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Abstract 
We explore two approaches to  introducing noise into 
the buscontention channel: an existing approach called 
fuzzy t ime, and a novel approach called probabilistic par- 
titioning. We compare the two approaches in terms of 
the impact on covert channel capacity, the impact on 
performance, the amount of random data needed, and 
their suitability for various applications. For probabilis- 
tic partitioning, we obtain a precise tradeoff between 
covert channel capacity and performance. 

1 Introduction 
In [7], Hu describes the bus-contention channel, a covert 
channel that can be exploited at  a rate exceeding 1000 
bits per second. This covert channel arises in the archi- 
tecture shown in Figure l. 
In this architecture, multiple processors (which may 
be processing data at  different security levels) access 
a shared memory bank over a shared bus.' When there 
is contention for the use of the bus (i.e., more than one 
processor is attempting to use the bus), bus requests are 
serviced at  a slower rate. Since processors can determine 
(with some degree of accuracy) the rate at  which their 
bus requests have been serviced, it is possible for one 
processor (e.g., a processor executing a high process) to 
send data to another processor (e.g., a processor exe- 
cuting a low process) in the following way. 
Covert Channel Exploitation Scenario: During 
each millisecond interval, the high process sends a 1 
by flooding the bus with requests, or a 0 by generating 
no bus requests. The low process generates a constant 
stream of bus requests and, during each millisecond in- 
terval, measures the rate at  which its requests are ser- 
viced; if the rate is slower than normal, it records this 
as a 1; if the rate is normal, it records this as a 0. Thus, 
high data can be sent to the low process at  1000 bits 
per second. 0 

Note that throughout this paper, we will make the 
worst-case assumption that all other processors are not 
accessing the bus; i.e., there is no background noise that 
may slow down the exploitation of the bus-contention 

'We are assuming that access controls are in place that pre- 
vent processors from directly reading data for which they are not 
cleared. Such access controls are straightforward to implement 
(see e.g., [3]). Thus, even though the two processors share the 
same physical memory bank, it would not be possible, e.g., for a 
low processor to directly read high data. 

channel. We believe that making such worst-case as- 
sumptions (rather than, say, average-case assumptions) 
is appropriate in the context of covert channel analysis. 
Also note that the threat that we are concerned with is 
not that the users (i.e., the human users) of the high pro- 
cessor are attempting to send information to low users. 
For if they wanted to, they could more easily pass notes 
in the park and entirely bypass the computer system. 
Rather, we are concerned that the high processor is ex- 
ecuting a Trojan horse (i.e., a program that appears to 
be something that the users want, but actually contains 
something else that is entirely undesirable) and that the 
Trojan horse is attempting to send high information to 
the low processor. This is a legitimate concern since 
Trojan horses may be introduced into the system by a 
virus or may even be contained in legitimately installed 
off-the-shelf software. 
In this paper, we explore two approaches to reducing 
the rate at  which the bus-contention channel can be 
exploited. The first approach, called fuzzy time is de- 
scribed by Hu [7]. The second is a novel approach, which 
we call probabilistic partitioning. The remainder of this 
paper is organized as follows. In Sections 2 and 3, we ex- 
plore fuzzy time and probabilistic partitioning, respec- 
tively. In Section 4, we give some concluding remarks. 

2 F'uzzy Time 
Hu's approach to reducing the bus-contention channel is 
based on the observation that exploitation of this chan- 
nel (or any covert timing channel) requires a reference 
clock. That is, the low process receives signals over the 
channel by measuring the rate of its bus request comple- 
tions with respect t o  some reference clock. Given this, 
the basic approach of fuzzy time is to make certain that 
the low process does not have access to an accurate ref- 
erence clock. There are two parts to the implementation 
of this approach. 

1. The security kernel intercepts and buffers all events 
that may be used as a reference clock. As described 
in [7], such events include the timer interrupt, 1/0 
completion interrupts, the arrival of data under the 
control of Direct Memory Access (DMA) hardware, 
etc.. Typically, these events include all those that 
are generated by an asynchronous controller (e.g., 
a disk controller, terminal controller, or DMA con- 
troller). 

2. The security kernel delivers all of these various 
events to the receiving processes on the next tick of 
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Figure 1: A Typical Multiprocessor Architecture 

a fuzzy clock (i.e., a clock with a random clock-tick 
interval) that is maintained by the security kernel. 
That is, on each of the fuzzy clock ticks, the se- 
curity kernel delivers all events (interrupts, data, 
etc.) that have occurred since the last fuzzy clock 
tick. 

