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Abstract 

We propose a method for learning models of people’s mo- 
tion behaviors in an indoor environment. As people move 
through their environments, they do not move randomly. In- 
stead, they often engage in typical motion pattems, related to 
specific locations that they might be interested in approach- 
ing and specific trajectories that they might follow in doing 
so. Knowledge about such pattems may enable a mobile robot 
to develop improved people following and obstacle avoidance 
skills. This paper proposes an algorithm that learns collections 
of typical trajectories that characterize a person’s motion pat- 
terns. Data, recorded by mobile robots equipped with laser 
range finders, is clustered into different types of motion us- 
ing the popular expectation maximization algorithm, while si- 
multaneously learning multiple motion patterns. Experimental 
results, obtained using data collected in a domestic residence 
and in an office building, illustrate that highly predictive mod- 
els of human motion patterns can be leamed. 

1 Introduction 

Whenever mobile robots are designed to operate in populated 
environments, they need to be able to perceive the people in 
their environment and to adopt their behavior according to the 
activities of the people. The knowledge of typical behaviors 
can be used in several ways to improve the behavior of the 
system. For example, it allows a robot to adopt its velocity to 
the speed of people in the environment and it enables a robot 
to choose trajectories that minimize the risk of collisions with 
people. In this paper we consider a specific problem in the 
context of a nursing robot project 1131. The goal of this project 
is the development of intelligent service robots than can assist 
people in their daily living activities. One aspect in this context 
is to learn typical behaviors of the persons in order to know, 
where the person currently is or where it is currently going to. 

Recently, a variety of service robots were developed that are 
designed to operate in populated environments. These robots, 
for example, are deployed in hospitals [7], museums [3], office 
buildings [I], and department stores [4], where they perform 
various services, e.g., deliver, educate, entertain [15] or assist 
people [14, 91. Additionally, a variety of techniques has been 
developed that allows a robot to estimate the positions of peo- 
ple in its vicinity or to adapt its behavior accordingly. For ex- 

ample, the techniques described in [ 161 are designed to track 
multiple persons in the vicinity of a robot. The approach pre- 
sented in [17] uses a given probabilistic model of typical mo- 
tion behaviors in order to predict future poses of the persons. 
[6] present an approach to improve the behavior of a robot 
by following the activities of a teacher. The system described 
in [8] uses a camera to estimate where persons typically walk 
and adapts the trajectory of the robot appropriately. [ 181 ap- 
ply a Hidden-Markov-Model to predict the motions of moving 
obstacles in the environment of a robot. [lo] present a system 
that is able to keep track of a moving target even in the case 
of possible occlusions by other obstacles in the environment. 
All the techniques described above assume the existence of a 
model of the motion behaviors. Our approach, in contrast, is 
able to learn such models and to use the learned models for the 
prediction of the peoples movements. The technique described 
in [2] uses an Abstract Hidden-Markov-Model to learn and to 
predict motions of a person. This approach assumes that all 
trajectories are already clustered into the corresponding mo- 
tion behaviors during the learning phase. Our method extends 
this approach as it determines both, the clustering and the cor- 
responding motion behaviors. 

In this paper we present an approach that allows a mobile robot 
to learn probabilistic motion pattems of persons. We use the 
popular EM-algorithm to simultaneously cluster trajectories 
belonging to one motion behavior and to learn the character- 
istic motions of this behavior. We apply our technique to data 
recorded with mobile robots that are equipped with laser-range 
finders. Furthermore, we demonstrate how the learned models 
can be used to predict the trajectory of a person in the natural 
environment. 

This paper is organized as follows. In the next section, we 
present the probabilistic representation of the motion patterns 
and describe how to learn them using the expectation maxi- 
mization algorithm. In Section 3 we describe our application 
based on data recorded with mobile robots that are equipped 
with laser-range finders. Section 4 presents experimental re- 
sults regarding the learning process as well as regarding the 
prediction accuracy of the learned models. 

2 Learning Motion Patterns 

Our approach to discovering typical motion pattems of peo- 
ple is strictly statistical, using the popular EM-algorithm to 
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find different types of activities that involve physical motion 
throughout the natural environment. The input to our routine 
is a collection of trajectories d = { d l ,  . . . , d N }  (called: the 
data). The output is a number of different types of motion pat- 
terns 8 = {&, . . . , O M }  a person might exhibit in their natural 
environment. Each trajectory di consists of a sequence 

di = {x:,xp, ..., ZT} t 1) 

of positions x: covered by the person. In our current system, 
these positions are computed based on a grid-based discretiza- 
tion of the environment: Each z! represents the position of the 
cell covered by the person after t steps. Accordingly, xi is 
the first cell covered by the person and ZT is the final destina- 
tion. Throughout this paper we assume that all trajectories di 
have the same length. In our current system we choose T as 
the maximum length of all trajectories. Trajectories of length 
TI < T are extended to length T by adding the final location 
of that trajectory for exactly T - T’ times. 

