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Abstract—The sparse fast Fourier transform (SFFT) is a
recent novel algorithm to compute discrete Fourier transforms
on signals with a sparse frequency domain with an improved
asymptotic runtime. Reference implementations exist for dif-
ferent variants of the algorithm and were already shown to
be faster than state-of-the-art FFT implementations in cases
of sufficient sparsity. However, to date the SFFT has not been
carefully optimized for modern processors. In this paper, we first
analyze the performance of the existing SFFT implementations
and discuss possible improvements. Then we present an optimized
implementation. We achieve a speedup of 2–5 compared to
the existing code and an efficiency that is competitive to high-
performance FFT libraries.

Index Terms—Fast Fourier transform, Software performance,
SIMD processors

I. INTRODUCTION

The sparse fast Fourier transform (SFFT) [1], [2] is a recent

novel algorithm for computing a discrete Fourier transform

(DFT) if the frequency domain is approximately or exactly

sparse, a situation that is common in signal processing. A

concrete application is presented in [3], where a particular

algorithm in the GPS system is improved by using techniques

similar to the SFFT. Other applications from [1], [2] include

audio and video compression, where signals are naturally

sparse in the frequency domain. The algorithm is funda-

mentally different to prior methods for this situation, which

are based on pruning, and achieves an improved asymptotic

runtime. Four different versions of the algorithm have been

proposed; prototypical implementations of two have been

made available at [4] and a third one has been implemented.

To date, the code has not yet been packaged as an easy-to-use

library since it requires several parameters to be set that are not

easy to determine. Further, the SFFT code has not yet been

optimized to map well to the memory hierarchy and SIMD

instructions available on modern processors.

Related work. The classical approach to FFTs on signals

of length n with k-sparse (k nonzero entries) frequency

domain is pruning, which removes unneeded computations to

reduce the operations count from O(n log n) to O(n log k)
[5]. However, this approach requires that the location of the k
nonzero outputs are known. Pruned FFTs can be optimized and

also efficiently implemented using SIMD instructions [6]. A

different approach is taken by the FADFT-2 [7], [8], which

is a probabilistic algorithm that requires O(k polylog(n))
many operations and does not require the location of the

nonzero outputs. The SFFTs have the same property and

further improve on that by achieving up to O(k log n).
It is known that careful optimizations are needed to achieve

optimal performance, which has been done for (ordinary) FFTs

in [9], [10], [11], [12]. These optimizations include SIMD

vectorization, optimization for the memory hierarchy, and the

creation of efficient basic blocks for the small FFTs that are

needed in the recursive computation [13].

For the SFFT to date no such optimized implementation

exists.

Contributions. The main contribution of this paper are

implementations of the existing SFFT algorithms to achieve

high performance on modern processors. Specifically,

• we first analyze the performance of the existing SFFT

implementations to identify possible bottlenecks;

• we identify and perform various optimization including

improving locality and using SIMD instructions (fo-

cussing on Intel CPUs with SSE);

• we show experimental results that demonstrate a runtime

improvement of up to five times compared to the prior

code; in particular,

• we show that for large sizes we can achieve an efficiency

(performance) similar to the highly optimized library

FFTW [10].

This work is based on [14], where more details can be found.

The code for all optimized SFFT implementations is available

for download at [15].

II. BACKGROUND

We briefly provide background on the SFFT and describe its

structure. The presentation of all details is beyond the scope

of this paper and we refer to [1], [2] for more information.

Overview of SFFTs. In the following we will assume that

x ∈ C
n is an n-dimensional signal, and that x̂ ∈ C

n is the

k-sparse DFT of x.

The SFFT exists at the time of this writing in four different

versions (v1–v4), each of which has different characteristics.

Currently no implementation of SFFT v4 exists. All SFFTs are

probabilistic, i.e., the correct result is only guaranteed with a

certain probability (which can be controlled by parameters).

Versions 1, 2, and 4 work on signals with noise; this means

the n − k non-significant Fourier coefficients do not have to

be exactly zero, but only small compared to the k significant

coefficients. Tables I and II give an overview of the asymptotic

runtime (or operations count) of the four SFFTs and the other

approaches mentioned before in the introduction.
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SFFT v1 SFFT v2 SFFT v3 SFFT v4

Asymptotic
Runtime

O
(
logn

√
nk log(n)

)
O

(
logn 3

√
nk2 log(n)

)
O (k logn) O (k logn log(n/k))

Algorithm Probabilistic Probabilistic Probabilistic Probabilistic

Constraints Restricted set of
input parameters

Restricted set of
input parameters

Only exactly
k-sparse signals

—

Implementation [4] [4] Unpublished None

TABLE I
SFFT V1–4 FROM [1], [2]

Common structure of SFFTs. All SFFT versions have a

similar structure and essentially consist of two steps. First,

there are multiple rounds of HashToBins calls. HashToBins is a

function that takes a signal x as input and hashes the k Fourier

coefficients of x̂ into a small number of bins using a random

hash function. A filter function is used, which is typically a

Gaussian filter. In some versions, an additional Mansour filter

is used as a heuristic improvement. The HashToBins routine

is very similar in all SFFT versions and described in detail in

the next section.