In this way, the fuzzy clock becomes the only (and 
hence, the most accurate) available reference clock for 
use in a timing channel exploitation.2 

2.1 The Effectiveness of Fuzzy Time 
The effect of fuzzy time on reducing the bus-contention 
channel is two-fold. First, the reference clock that is 
available to the low (receiving) process is slower and 
less accurate. For example, in the system described by 
Hu-the VAX security kernel3-the fuzzy clock’s inter- 
val has a mean of 20 milliseconds, as opposed to the one 
millisecond clock interval needed for the covert channel 
exploitation scenario described in Section 1. Since the 
low process receives signals over the covert channel at 
the rate of its reference clock, the effect of this is that 
the low process receives fewer signals per second. In 
the case of the VAX security kernel under fuzzy time, 
the low process receives 50 signals per second, as op- 
posed to 1000 (or more) signals per second without fuzzy 

’Actually, this discussion is slightly simplified froin Hu’s work. 
To address all types of clocks, Hu introduces “upticks” (which are 
used for notification of incoming events) and “downticks” (which 
are used for notification of outgoing events). However, for the 
present discussion it is sufficient to consider a single fuzzy refer- 
ence clock. 

VAX is a trademark of Digital Equipment Corporation. 

time. Although the signalling processes can try to make 
up for this reduction in signals per second by enlaxg- 
ing the si nalling alphabet, as noted by Hu, “increasing 
the alpha%et size can only increase the bandwidth loga- 
rithmically, while reducing the clock rate decreases the 
bandwidth linearly. Furthermore, in [Hu’s] experience, 
randomization makes most exploitations utilizing large 
alphabet sizes impractical.”[7, $5.5.21 Thus, slowing the 
reference clock rate results in a significant reduction in 
the bus-contention channel. 
The second effect of fuzzy time is that it impedes (i.e., 
it slows down all synchronization between high and low 

has its own, independent, fuzzy clock. In particular, 
this means that the high process has no way of deter- 
mining when the low process receives fuzzy clock ticks; 
and therefore, the high process has no way of knowing 
when to start and stop sending its signals. Consider, 
if the high process had access to the low process’ fuzzy 
clock, then it could synchronize its transmission with it 
(i.e., with the times when the low process receives its 
signals), thus transmitting one signal per fuzzy clock 
tick. However, since the high process does not have 
this information, it cannot precisely synchronize with 
the low fuzzy clock. We therefore expect that the high 
process must signal at  a much slower rate. 

processes. T 1 is is due to  the fact that each processor 

2.2 Analyzing Channel Capacity 
Hu claims that after implementing fuzzy time, the I ‘ .  . . 
bandwidth [of the bus-contention channel] is less than 
ten bits per second . . .”[7, $71. This claim is supported 
by “actual measurements with exploitations’’ 7, $81. It 

surements were corroborated by a rigorous mathemat- 
would provide a great deal more assurance if t E, ese mea- 
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ical analysis of the channel. In particular, we would 
like to  know (in information-theoretic terms) the capac- 
i ty  of the buscontention channel under fuzzy time. In 
the communication theory community, it has long been 
believed that the capacity of a given channel is the ap- 
propriate measure of the rate at  which information can 
be transmitted over that channel. Unfortunately, Hu 
does not provide an analysis of the capacity. In private 
correspondence, Hu stated that this was because they 
“believed that the problem is intractable”. In our own 
attempts to analyze fuzzy time, we came to the same 
conclusion. To understand why this is so, let’s develop 
the expression for capacity that is appropriate for the 
buscontention channel under fuzzy time. 
First, let’s precisely describe the inputs and outputs of 
the channel. We will assume that the low process is- 
sues a constant stream of bus requests and counts the 
number of its requests that complete during each fuzzy 
clock interval! Also, on each fuzzy clock tick, the low 
process’ system clock register is updated to reflect the 
(kernel maintained) system time, rounded to the near- 
est tenth of a second [7, 05.11; that is, the security kernel 
maintains the system time to an accuracy of one mil- 
lisecond (i.e., one thousandth of a second), but for the 
purpose of fuzzy time, supplies the system time to the 
processes only on each fuzzy clock tick and rounded to 
the nearest tenth of a second. Given all this, we will 
denote a t-millisecond history of low outputs as a se- 
quence: 