2.1 Motion Patterns 
We begin with the description of our model of motion pat- 
terns, which is subsequently estimated from data using EM. 
Within this paper we assume that a person engages in M dif- 
ferent types of motion patterns. A motion pattern, denoted Om 
with 1 < m 5 M ,  is represented by probability distributions 
p ( z  I 8k) specifying the probability that the person is at lo- 
cation 2 after t steps given that he or she is engaged in this 
motion pattem. Accordingly, we calculate the likelihood of a 
trajectory di under the m-th motion model 8, as 

T 

2.2 Expectation Maximization 
In essence, our approach seeks to identify a model 8 that max- 
imizes the likelihood of the data. To define the likelihood of 
the data under the model 8, it will be useful to introduce a set 
of Correspondence variables, denoted Q ~ .  Here i is the index 
of a trajectory di ,  and m is the index of a motion model 8,. 
Each correspondence cim is a binary variable, that is, it is ei- 
ther 0 or 1. It is 1 if and only if the i-th trajectory corresponds 
to the m-th motion pattem. If we think of the motion model as 
a specific motion activity a person might engage in, qm is 1 if 
person was engaged in motion activity m in trajectory i. 

In the sequel, we will denote the set of all correspondence vari- 
ables for the i-th data item by ci, that is, ci = {GI,. . . , c~M}. 
For any data item i, the fact that exactly one correspondence 
is 1 translates into the following: 

M c cim = 1. (3) 
m=l 

Throughout this paper we assume that each motion pattem is 
represented by T Gaussian distributions with a fixed standard 

deviation 0. Accordingly, the application of EM leads to an 
extension of the k-Means Algorithm (see e.g. [12]) to trajec- 
tories. Given the individual Gaussians for a model 8 we can 
compute the joint likelihood of a single trajectory di  and its 
correspondence vector q as follows: 

Thereby, we exploit the fact that only one of the correspon- 
dence variables cim in the inner product is 1, and all others are 
0. Accordingly, the total likelihood over all values of i is given 
by the product of the individual joint probabilities: 

Since the logarithm is a monotonic function we can maximize 
the log likelihood instead of the likelihood. The logarithm of 
(5 )  is given by: 

1 
lnp(d,cl8) = T . M . I n -  

i=l ” (  f i u  

_. T M  \ 
1 

t=l m=l 

Finally, we notice that we are not really interested in the log 
likelihood of the correspondence variables c, since those are 
not observable in the first place. The common approach is 
to integrate over them, that is, to optimize the expected log 
likelihood E,[lnp(d, c I 8) 1 8, d] instead which, according to 
(6), is 

Since the expectation is a linear operator we can move it inside 
the expression, so that we finally get: 

1 = 2 ( T M . l n -  N 

6 0  

where E[qm I 8, d] depends on the model 8 and the data d.  

Unfortunately, optimizing (8) is not an easy endeavor. EM 
is an algorithm that iteratively maximizes expected log like- 
lihood functions by optimizing a sequence of lower bounds. 

3602 



In particular, it generates a sequence of models, denoted 
ell], 8121, . . . of increasing log likelihood. 

Mathematically, the standard method is to turn (8) in a so- 
called Q-function which depends on two models, 8 and 8’: 

2.3 Monitoring Convergence and Local Maxima 
The EM-algorithm is well-known to be sensitive to local max- 
ima in the search [5,11]. In the context of identifying motion 
patterns, a typical local maximum involves situations in which 
different types of trajectories are, with high probability, asso- 
ciated with the same model component 8,. In such cases, the 
motion patterns may never develop into a clear model of peo- 
ple’s motion, and specific trajectories may never be explained 
well with any of the model components. 

Q v  I e) = E,[M~,c I e!) I e, 4. 
In accordance with (8), this Q-function is factored as follows: 

&(e’ I 8) 
Luckily, such cases can be identified during the optimiza- 
tion. Our approach continuously monitors two types of oc- 
currences: 

\ 
1 -z . ~ [ c ~ ,  I WIII~; - p;ii2). (10) 

2u t=l,=l 1. Low data likelihood If a trajectory di has low likelihood 
under the model 8, this is an indication that no appropri- 
ate motion pattem has yet been identified that represents 

The sequence of models is then given by calculating 

= argmaxQ(8’ I &I) (1 1) this trajectory. 
e’ 

starting with some initial model dol. Whenever the Q-function 
is continuous as in our case, the EM algorithm converges at 
least to a local maximum. 

