
On Introducing Noise into the Bus-Contention Channel

James W. Gray, I11
Information Technology Division

Naval Research Lab, Washington, DC

Abstract
We explore two approaches to introducing noise into
the buscontention channel: an existing approach called
fuzzy t ime, and a novel approach called probabilistic par-
titioning. We compare the two approaches in terms of
the impact on covert channel capacity, the impact on
performance, the amount of random data needed, and
their suitability for various applications. For probabilis-
tic partitioning, we obtain a precise tradeoff between
covert channel capacity and performance.

1 Introduction
In [7], Hu describes the bus-contention channel, a covert
channel that can be exploited at a rate exceeding 1000
bits per second. This covert channel arises in the archi-
tecture shown in Figure l.
In this architecture, multiple processors (which may
be processing data at different security levels) access
a shared memory bank over a shared bus.' When there
is contention for the use of the bus (i.e., more than one
processor is attempting to use the bus), bus requests are
serviced at a slower rate. Since processors can determine
(with some degree of accuracy) the rate at which their
bus requests have been serviced, it is possible for one
processor (e.g., a processor executing a high process) to
send data to another processor (e.g., a processor exe-
cuting a low process) in the following way.
Covert Channel Exploitation Scenario: During
each millisecond interval, the high process sends a 1
by flooding the bus with requests, or a 0 by generating
no bus requests. The low process generates a constant
stream of bus requests and, during each millisecond in-
terval, measures the rate at which its requests are ser-
viced; if the rate is slower than normal, it records this
as a 1; if the rate is normal, it records this as a 0. Thus,
high data can be sent to the low process at 1000 bits
per second. 0

Note that throughout this paper, we will make the
worst-case assumption that all other processors are not
accessing the bus; i.e., there is no background noise that
may slow down the exploitation of the bus-contention

'We are assuming that access controls are in place that pre-
vent processors from directly reading data for which they are not
cleared. Such access controls are straightforward to implement
(see e.g., [3]). Thus, even though the two processors share the
same physical memory bank, it would not be possible, e.g., for a
low processor to directly read high data.

channel. We believe that making such worst-case as-
sumptions (rather than, say, average-case assumptions)
is appropriate in the context of covert channel analysis.
Also note that the threat that we are concerned with is
not that the users (i.e., the human users) of the high pro-
cessor are attempting to send information to low users.
For if they wanted to, they could more easily pass notes
in the park and entirely bypass the computer system.
Rather, we are concerned that the high processor is ex-
ecuting a Trojan horse (i.e., a program that appears to
be something that the users want, but actually contains
something else that is entirely undesirable) and that the
Trojan horse is attempting to send high information to
the low processor. This is a legitimate concern since
Trojan horses may be introduced into the system by a
virus or may even be contained in legitimately installed
off-the-shelf software.
In this paper, we explore two approaches to reducing
the rate at which the bus-contention channel can be
exploited. The first approach, called fuzzy time is de-
scribed by Hu [7]. The second is a novel approach, which
we call probabilistic partitioning. The remainder of this
paper is organized as follows. In Sections 2 and 3, we ex-
plore fuzzy time and probabilistic partitioning, respec-
tively. In Section 4, we give some concluding remarks.

2 F'uzzy Time
Hu's approach to reducing the bus-contention channel is
based on the observation that exploitation of this chan-
nel (or any covert timing channel) requires a reference
clock. That is, the low process receives signals over the
channel by measuring the rate of its bus request comple-
tions with respect t o some reference clock. Given this,
the basic approach of fuzzy time is to make certain that
the low process does not have access to an accurate ref-
erence clock. There are two parts to the implementation
of this approach.

1. The security kernel intercepts and buffers all events
that may be used as a reference clock. As described
in [7], such events include the timer interrupt, 1/0
completion interrupts, the arrival of data under the
control of Direct Memory Access (DMA) hardware,
etc.. Typically, these events include all those that
are generated by an asynchronous controller (e.g.,
a disk controller, terminal controller, or DMA con-
troller).