where cj is low’s ith bus request completion count and si 
is the value of low’s system clock on the i th fuzzy clock 
tick, relative to the starting time of the history (i.e., for 
simplicity we are translating the system times so that 
the history starts at time 0); and where s,-1 < t 5 s,. 
We will denote the set of all possible low output histories 
of length t milliseconds by Ot. 
Now, what are the high process’ inputs? For the pur- 
pose of the present analysis, we will assume that the 
high process uses only two input values-generate con- 
stant bus requests (to send a 1) or generate no bus 
requests (to send a 0 and that it chooses the dura- 

millisecond5 That is, the high process’ inputs are of 
the form “generate (constant/no) bus requests for n mil- 
liseconds” , where n is a positive integer. 
Note that the high process can precisely control the du- 
ration of its inputs-even when they do not start or 
end on a fuzzy clock tick-in the following way. Since 

tion of its inputs to k e some integer multiple of one 

‘Note that we may have already lost some generality in our 
analysis; although the above assumption seems to be a good 
strategy for the low process to use in an exploitation of the bus- 
contention channel, it may not be the optimal strategy. But if the 
analysis in this restricted case turns out to be intractable, then 
our case for the intractability of the general problem will be even 
stronger-for the general analysis of the bugcontention channel 
entails maximizing over all possible low strategies. 

5Note that we have again lost some generality; the optimal 
high strategy may involve some violation of this assumption. 

the low process’ strategy is (by assumption) to enerate 
a constant stream of bus requests, and the otter pro- 
cessors are (by assumption) generating no bus requests, 
the high process knows the precise load on the bus, and 
therefore can calculate the number of bus requests it 
needs to  make in order for its input to last for a given 
duration.6 
Given this description of the high process’ inputs, we 
will denote a t-millisecond history of high inputs as a 
sequence: 

where di E ( 0 , l  is the high input during the it‘‘ mil- 

input histories by Z t .  
Now, given a description of how the bus works and of 
the probability distribution on fuzzy clock ticks, we can 
define a conditional probability function q(Pt I at) that 
gives the probability of the low output history given 
the high input history a t .  In particular, to define q ,  note 
that for a given t-millisecond high input history, at, and 
a given t-millisecond history of fuzzy clock tick intervals, 
say 7t = . ( t l , t 2 , .  . . , t , ) ,  the resulting t-millisecond low 
output history, P t ,  is functionally determined. Let’s say 
that Pt = [ (a t ,  7t) ,  where the function f is determined 
by the particular characteristics of the bus. Then, q can 
be defined as follows. 

at = (dl, d 2 , .  . * d t )  

lisecond. We wil / denote the set of all t-millisecond high 

where P(7t) is the probability of the fuzzy clock tick h i s  
tory, 7t , occurring, and is determined by the probability 
distribution with which fuzzy clock ticks are generated. 
Now, we can define the capacity of the buscontention 
channel as 

(2) 
A C = lim Ct bits per second 

t+oo 

where 
A 1000 

where the maximization is taken over all possible prob- 
ability distributions, p ( a t ) ,  on t-millisecond high input 
histories; and I(Zt,Ot) is the mutual information be- 
tween Zt and Ot,  defined as: 

Some notes are in order. 

The reason we need to consider the mutual infor- 
mation between sequences of inputs and outputs 

61n contrast, the low process cannot use this trick since it does 
not know, a priori, how much bus traffic will be generated by the 
high process. 
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(rather than between single inputs and outputs) is 
that the bus-contention channel under fuzzy time 
is, in information theoretic terms, a channel with 
memory. Namely, at any given millisecond t ,  the 
state of the channel consists of the time t‘ a t  which 
the low process received its last fuzzy clock tick (for 
this determines the probability distribution over 
when it will receive its next fuzzy clock tick) and 
the current bus request completion count. 

0 The above definition of the capacity of a channel 
with memory follows that of Gallager [6, $4.61 with 
one exception; Gallager considers the effect of the 
initial state of the channel. However, he also shows 
that if a channel is indecomposable’, then the ini- 
tial state has no effect on the channel’s capacity 
[6, Theorem 4.6.41. Since the bus-contention chan- 
nel is mdecomposable (proof left to the reader), we 
have omitted all references to the initial state from 
the above. 