In particular, the optimization involves two steps: calculating 
the expectations E[ci, I @I,  d] given the current model @I, 
and finding the new model that has the maximum ex- 
pected likelihood under these expectations. The first of these 
two steps is typically referred to as the E-step (short for: ex- 
pectation step), and the latter as the M-step (short for: maxi- 
mization step). 

To calculate the expectations E[ci, I d] we apply Bayes 
rule, obeying independence assumptions between different 
data trajectories: 

where the normalization constants and 7’ ensure that the ex- 
pectations sum up to 1 over all m. If we combine (2) and 
(12) exploiting the fact that the distributions are represented 
by Gaussians we obtain: 

m 

t=1 

Finally, the M-step calculates a new model by maxi- 
mizing the expected likelihood. Technically, this is done by 
computing for every motion pattem m and for each time step 
t a new mean p$+ll of the Gaussian distribution. Thereby 
we consider the expectations E[ci, 1 Ob], d] computed in the 
E-step: 

2. Low motion pattem utility: Our second criterion involves 
testing the utility of a motion pattems. The aim of this cri- 
terion is to discover multiple model component that ba- 
sically represent the same people motion. To detect such 
cases, the total data log likelihood is calculated with and 
without a specific model component 8,. Technically, this 
involves executing the E step twice, once with and once 
without 8,. If the difference in the overall data likeli- 
hood is smaller than a pre-specified threshold, the effect 
of removing 8, from the model is negligible. This indi- 
cates a case where a similar motion pattern exists and the 
one at hand is a duplicate. 

Whenever the EM appears to have converged, our approach 
extracts those two statistics and considers “resetting” individ- 
ual model components In particular, if a low data likelihood 
trajectory is found, a new model component is introduced that 
is initialized using this very trajectory. Conversely, if a model 
component with low utility is found, it is eliminated from the 
model. 

In our experiments, we found this selective restarting and 
elimination strategy extremely effective in escaping local max- 
ima. As indicated in the experimental results section below, 
all our experiments converged to a model that clustered tra- 
jectories into categories 100% identical to those prescribed by 
us manually. Without this mechanism, the EM frequently got 
stuck in local maxima and generated models that were signifi- 
cantly less predictive of human behavior. 

3 Laser-based Implementation 

The EM-based learning procedure has been implemented for 
data acquired with laser-range finders. To acquire the data we 
used three Pioneer I robots (see left image of Figure 1) which 
we installed in the environments. The robots were aligned 
so that they covered almost the whole environment. Typical 
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Figure 2: Typical data sets obtained with three robots tracking a person in a home environment. 

Figure 1: Pioneer I robot used to record the data (left) and Person 
moving in the environment (right). 

Figure 3: Trajectory of a person extracted from the laser data. 

range data obtained during the data acquisition phase are de- 
picted in Figure 2. 

To determine the trajectories that are the input to our algorithm 
we first extract the position of the person in the range scans. 
We locate changes in consecutive laser-range scans and use lo- 
cal minima in the distance histograms of the range scans. In 
a second step we identify resting places and perform a seg- 
mentation of the data into different slices in which the person 
moves. Furthermore, we smooth the data to filter out mea- 
surement noise. Finally, we compute the trajectories, i.e. the 
sequence of cells covered by the person during that motion. A 
typical result of this process is shown in Figure 3. 

4 Experimental Results 

To evaluate the capabilities of our approach, we performed ex- 
tensive experiments in a domestic residence as well as in an 
office environment. Maps of these environments are depicted 
in Figures 3 and 7. The first set of experiments described here 
demonstrates the ability of our approach to learn different mo- 
tion pattems from a set of trajectories. The goal of the second 
set of experiments is to analyze the classification performance 
of learned models. 

4.1 Application of EM 
In the first experiment, we applied our approach to learn a mo- 
tion model for 42 trajectories recorded in a home environment. 
Figure 4 shows for one experiment the expectations that were 
computed in reach round of the EM given 14 possible motion 
behaviors. In this particular experiment, we have exactly three 
trajectories for each motion pattern. Each column in the pic- 
tures contains the expectations E[cil 1 8,d], . . . , E[QM 1 8, d] 
for every trajectory di. To enhance the readability, we grouped 
the examples belonging to the same motion pattern so that they 
appear as blocks of three trajectories in Figure 4. 