2. The security kernel delivers all of these various
events to the receiving processes on the next tick of

US. Government Work Not Protected by U.S. Copyright
90

shared bus

shared memory

Figure 1: A Typical Multiprocessor Architecture

a fuzzy clock (i.e., a clock with a random clock-tick
interval) that is maintained by the security kernel.
That is, on each of the fuzzy clock ticks, the se-
curity kernel delivers all events (interrupts, data,
etc.) that have occurred since the last fuzzy clock
tick.

In this way, the fuzzy clock becomes the only (and
hence, the most accurate) available reference clock for
use in a timing channel exploitation.2

2.1 The Effectiveness of Fuzzy Time
The effect of fuzzy time on reducing the bus-contention
channel is two-fold. First, the reference clock that is
available to the low (receiving) process is slower and
less accurate. For example, in the system described by
Hu-the VAX security kernel3-the fuzzy clock’s inter-
val has a mean of 20 milliseconds, as opposed to the one
millisecond clock interval needed for the covert channel
exploitation scenario described in Section 1. Since the
low process receives signals over the covert channel at
the rate of its reference clock, the effect of this is that
the low process receives fewer signals per second. In
the case of the VAX security kernel under fuzzy time,
the low process receives 50 signals per second, as op-
posed to 1000 (or more) signals per second without fuzzy

’Actually, this discussion is slightly simplified froin Hu’s work.
To address all types of clocks, Hu introduces “upticks” (which are
used for notification of incoming events) and “downticks” (which
are used for notification of outgoing events). However, for the
present discussion it is sufficient to consider a single fuzzy refer-
ence clock.

VAX is a trademark of Digital Equipment Corporation.

time. Although the signalling processes can try to make
up for this reduction in signals per second by enlaxg-
ing the si nalling alphabet, as noted by Hu, “increasing
the alpha%et size can only increase the bandwidth loga-
rithmically, while reducing the clock rate decreases the
bandwidth linearly. Furthermore, in [Hu’s] experience,
randomization makes most exploitations utilizing large
alphabet sizes impractical.”[7, $5.5.21 Thus, slowing the
reference clock rate results in a significant reduction in
the bus-contention channel.
The second effect of fuzzy time is that it impedes (i.e.,
it slows down all synchronization between high and low

has its own, independent, fuzzy clock. In particular,
this means that the high process has no way of deter-
mining when the low process receives fuzzy clock ticks;
and therefore, the high process has no way of knowing
when to start and stop sending its signals. Consider,
if the high process had access to the low process’ fuzzy
clock, then it could synchronize its transmission with it
(i.e., with the times when the low process receives its
signals), thus transmitting one signal per fuzzy clock
tick. However, since the high process does not have
this information, it cannot precisely synchronize with
the low fuzzy clock. We therefore expect that the high
process must signal at a much slower rate.

processes. T 1 is is due to the fact that each processor

2.2 Analyzing Channel Capacity
Hu claims that after implementing fuzzy time, the I ‘ . . .
bandwidth [of the bus-contention channel] is less than
ten bits per second . . .”[7, $71. This claim is supported
by “actual measurements with exploitations’’ 7, $81. It

surements were corroborated by a rigorous mathemat-
would provide a great deal more assurance if t E, ese mea-