Now we are in a position to discuss why evaluating the 
channel capacity (i.e., Equation 2) is so difficult. First 
of all, we cannot directly compute the capacity from 
its definition. This is due to the fact that the defini- 
tion involves taking the limit (of Ct)  as t approaches 
infinity. Trying to  compute this directly would take in- 
finite time. We are therefore left with two options: find 
an analytic solution or compute a numerical approxi- 
mation. Finding an analytic solution would probably 
involve exploiting the structure of the conditional prob- 
ability function, q. However, as shown in Equation 1 
above, the expression for q involves a summation, which 
is typically difficult to deal with analytically unless a 
closed-form expression for it can be found. Our own 
attempts in this direction have thus far failed. 
On the other hand, since inputs to the bus-contention 
channel occur a t  such a high rate (one thousand per sec- 
ond), numerical approximations of any significance in- 
volve long sequences of inputs and hence an intractable 
optimization problem. For example, an attempt to com- 
pute C ~ O O  (which represents the amount of informa- 
tion that can be transmitted over the channel in 100 
milliseconds-i.e., one tenth of a second), requires us 
to find the optimal probability distribution over the set 
2100, which has 2”’ elements (i.e., greater than lo3’ 
elements). This is far beyond the realm of tractable 
optimization problems. 
In the above, we have tried to indicate why analyzing 
the capacity of the bus-contention channel under fuzzy 
time is difficult. We’d like to emphasize that this is 
not to say that it can’t be done. Rather, it is an open 
research problem. 

2.3 Exploitation Rates 
We have already noted that Hu did not provide a capac- 
ity analysis for the bus-contention channel under fuzzy 
time. What then, did Hu mean when he claimed that 

‘The interested reader is referred to [6, 54.61 for the definition 
Knowing the definition is not necessary in of indecomposable. 

what follows. 

the “bandwidth is less than ten bits per second”? In 
private correspondence, John Wray and Wei-Ming Hu 
explained that the covert channel analysis team devel- 
oped an exploitation-i.e., a high (sending) process and 
a low (receiving) process-and tried it out on the actual 
system to see how fast it ran. This is certainly a useful 
test. However, the results of this test do not provide 
any evidence that faster communication is not possible. 
Rather, this test gives us a lower bound on capacity. 
That is, exhibiting an exploitation that transmits data 
at a given rate, say n bits per second, shows that the 
capacity of the channel is at least as high as n bits per 
second. 
Supposing that it is too difficult to  evaluate the capac- 
ity of a given covert channel, then this type of ad hoc 
testing of various exploitations may be the best pos- 
sible approach. However, we need to be aware of the 
limitations of such testing. In particular, such testing 
does not establish an upper bound on the rate of com- 
munication over the channel. We simply have to hope 
that system penetrators will not be more clever in their 
exploitations than the system analysts were. 

2.4 Other Disadvantages of Fuzzy Time 
Besides the fact that the effect of fuzzy time has not 
yet been mathematically analyzed, it has several disad- 
vantages. We describe these here. Some of these disad- 
vantages may seem rather obvious; however, we believe 
it is worth stating them explicitly, just so we have an 
accurate picture of the advantages and disadvantages of 
fuzzy time. 

1. Processes do not have access to an accurate time 
source. This may render fuzzy time totally un- 
acceptable for certain applications-e.g., real-time 
systems. 

2. As discussed in Section 2.1, the effectiveness of 
fuzzy time relies partly on slowing all synchroniza- 
tion between processes at different levels; this in- 
cludes synchronization from low to high. For exam- 
ple, if we were to allow a high process to have read 
access to a segment of memory for which a low pro- 
cess had write access, then this would allow the low 
process to quickly signal to the high process (e.g., 
as soon as it receives each of its fuzzy clock ticks). 
This would allow the high process to synchronize its 
sending activities to the low process’ receiving ac- 
tivities and would thus negate much of the effective- 
ness of fuzzy time. Therefore, in the VAX security 
kernel, the timing of all reads to shared memory are 
fuzzed.8 Unfortunately, fast reading down may be 
important in certain applications. For example, re- 
cent algorithms for multilevel-secure database con- 
currency control require such reading down (see [l] 
and [5 ] ) .  