Finally, there is a Frequency Estimation Phase, in which

the output of the HashToBins calls is used to construct the

DFT x̂ of the input signal x. That involves finding the

correct frequency locations and magnitudes. The Frequency

Estimation Phase can be very different in the individual SFFT

versions.

We describe the two parts in greater detail next.

HashToBins. The HashToBins routine is, in various forms,

the core of all SFFT versions. The basic idea behind this

function is to hash the k non-zero Fourier coefficients into a

small number of B bins. From these bins, the actual locations

of the Fourier coefficients are then approximated.

The following steps are performed in a HashToBins call:

1) Permute the input vector x with random parameters. It

is not necessary to copy or rearrange the vector. Instead,

it is sufficient to traverse it in the permuted order. This

can be done by choosing a random step size and offset

(see the pseudo code below).

2) Multiply the permuted vector x′ with a filter vector G ∈
C

w, where w < n. For example, G could be a Gaussian

Filter. The result of this operation is x′′ ∈ C
w.

3) Compute the sums zi =
∑B

j=1 x
′′
j·w/B+i for i =

0, . . . , B − 1.

4) Compute the B-dimensional DFT of z and output ẑ.

The first three steps can be performed jointly in a single
loop as shown in this pseudo code (assuming z is initialized
to zero):

for i = 0 ... w
z[i%B] += x[(i*stepsize+offset)%n] * filter[i]

end

Frequency estimation in different SFFT versions. The

different SFFT versions utilize the HashToBins routine in

different ways to compute the correct result.

Version 1 of the SFFT consists of multiple executions of two

Pruning AAFFT

Asymptotic
Runtime

O(n log k) O(k polylog(n))

Algorithm Deterministic Probabilistic

Constraints Sparsity pattern must
be known in advance

—

Implementation [6] [8]

TABLE II
PRIOR FFTS FOR SIGNALS WITH SPARSE FREQUENCY DOMAIN

kinds of HashToBins rounds: location loops and estimation
loops. The purpose of the first kind, location loops, is to gen-

erate a list of candidate coordinates I . Candidate coordinates

i ∈ I have a certain probability of being indices of one of

the k significant, nonzero coefficients in x̂. This probability is

bigger for candidate coordinates occurring in more than one

location loop iteration. By running multiple iterations of the

location loops it is possible to find candidate coordinates with a

high probability of being on of the k nonzero coordinates. The

second type, estimation loops, are used to exactly determine

the coefficients x̂I for a given set of coordinates I . This is

done by reversing the filter applications in the HashToBins

rounds. If there was no hash collision, i.e., only up to one

coefficient was hashed to each bin, the coefficient’s magnitude

can be restored. The overall structure of SFFT v1 is shown in

Fig. 1(a).

SFFT v2 is very similar to version v1, but additional

HashToBins rounds are used with a special filter, which is

a modified version of the algorithm described in [16]. Here,

it will be referred to as Mansour filter.

While the core ideas of SFFT v3 are still similar to v1 and

v2, this version introduces two major improvements.

The first improvement is based on the observation that once

a frequency coefficient of the signal was found and estimated,

it can be removed from the signal. It is sufficient to update

the B-dimensional output of a HashToBins round.

The second important addition in SFFT v3 is an im-

proved scheme for finding the signal’s significant frequency

coordinates using individual HashToBins rounds. In SFFT

v1 and v2, multiple HashToBins rounds were run and their

results combined in order to get correct candidate coordinates

at a high probability. [1] proves that two distinct calls to



(a) SFFT v1 (b) SFFT v3

Fig. 1. Algorithm structure of SFFTs

HashToBins, one with a phase-shift of the signal and one

without, are enough. If a coefficient is hashed to a bin, the

phase difference of the two HashToBins results is then linear

in the coefficient’s coordinate. The structure of an SFFT v3

run is shown in Fig. 1(b).

SFFT v4 uses the same ideas as version 3, but eliminates the

restriction that only exact k-sparse signals can be used. The

details of this algorithm are very complex, and at the time of

this writing no implementation of SFFT v4 exists. Therefore

it will not be discussed here.