91

ical analysis of the channel. In particular, we would
like to know (in information-theoretic terms) the capac-
i ty of the buscontention channel under fuzzy time. In
the communication theory community, it has long been
believed that the capacity of a given channel is the ap-
propriate measure of the rate at which information can
be transmitted over that channel. Unfortunately, Hu
does not provide an analysis of the capacity. In private
correspondence, Hu stated that this was because they
“believed that the problem is intractable”. In our own
attempts to analyze fuzzy time, we came to the same
conclusion. To understand why this is so, let’s develop
the expression for capacity that is appropriate for the
buscontention channel under fuzzy time.
First, let’s precisely describe the inputs and outputs of
the channel. We will assume that the low process is-
sues a constant stream of bus requests and counts the
number of its requests that complete during each fuzzy
clock interval! Also, on each fuzzy clock tick, the low
process’ system clock register is updated to reflect the
(kernel maintained) system time, rounded to the near-
est tenth of a second [7, 05.11; that is, the security kernel
maintains the system time to an accuracy of one mil-
lisecond (i.e., one thousandth of a second), but for the
purpose of fuzzy time, supplies the system time to the
processes only on each fuzzy clock tick and rounded to
the nearest tenth of a second. Given all this, we will
denote a t-millisecond history of low outputs as a se-
quence:

where cj is low’s ith bus request completion count and si
is the value of low’s system clock on the i th fuzzy clock
tick, relative to the starting time of the history (i.e., for
simplicity we are translating the system times so that
the history starts at time 0); and where s,-1 < t 5 s,.
We will denote the set of all possible low output histories
of length t milliseconds by Ot.
Now, what are the high process’ inputs? For the pur-
pose of the present analysis, we will assume that the
high process uses only two input values-generate con-
stant bus requests (to send a 1) or generate no bus
requests (to send a 0 and that it chooses the dura-

millisecond5 That is, the high process’ inputs are of
the form “generate (constant/no) bus requests for n mil-
liseconds” , where n is a positive integer.
Note that the high process can precisely control the du-
ration of its inputs-even when they do not start or
end on a fuzzy clock tick-in the following way. Since

tion of its inputs to k e some integer multiple of one

‘Note that we may have already lost some generality in our
analysis; although the above assumption seems to be a good
strategy for the low process to use in an exploitation of the bus-
contention channel, it may not be the optimal strategy. But if the
analysis in this restricted case turns out to be intractable, then
our case for the intractability of the general problem will be even
stronger-for the general analysis of the bugcontention channel
entails maximizing over all possible low strategies.

5Note that we have again lost some generality; the optimal
high strategy may involve some violation of this assumption.

the low process’ strategy is (by assumption) to enerate
a constant stream of bus requests, and the otter pro-
cessors are (by assumption) generating no bus requests,
the high process knows the precise load on the bus, and
therefore can calculate the number of bus requests it
needs to make in order for its input to last for a given
duration.6
Given this description of the high process’ inputs, we
will denote a t-millisecond history of high inputs as a
sequence:

where di E (0 , l is the high input during the it‘‘ mil-

input histories by Z t .
Now, given a description of how the bus works and of
the probability distribution on fuzzy clock ticks, we can
define a conditional probability function q(Pt I at) that
gives the probability of the low output history given
the high input history a t . In particular, to define q , note
that for a given t-millisecond high input history, at, and
a given t-millisecond history of fuzzy clock tick intervals,
say 7t = . (t l , t 2 , . . . , t ,) , the resulting t-millisecond low
output history, P t , is functionally determined. Let’s say
that Pt = [(a t , 7t) , where the function f is determined
by the particular characteristics of the bus. Then, q can
be defined as follows.

at = (dl, d 2 , . . * d t)

lisecond. We wil / denote the set of all t-millisecond high

where P(7t) is the probability of the fuzzy clock tick h i s
tory, 7t , occurring, and is determined by the probability
distribution with which fuzzy clock ticks are generated.
Now, we can define the capacity of the buscontention
channel as

(2)
A C = lim Ct bits per second

t+oo

where
A 1000

where the maximization is taken over all possible prob-
ability distributions, p (a t) , on t-millisecond high input
histories; and I(Zt,Ot) is the mutual information be-
tween Zt and Ot, defined as:

Some notes are in order.

The reason we need to consider the mutual infor-
mation between sequences of inputs and outputs

61n contrast, the low process cannot use this trick since it does
not know, a priori, how much bus traffic will be generated by the
high process.