8Actually, in the latest implementation of the VAX security 
kernel, shared memory (between virtual machines) was not im- 
plemented at all. But before the project was cancelled, the de- 
velopers had planned to implement (fuzzy) shared memory in a 
f u t w  version. 
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4. 

3 

All of the discussion in [7] and [8] regarding the 
performance impact of fuzzy time seems to focus 
on throughput. For example, in [8, $VI.E], it is 
stated that the “performance degradation due to  
fuzzy time was only 5 6 %  of CPU usage on multi- 
programmed benchmarks”. While the minimal im- 
pact of fuzzy time on (bus and CPU) throughput 
is one of its major advantages, it is unclear how it 
affects response time. For example, every 1/0 re- 
quest is delayed until the fuzzy clock tick after it 
is submitted. Then, any replies to this request are 
delayed until the fuzzy clock tick after the reply 
arrives. These delays must have some impact on 
the overall response time of the system-especially 
for 1/0 intensive applications such as database sys- 
tems. However, this impact is not analyzed or dis- 
cussed in [7] or [SI. 

The implementation of fuzzy time requires a lot 
of random data. Typically, better random num- 
ber generators (i.e., better in terms of how difficult 
they are to predict) take longer to produce ran- 
dom numbers. Therefore, random data should be 
considered a resource. An approach, such as fuzzy 
time, that uses random data at a high rate can be 
expensive to implement if really good random data 
is required. In 7, $6.21, Hu describes how the VAX 

their random number generator in order to obtain 
the necessary amount of random data. Naturally, 
this is another area that is subject to attack-for if 
the penetrators can predict (or even determine at 
a later time) the sequence of fuzzy clock intervals, 
then fuzzy time loses much of its effectiveness. 

Security Kerne I designers sacrificed the quality of 

Probabilistic Partitioning 
In this section, we describe and analyze an alternative 
approach to introducing noise into the bus-contention 
channel. This approach has the following advantages. 

1. It allows processes to  have accurate reference 
clocks. 

2. It does not depend on the lack of fast synchroniza 

3. It is analyzable using information theory. 

4. It is parameterizable and provides a precise tradeoff 
between covert channel capacity and performance. 

5. It requires less random data than fuzzy time. 

6. It can be used to completely close the bus- 

tion from low to high. 

contention channel. 

3.1 The Mechanism 
The basic idea is that the bus interface controller (BIC) 
(i.e., the mechanism that serves as the interface between 
a given processor and the bus) will have two modes of 

operation--secure mode and insecure mode-and dur- 
ing normal operation of the bus, with some probabil- 
ity distribution, the bus controller will switch back and 
forth between these two modes. 
Consider the architecture shown in Figure 2. In this 
architecture, there is a central clock that supplies clock 
ticks to  all processors and to a central random number 
generator. For our later analysis, we will say that this 
clock has a fixed interval of 10 milliseconds (i.e., clock 
ticks are produced at a rate of 100 per second). The 
processors will buffer all asynchronous events (using the 
techniques described by Hu) and deliver them to their 
respective processes on the arrival of the central clock 
ticks. In this way, the central clock will be the fastest 
and most accurate reference clock available for covert 
channel exploitations. In contrast with Hu’s work, this 
clock will not be fuzzy. 
Also on each central clock tick, the random number gen- 
erator will produce a single random bit and send it to 
all of the BICs. If the bit is a 0, then the BICs will 
operate in secure mode during the current central clock 
interval; if the bit is a 1, then they will operate in in- 
secure mode. Clearly, the distribution on 0’s and 1’s 
produced by the random number generator parameter- 
izes this scheme. In fact, we envision this distribution 
being software configurable (e.g., via the system secu- 
rity officer’s trusted interface to the security kernel). We 
will analyze the scheme for various distributions below. 
Now, what are the two modes? For insecure mode, we 
can use any standard resource contention scheme. That 
is, in insecure mode, the processors will contend for the 
bus in the standard way; both performance and covert 
channel capacity are at  their peak. 
For secure mode, the BICs can implement a fixed-time- 
slice, round-robin allocation policy. That is, each pro- 
cessor will be allowed to access the bus during its fixed 
time slice; there will be no contention and time slices 
may go unused even when there are other processors 
waiting to use the bus. In this mode, each processor 
will be permitted to use, at most, one nth of the bus’ 
total capacity; but, the covert channel capacity will be 
zero. 
We call this mechanism probabilistic partitioning be- 
cause the bus is partitioned (i.e., in secure mode) at  
certain times according to some probability distribution. 
Before we analyze probabilistic partitioning, a few notes 
are in order. 

