ·Ak(n− 1) + αk · |xk(n)| (5)

Ak(n) =

{
(1 + βk) ·Ak(n− 1) if Ak(n) > Ak(n− 1)

Ak(n) if Ak(n) ≤ Ak(n− 1)
(6)

Ak(n) is a short term average, Ak(n) is an estimation of
the slowly changing noise floor level and L a normalization
factor. By normalization, the maximal gain is limited to 1 (i.e.,
gk(n) ≤ 1). Note, that Ak(n) ≥ Ak(n) and αk >> βk, so
fixed-point formats need to be selected carefully. Further, a
division and a square root for the absolute value of complex
subband signal |xk(n)| are necessary in this algorithm.

2) Implementation: Due to symmetry of the spectrum, only
N/2 + 1 = 17 subband gains need to be computed. The
division is performed by the above mentioned co-processor
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Fig. 10. Distribution of AGE execution cycles per 8-sample audio block after
processing the NOIZEUS audio data base [11].

with customized fixed-point format adjustments. For comput-
ing the absolute of a complex value, the square of the 32-bit
complex input is stored as intermediate result, which is then
passed to an integer square root software routine. Since an
iterative algorithm, as e.g., Newton’s method, in general does
not terminate after a predetermined number of iterations, which
is unwanted in a real-time system, this implementation uses an
algorithm with predictable run-time according to [10], whose
maximal number of iterations depends on the size of the input.

To accelerate the square root computation in a first approach,
a custom instruction is used to determine the range of the input
value by counting the leading zeros (CLZ) in hardware com-
pared to a while-based software implementation using only the
baseline instruction-set. Since the actual number of iterations
varies significantly with these leading zeros, the distribution
of execution cycles while processing plenty of blocks of 8
audio samples (17 AGE subband gains in each block) has been
investigated using a baseline processor with and without the
CLZ-instruction (see Fig. 10). The theoretical maximal number
of cycles is never required, which corresponds to maximal
input values in all subbands all the time. In order to save
power consumption and still meet real-time, the processor
can be clocked with a much lower minimal frequency than
the theoretical maximum would indicate, e.g., according to
the real maximal number of cycles. This is a conservative
estimate, since a further reduction of the clock frequency
(e.g., according to the 99%-cycles) is possible. In this case, a
hardware mechanism needs to ensure reasonable results before
filter bank synthesis in the remaining 1% of the cases, when
the real-time condition is not met. This might have a negligible
effect on the audio result and warrants further investigation.

Next to baseline architecture with and without CLZ-
instructions, a third approach is evaluated here, which is square
root calculation using a radix-4 CORDIC co-processor [12].
Between pre- and post-processing for adjusting the input into
convergence (also making use of CLZ-instructions) and the
output fixed-point format, the CORDIC provides greater preci-
sion within fewer cycles than the iterative algorithm. The same
delay concept as already presented in Fig. 5 can be used here
for trading faster execution against reduced result precision.
Since CORDIC run-time is determined by this delayed loading,
the required cycles are data-independent.

The resulting AGE performance evaluation is summarized
in Table III using three alternatives for square root (baseline,
with CLZ-instruction and with CORDIC co-processor). For
conservative minimal frequencies, the real maximal numbers
of cycles from Fig. 10 at baseline processor configurations for
AGE execution are assumed. The use of X2-mode does not
provide any performance enhancement in AGE, because the
algorithm is heterogeneous.
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Fig. 11. Area-performance design space of VLIW-SIMD ASIP processor configurations showing lines of constant efficiency for baseline and optimal configuration
(40nm TSMC LP, for configuration nomenclature see Section IV).

TABLE III. EVALUATION OF AGE IMPLEMENTATIONS USING THE

ACTUAL MAXIMALLY REQUIRED CYCLES (99%-CYCLES IN BRACKETS)

Processor Configuration Cycles Dyn. IPC Fmin [MHz]

baseline (maxPipe RF1 X1 1F) 1767 (1711) 1.05 (0.99) 3.53 (3.42)

baseline + CLZ 1520 (1296) 1.25 (1.27) 3.04 (2.59)

CORDIC + CLZ (for pre-processing) 675 1.34 1.35

C. Area and Power Analysis

A 40 nm TSMC low power technology has been used for
synthesis (10MHz clock frequency, optimization for minimal
silicon area and dynamic power). The resulting maximal clock
frequency is approx. 50MHz. Core cell areas of different
processor configurations at their minimal clock frequencies to
process WOLA, AGE and gain multiplication (about additional
0.06MHz) in real-time are shown in Fig. 11.

Concerning parallelization, duplicating the processor FUs
and enabling the X2-mode increases the area on the one hand,
but on the other hand algorithm execution is accelerated and
the minimal clock frequency can be reduced by a higher factor.
Thus, these processor modifications achieve a smaller area-
performance product, i.e., a higher efficiency. Concerning spe-
cialization, reducing the pipeline decreases the area (less flip-
flops) and it also lowers the minimal clock frequency because
branch- and MAC-instructions are executed faster. Further,
different RF configurations, custom FUs and the CORDIC co-
processor increase the area but always accompanied by a large
reduction in execution cycles and clock frequency, thus those
configurations also have a higher efficiency.

That configuration combining CORDIC, CMU, X2, RF3
and a minimal pipeline has the best efficiency, i.e., minimal
product of core area (0.14mm2) and frequency (2.18MHz).
As this product is much smaller than for the baseline con-
figuration (0.11mm2 at 5.40MHz), an overall gain in power
can be achieved. The synthesis tool estimates a total core
power consumption of the baseline processor of 0.24mW
and 0.18mW for the configuration with highest efficiency.
So the reduced number of execution cycles and the drop in
frequency (lower dynamic power) compensates the increase
in area for the additional hardware (higher static power). The
power results are estimations of the synthesis tool based on
statistic estimation of switching activity.

Comparing the optimal configuration from Fig. 11 with a
customized Xtensa LX4 [5] for equal algorithms and including
memory, our ASIP is smaller by factor 2 in total cell area and
the minimal required frequency is about 6 times lower.

V. CONCLUSION

This paper evaluates a generic VLIW-SIMD ASIP archi-
tecture and several subsequent hardware architecture enhance-
ments for processing hearing aid algorithms. It is worth
mentioning, that by minimizing the area-performance product,
the total power consumption can be reduced, because utilizing
additional hardware is accompanied by an even greater de-
crease in processing cycles and minimal clock frequency for
real-time execution. In addition, the presented architecture is
2 times smaller at a 6 times lower clock frequency than a
Tensilica Xtensa LX4 processing the same algorithms.
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