III. OPTIMIZATIONS

Here we present the main optimizations that we applied to

improve the performance and show profiling results for the

reference and optimized SFFT v3. More profiles can be found

in [14].

Optimization 1: Iteration in chunks. There are several

executions of the inner loop, and each time the filter vector

is traversed. We improved this by iterating in chunks over

the inner loop. It is inefficient when the whole filter vector

is traversed multiple times because it may not completely fit

into the CPU cache. By iterating over shorter chunks, one can

ensure that a chunk fits into cache and thus there may be less

cache misses. In other words, the order of the loops is changed

from

for loop = 1, 2, ..., m {

for i = 1, 2, ..., filter_length {
// Compute ...

}
}

to

for chunk = 1, 2, ..., nr_of_chunks {
for loop = 1, 2, ..., m {

for i = chunk*chunksize, ...,
(chunk+1)*chunksize {

// Compute
}

}
}

It turned out that the best choice for the chunk size is the

number of bins B, as the expensive modulo computation for

the index of the output vector can be avoided in this special

case.

Optimization 2: Interleaved data layout. In the original

data layout, the individual loop outputs were stored sequen-

tially in the output vector x_sampt. An interleaved storage

scheme is better because it improves spatial locality and thus

allows for better caching when accessing the memory. This

means that the i-th element of the j-th output vector is stored

at position i ·m+ j, when m is the number of loops.

Optimization 3: Vectorization. We replaced the built-in

complex arithmetic routines that are used with the C complex

data type by explicit complex arithmetic using the double data



type. After that we implemented 2-way vectorization using

SSE intrinsics. There are two approaches when using vector

instructions: either a vector represents a complex number with

real and imaginary part, or a vector stores either two real or

imaginary parts. The second approach showed a better perfor-

mance and can also be easily extended to vector architecture

that provide longer vectors such as AVX (Advanced Vector

Extensions, a SIMD instruction set with 256 bit vectors).

Other Optimizations. The FFTs in the end of the routine

can be computed all at once, instead of several independent

FFTs. FFTW has an interface to allow the computation of

multiple DFTs, that also allows FFTW to schedule the com-

putations in the most efficient way.

We split the execution of the SFFT run into a planning and

an execution phase (the planning is required by FFTW to at

least precompute the twiddles). This way, the planning cost

can be shared among multiple SFFT calls and is only a one-

time cost.

In SFFT v3 the loop count in the HashToBins routine or the

Frequency Estimation phase is often two, and thus it makes

sense to implement a special version of HashToBins with a

fixed, constant loop count. The loop was then unrolled and

further optimizations applied.

The Frequency Estimation phase in all algorithm versions

was vectorized using SSE intrinsics, though the success of

this optimization was much smaller than for the HashToBins

routine. The code here is not as suited for vectorization, for

example because of the many branches inside the loops.

We replaced the O(log n)-access-time result data

type std::map with the hash-map implementation

std::unordered_map (C++11) (O(1) access-time),

which significantly improved the algorithm speed.

An OpenMP-based multithreaded implementation of the

SFFT algorithm showed no performance gain as the overhead

of the multithreading was too big. Instead, the SFFT library

was modified so that multiple SFFTs on different input data

can be run in parallel. Now multiple cores can now be used

to compute multiple SFFTs at once, where as much data as

possible shared among the threads.

The source code was ported to support the newest Intel

compiler, which performs additional optimizations. Also, the

IPP library (Intel Performance Primitives) was used in the final

implementation, mainly for its highly optimized and vectorized

trigonometric functions.

Profiling. Table III shows a runtime profiles of SFFT v3

before and after optimizations for n = 220 and k = 50. The

flop count is obtained by measurement using the processors

performance counters. Profiles for SFFT v1 and v2 show

similar results, though the optimizations were more successful

for SFFT v3, mostly because the implementation of SFFT v3

could be reduced by fixing the number of inner loops and

applying loop unrolling.

Compared to the baseline, especially the filters have im-

proved. In the baseline profile the HashToBins calls made

up more than 63 % of the runtime (Mansour Filter 19.81 %,

Gauss Filter 26 %, Permuted Gauss Filter 17.25 %). In the

optimized version the HashToBins calls sum up to less than

18 % of the runtime (Mansour Filter 9.67 %, Gauss Filter

4.91 %, Permuted Gauss Filter 3.01 %). Thus, all HashToBins

routines, especially the ones with Gaussian Filters, could be

improved significantly.

The HashToBins calls with Gaussian Filters in SFFT v3

are well suited for vectorization, since mainly arithmetic

operations on vectors are performed. This, in combination with

an improved data layout, a different iteration scheme and other

optimizations, lead to a well performing implementation of

these filters.