1. If every memory access was mediated by the secu- 
rity kernel, then it would be possible to implement 
probabilistic partitioning in software. However, for 
performance reasons, it is preferable that the se- 
curity kernel only mediate requests to open a file 
i.e., to bring a file into a process’ address space). L nce the file has been opened, all security checks 

have been performed and the process can proceed 
to access it without any intervention from the secu- 
rity kernel. This is the approach used in the VAX 
security kernel. Given this, the functionality of our 
special-purpose BICs cannot be placed in (the soft- 
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Figure 2: Architecture for Probabilistic Partitioning 

Processor 1 

ware part of) the security kernel; it must be placed 
in hardware. 

other means of synchronization from low to high 
for that matter) does not reduce the effectiveness 

Processor n 

of the mechanism. Further, by eliminating all bus 
contention, the covert channel capacity will be re- 
duced to zero (although at  a rather high perfor- 
mance penalty). 

Hu did not consider mechanisms such as probabilis- 
tic partitioning since he (explicitly) wanted to use 
off-the-shelf hardware. (As discussed above, proba 
bilistic partitioning requires special-purpose BICs.) 

BIC 1 4-- 

The accuracy of the clock available to a given pro- 
cess in probabilistic partitioning is ten times better 
than that available under fuzzy time; viz, proba- 
bilistic partitioning provides an accurate 10 mil- 
lisecond clock interval whereas fuzzy time provides 
the system time rounded to the nearest tenth of a 
second (100 milliseconds). 

The rate of random data used by probabilistic par- 
titioning is one bit per 10 milliseconds (i.e., 100 bits 
per second , whereas fuzzy time uses on average) 
log,(18001] bits per 10 milliseconds [i.e., greater 
than 1400 bits per ~ e c o n d ) . ~  

The effectiveness of probabilistic partitioning relies 
on reducing bus contention, rather than on destroy- 
ing the synchronization between processes. There- 
fore, allowing high to read down (or allowing any 

__c BIC n 

3.2 Capacity Analysis 
In contrast with fuzzy time, the information-theoretic 
analysis of the bus-contention channel under probabilis- 
tic partitioning is straightforward. Since the two pro- 
cesses are now synchronized by the central clock and 
there is no memory in the channel from one clock tick to 
the next, we can model the channel as a discrete mem- 
oryless channello where one channel use in the model 
represents one central clock interval. This allows us to 
dispense with any consideration of high and low strate- 
gies and also simplifies the definition of capacity. We 
will only need to make one assumption; that is, we must 
make some assumption regarding the viable alphabet 
size for a covert channel exploitation using the given 
reference clock. 
For examde. let’s sumose that the exDected bus- 
request seivice time varies between 1 and‘2 microsec- 
onds, depending on the current bus traffic. Now, in a 10 
millisecond reference clock interval, the low process will 

might say that this gives us an alphabet size of 5,001. 

’The number log2(18001) is obtained as follows. According to 
Hu, the “VAX interval-timer is a counter that increments at one- 
micraecond intervals and generates intempts when the counter 
O V ~ I ~ ~ O W S ” [ ~ ,  $5.11. Further, on the VAX security kernel, do& 

vary ‘kandody between and 19 miusecon&, with a mean 
of 10 milliseconds”[7,$5.3]. Jn other words, for eachfuzzy interval, 
the kernel loads a randomly generated integer between 1,000 and 
19,000 (inclusive) into the interval timer. Thus, there are 18,001 
different possibilities, which means that ~og2(18001) bits must be 
generated for each fuzzy clock tick. 