Since a uniform distribution of E[ci, I 8, d] represents a lo- 
cal maximum in the log-likelihood space, the EM-algorithm 
immediately gets stuck if we start with a uniform distribution. 
We therefore initialize the expectation with a unimodal distri- 
bution for each trajectory, i.e., for each di  the expectations 
E[cil I 8,d] ,  . . . , E[QM I 8, d] form a distribution with a 
unique peak. The location of the mode, however, is chosen 
randomly. 

The topmost image of Figure 4 depicts the initial expecta- 
tion generated according to the scheme described above. In 
step 3 the EM has converged to a local maximum in the log- 
likelihood space. As can be seen from the figure, three trajec- 
tories are assigned to two different model components with the 
same likelihood. Moreover, there are two categories of trajec- 
tories that are assigned to the same motion pattem. In step 4 
our algorithm therefore removes one of the duplicate models 
and introduces a new one to which it assigns the trajectory 
12 which has the lowest likelihood given the current model 8. 
After the next iteration, the system has converged to a state 
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SteD 0: 

Step 1: 

SteD 2: - r -  

Step 3: 

SteD 4 

SteD 5:  

Figure 4: Expectations E [ c 4  computed in the different iterations 
of the EM-algorithm. 

in which all trajectories are correctly assigned to the different 
motion patterns. 

To illustrate that our algorithm has correctly clustered the tra- 
jectories Figure 5 shows trajectories of two different classes of 
motion behaviors after the convergence of the EM. 

4.2 Predicting lkajectories 
To evaluate the capability of our learned models to predict hu- 
man motions we performed a series of experiments. In each 
experiment we randomly chose starting fractions of test trajec- 
tories and counted the cases in which our model correctly pre- 

Figure 5: Trajectories of two different classes of motion behaviors. 

. office environment -' 
home environment .............. 

. office environment -' 
home environment .............. 

.......... i f , , , , ,  
0 20 40 60 80 100 

length of trajectory [%I 

Figure 6: Likelihood of the correct motion behavior after observing 
fractions of trajectories. 

dicts the correct motion behavior. Figure 6 shows in percent 
the number of correctly predicted motion behaviors depending 
on the length of the observed trajectory. As can be seen from 
the figure, the classification results are quite good and our ap- 
proach yields models allowing a mobile robot to reliably iden- 
tify the correct motion pattern. If the robot observes 30% of a 
trajectory in the home environment, then the motion behavior 
with the highest probability corresponds to the correct motion 
behavior in over 80% of all cases. The performance in the of- 
fice environment is not as good as in the home environment, 
which is because many behaviors have larger parts in common 
in this environment. 

Figure 6 illustrates for one trajectory of the person in the of- 
fice environment the evolution of the set of possible motion 
behaviors. Shown in grey are the means of four different mo- 
tion patterns. The black line corresponds to the trajectory of 
the person which was observed for the first time at the position 
labeled S. In the beginning there are four possible motion be- 
haviors (W, B, D, M) to which the trajectory might belong. 
When location 1 is reached the motion behavior W can be 
eliminated from the set of hypotheses because the correspond- 
ing likelihood gets too low. Thus, even if the system is not 
able to uniquely determine the intended goal location, it can 
already predict that the person will follow the corridor during 
the next steps. When the person reaches location 2 the sys- 
tem can also exclude the motion behavior B. Finally, when the 
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Figure 7: Motion pattems and trajectory of a person. 

person reaches position 3, C becomes unlikely and D becomes 
the most probable motion behavior. This illustrates, that the 
results of the prediction are useful even in situations in which 
there are ambiguities about the actual intention of the person. 

5 Conclusions 

In this paper we presented a method for learning motion be- 
haviors of persons in indoor environments. To cluster similar 
behaviors into single motion pattems, we apply the popular 
expectation maximization algorithm. The output of our algo- 
rithm is a collection of motion pattems. We furthermore de- 
scribed how to use the resulting models to predict the motions 
of persons in the vicinity of the robot. 

Our approach has been implemented and applied to range 
data recorded with mobile robots equipped with laser sensors. 
Special techniques allow the EM-algorithm to overcome local 
maxima in the likelihood-space which frequently occur in this 
application. In practical experiments we demonstrated that our 
method is able to learn typical motion behaviors of a person in 
a domestic residence as well as in an office building. Based 
on the resulting motion pattems our system can reliably pre- 
dict the motions of persons based on observations made by the 
robot. 
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