The Mansour Filter HashToBins call in SFFT v3 could be

optimized so well since the it could be implemented with a

fixed loop count of 2. Additionally, both loops access the same

elements of the vector, but with an offset of 1, which yields

excellent spatial locality.

With a relative runtime of 48.97 %, the first Frequency
Estimation part is clearly the new bottleneck of the imple-

mentation.

IV. RESULTS

In this section we present some benchmark results compar-

ing runtime and performance of our optimized SFFTs to prior

versions and FFTW. FFTW is known to be one of the fastest

FFT libraries available but has no special support for sparsity.

Experimental Setup. The experiments presented were per-

formed on a single core of an Intel(R) Xeon(R) E5-2660 Sandy

Bridge CPU, 2.20 GHz. Each core has a 64 KB L1-cache and

a 256 KB L2-cache. An additional 20 MB L3-cache is shared

among the cores. All measurements are done with warm cache,

i.e., as an average over a sufficient number of iterations.

Speedup. The first question we address is how our opti-

mized SFFT code compares to the original implementation.

Fig. 3 shows the speedup we achieved for all three imple-

mented SFFT versions for a sparosty of k = 50. Higher

is better. For v3 we achieved between 4–5x. This shows

that processor-cognizant optimizations (vectorization, cache-

friendly memory access patterns) are worthwhile and essential.

214 215 216 217 218 219 220 221 222 223 224

Signal size n

1

2

3

4

5

6
Speedup

SFFT v3

SFFT v2

SFFT v1

Fig. 3. Speedup: our optimized SFFT versus original SFFT (k = 50)

Runtime. Next, we investigate the actual runtime of SFFT

v1–3 compared to FFTW, which is run in both MEASURE and

ESTIMATE mode. The former uses search to find the best FFT

recursion; the latter uses a heuristic. Fig. 2(a) shows the results



Unoptimized Optimized

Function Runtime [s] % of Total Time Performance [Gflop/s] Runtime [s] % of Total Time Performance [Gflop/s]

HashToBins (Mansour Filter) 7.71e-05 19.81 0.20 1.45e-05 9.67 1.04
Frequency Estimation 7.33e-05 18.83 0.12 7.36e-05 48.97 0.10
HashToBins (Gauss Filter) 1.01e-04 26.01 0.14 7.39e-06 4.91 1.44
Frequency Estimation 2.46e-05 6.34 0.16 1.69e-05 11.25 0.51
HashToBins (Permuted Gauss F.) 6.72e-05 17.25 0.14 4.53e-06 3.01 0.96
Frequency Estimation 5.87e-06 1.51 0.13 1.79e-05 11.88 0.41
Other 3.99e-05 10.25 0.15 1.55e-05 10.30 0.61

Sum 3.89e-04 100.00 1.50e-04 99.99

TABLE III
RUNTIME PROFILE OF SFFT V3

214 215 216 217 218 219 220 221 222 223 224

Signal size n
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SFFT v3

SFFT v2

SFFT v1

(a) Runtime for k = 50
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Number of nonzero frequencies k
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(b) Runtime for n = 222
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SFFT v3

SFFT v1

SFFT v2

(c) Performance for k = 50

Fig. 2. Runtime and performance benchmarks of our optimized SFFT v1–3 against FFTW. For the performance plots note that the operation counts of the
implementations have been reduced compared to the original version.

again for fixed k = 50. The gain becomes very significant for

large sizes, in particular for v3, which is 4 orders of magnitude

faster for n = 224. Fig. 2(b) fixed the size to n = 222 and

varies k. Even for k = 212, SFFT v3 is still about 50 times

faster than FFTW.

Performance. Finally, we investigate the performance of the

different implementations, measured in Gflop/s. The perfor-

mance measures the efficiency of the code, i.e., how well it is

optimized. Fig. 2(c) shows the results. Note that the algorithms

have vastly different operation counts (even asymptotically;

see Table I), so the performance is not (inversely) proportional

to the runtime. We observe that the performance of the SFFT

is mostly lower than that of FFTW, but for large sizes and v3

we achieve about the same level. Since FFTW is known to be

highly optimized, this shows that the same can be achieved

for the SFFT.

V. CONCLUSION

Once fully implemented including the automatic choice of

the needed parameters, the SFFT has the potential to become

the algorithm of choice for many performance-critical sparse

DFTs. In this paper we contributed a speedup of about 5x for

the case of exact sparseness (SFFT v3), which may translate

to similar saving for SFFT v4 once it is implemented. With

this speed we showed that at least for large sizes we achieve

an efficiency (performance) similar to the highly optimized

FFTW.
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