between 5,000 and io,ooo bus we 

However in practice, the high process 
to 

not be 
(via its Own bus requests) the 

“See e.g., [6, $4.21 for a treatment of discrete memoryless 
channels. 
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number of bus requests that the low process can com- 
plete during a given clock interval. For our analysis, 
we will assume that the exploitation can make use of 
an alphabet with 100 symbols. Our analysis will not, 
however, be tied in any way to the particular alphabet 
size; that is, we can easily carry out the following anal- 
ysis for any (finite) alphabet size. In practice, this value 
would be determined through testing or examination of 
the actual system. 
Now, how do we model the bus-contention channel un- 
der probabilistic partitioning? We'll start by denoting 
the set of input letters by {al,  a2,. . . , ~ 1 0 0 )  and the set 
of output letters by {bl ,  b2 , .  . . ,6100). Now, the channel 
works as follows. During each central clock interval, the 
low process submits a constant stream of bus requests 
and counts the number of completions. We'll assume 
that if the bus is operating in secure mode (i.e., the 
random number generator produced a zero), then the 
low process will complete the same number of requests 
as if the bus were fully loaded." Let's suppose that 
this particular output letter is b l .  Thus, when the bus 
is in secure mode, regardless of the high process' input 
letter, the low output letter will be b l .  On the other 
hand, when the bus is in insecure mode, the low output 
letter will correctly reflect the high input letter; that is, 
on input aj, the output will be bi. 
Now we need to describe the probability distribution of 
the random number generator. The case that we will an- 
alyze is where the numbers generated are independent 
and identically distributed (i.e., each random number in 
the sequence is independent of all others and each is gen- 
erated according to the same distribution). In this case, 
we can simply specify the probability of generating a one 
(i.e., the probability of being in insecure mode), which 
we'll denote r(1). Then, the probability of generating a 
zero (i.e., secure mode) is given by r(0) = 1 - r(1). 
Given this, we can describe the probability of a partic- 
ular output letter, b j ,  given a particular input letter, 
ai, by a conditional probability function, q, described 
as follows. 

r(1) i f j  = i and i # 1; 
1 i f j = i a n d i = l ;  
r(0)  if j # i and j = 1; 
0 otherwise. 

q(bj I ai) = 

Now, the capacity of the bus-contention channel under 
probabilistic partitioning is given by the standard defi- 
nition of the capacity for discrete memoryless channels 
as follows.'2 

"This seems like a realistic assumption. Further, if it does not 
hold in the actual implementation, then the following analysis can 
easily be changed without significantly Bffecting our results. 

12See e.g., [6, 34.21 for the standard definition of capacity for 
discrete memoryless channels. 

where the maximization is taken over all possible prob- 
ability distributions, p(a i ) ,  on high input. 
We used the algorithm due to Arimoto [2] and Blahut 
[4] to compute this capacity for various values of r ( l ) ,  
the results of which are plotted in Figure 3. Some notes 
regarding this graph are in order. 

0 From this figure, we see that the channel capacity 
is essentially a linear function of r(1). (Note: there 
is a slight curve at  the top of the plot that is es- 
sentially negligible-except in the case of a small 
alphabet size .) 

0 We see that when r(1) is 1 (i.e., the bus is always in 
insecure mode), the capacity of the buscontention 
channel is less than 700 bits per second. In con- 
trast, Hu claims that without the fuzzy time coun- 
termeasure in place, the bus-contention channel can 
be exploited at  a rate exceeding 1000 bits per sec- 
ond. Primarily, this discrepancy is due to  the fact 
that even when r(1) is 1, (under the probabilis- 
tic partitionin countermeasure) the exploitation 
of this channefis slowed down to the rate of the 
central clock (100 signals per second); for it is still 
the best available reference clock. In Hu's exploita 
tion of the channel, a much faster reference clock is 
used. 

Now how does probabilistic partitioning affect perfor- 
mance? A thorough analysis would require experiments 
with an actual implementation (or perhaps a simula- 
tion) of probabilistic partitioning. We have not per- 
formed such experiments. We can however analyze one 
(admittedly simplistic) measure of performance, which 
gives us some indication of how probabilistic partition- 
ing affects performance. Namely, we will consider the 
maximum bus throughput that is available to any one 
processor. 
Note that probabilistic partitioning does not reduce the 
overall throughput attainable on the bus; for in the case 
where all processors are constantly attempting to access 
the even in secure mode the bus will be in con- 
stant use. Rather, probabilistic partitioning reduces the 
maximum throughput attainable by any one processor. 
The bus throughput that is available to a given proces- 
sor, henceforth called single-processor bus throughput, is 
bounded by a linear function of r(1); viz, we can define 
this bound as a function, T(r(  l)), as follows. 

T(r(  1)) e (1 - r( 1))Tl + r( 1)T2 

where TI and T2 are constants representing the single- 
processor bus throughput when the bus is operating in 
Secure mode and insecure mode, respectively. 
Thus, we see that probabilistic partitioning provides 
us with a linear tradeoff between channel capacity and 
single-processor bus throughput. This precise tradeoff 

l3 We do not mean to imply that this case occurs often in prac- 
tice; it does not. 
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Figure 3: Capacity of the bus-contention channel under probabilistic partitioning 

is perhaps the main advantage of probabilistic partition- 
ing over fuzzy time. To the extent that single-processor 
bus throughput gives system designers an indication of 
overall system performance, the use of probabilistic par- 
titioning gives system designers intellectual control over 
(1) the capacity of the bus-contention channel and (2) 
the impact of the covert channel countermeasure on sys- 
tem performance. 

3.3 Disadvantages of Probabilistic Parti- 

There are, of course, some disadvantages of probabilistic 
partitioning in comparison with fuzzy time. We describe 
these here. 

tioning 

1. 

2 

4 

Probabilistic partitioning addresses only the bus- 
contention channel; that is, it does not reduce the 
capacity of any other covert channels that may be 
present in the system. Therefore, separate counter- 
measures must be introduced for each covert chan- 
nel. In contrast, fuzzy time is a general-purpose 
covert channel countermeasure; it reduces the sig- 
nalling rate (and, we would expect, the capacity) 
of all covert channels in the system. 

Since probabilistic partitioning relies on special- 
purpose hardware, it is not as portable as fuzzy 
time. This may be a significant factor in whether 
or not system designers will adopt its use. 

Conclusions 
Naturally, the two approaches explored in this paper 
give rise to a wide range of possibilities. The two ap- 
proaches can be used in conjunction, and each approach 

can be tailored in terms of the particular probability dis- 
tribution used in the randomization. If we can provide 
a precise analysis of the effect of fuzzy time, then it may 
be fruitful to explore a combined approach. 
For example, suppose system designers face a require- 
ment (for real-time control purposes) to  provide pro- 
cesses with a clock that has a clock-tick interval with a 
5 millisecond mean and a 0.5 millisecond variance (or 
less). Suppose further that  they have a requirement 
that all covert channels have capacities below 10 bits 
per second. If (under the given clock accuracy require- 
ment) the fuzzy time countermeasure cannot sufficiently 
reduce the capacity of the bus-contention channel, then 
a combined approach may be able to  satisfy both re- 
quirements while minimizing the performance impact 
due to probabilistic partitioning. 
We would like to point out that the intention of Sec- 
tion 2 is not to discredit fuzzy time; on the contrary, 
we think fuzzy time is an excellent idea. Rather, the 
intent is to point out some of the disadvantages of the 
approach-something which Hu did not really do. 
Here is a summary of the major comparisons between 
the two approaches. 
Impact on Covert Channel Capacity: Clearly, 
fuzzy time reduces the capacity of the bus-contention 
channel a great deal. However, it is not possible, within 
the current state of the art, to  give a precise analysis of 
the affect of fuzzy time on channel capacity. In contrast, 
the effect of probabilistic partitioning on covert channel 
capacity is straightforwardly analyzed. This may be 
very important in applications where tight tradeoffs are 
necessary. Also, it is not clear whether fuzzy time can 
reduce the channel capacity to zero, whereas probabilis- 
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tic partitioning can. 
Impact on Performance: Fuzzy time has little or no 
negative impact on bus throughput or response time. 
However, it seems likely that the delays introduced to 
slow down the available reference clocks would have a 
significant impact on system response time for 1/0 in- 
tensive applications. However, this has not yet been 
analyzed. On the other hand, probabilistic partitioning 
can have a serious negative impact on the bus through- 
put for a single processor. So much so, that for certain 
applications, it may be desirable to  design the system 
with a much higher capacity bus in order to offset this 
impact. 
Suitability for Applications: Fuzzy time is proba 
bly not suitable for real-time applications requiring fine 
grain control with respect to time. Nor is it suitable 
when fast reading down or writing up (in security level) 
is required. In contrast, these applications present no 
problems for probabilistic partitioning. 
Applicability: Fuzzy time is effective against all covert 
channels, whereas probabilistic partitioning is effective 
only against the bus-contention channel. 
Portability: Fuzzy time is a software solution, and 
thus can be highly portable. In contrast, probabilistic 
partitioning requires special-purpose hardware (viz, bus 
interface controllers) and, therefore, can be used only on 
hardware platforms that provide such hardware. 
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