92

(rather than between single inputs and outputs) is
that the bus-contention channel under fuzzy time
is, in information theoretic terms, a channel with
memory. Namely, at any given millisecond t , the
state of the channel consists of the time t‘ a t which
the low process received its last fuzzy clock tick (for
this determines the probability distribution over
when it will receive its next fuzzy clock tick) and
the current bus request completion count.

0 The above definition of the capacity of a channel
with memory follows that of Gallager [6, $4.61 with
one exception; Gallager considers the effect of the
initial state of the channel. However, he also shows
that if a channel is indecomposable’, then the ini-
tial state has no effect on the channel’s capacity
[6, Theorem 4.6.41. Since the bus-contention chan-
nel is mdecomposable (proof left to the reader), we
have omitted all references to the initial state from
the above.

Now we are in a position to discuss why evaluating the
channel capacity (i.e., Equation 2) is so difficult. First
of all, we cannot directly compute the capacity from
its definition. This is due to the fact that the defini-
tion involves taking the limit (of Ct) as t approaches
infinity. Trying to compute this directly would take in-
finite time. We are therefore left with two options: find
an analytic solution or compute a numerical approxi-
mation. Finding an analytic solution would probably
involve exploiting the structure of the conditional prob-
ability function, q. However, as shown in Equation 1
above, the expression for q involves a summation, which
is typically difficult to deal with analytically unless a
closed-form expression for it can be found. Our own
attempts in this direction have thus far failed.
On the other hand, since inputs to the bus-contention
channel occur a t such a high rate (one thousand per sec-
ond), numerical approximations of any significance in-
volve long sequences of inputs and hence an intractable
optimization problem. For example, an attempt to com-
pute C ~ O O (which represents the amount of informa-
tion that can be transmitted over the channel in 100
milliseconds-i.e., one tenth of a second), requires us
to find the optimal probability distribution over the set
2100, which has 2”’ elements (i.e., greater than lo3’
elements). This is far beyond the realm of tractable
optimization problems.
In the above, we have tried to indicate why analyzing
the capacity of the bus-contention channel under fuzzy
time is difficult. We’d like to emphasize that this is
not to say that it can’t be done. Rather, it is an open
research problem.

2.3 Exploitation Rates
We have already noted that Hu did not provide a capac-
ity analysis for the bus-contention channel under fuzzy
time. What then, did Hu mean when he claimed that

‘The interested reader is referred to [6, 54.61 for the definition
Knowing the definition is not necessary in of indecomposable.

what follows.

the “bandwidth is less than ten bits per second”? In
private correspondence, John Wray and Wei-Ming Hu
explained that the covert channel analysis team devel-
oped an exploitation-i.e., a high (sending) process and
a low (receiving) process-and tried it out on the actual
system to see how fast it ran. This is certainly a useful
test. However, the results of this test do not provide
any evidence that faster communication is not possible.
Rather, this test gives us a lower bound on capacity.
That is, exhibiting an exploitation that transmits data
at a given rate, say n bits per second, shows that the
capacity of the channel is at least as high as n bits per
second.
Supposing that it is too difficult to evaluate the capac-
ity of a given covert channel, then this type of ad hoc
testing of various exploitations may be the best pos-
sible approach. However, we need to be aware of the
limitations of such testing. In particular, such testing
does not establish an upper bound on the rate of com-
munication over the channel. We simply have to hope
that system penetrators will not be more clever in their
exploitations than the system analysts were.

2.4 Other Disadvantages of Fuzzy Time
Besides the fact that the effect of fuzzy time has not
yet been mathematically analyzed, it has several disad-
vantages. We describe these here. Some of these disad-
vantages may seem rather obvious; however, we believe
it is worth stating them explicitly, just so we have an
accurate picture of the advantages and disadvantages of
fuzzy time.

1. Processes do not have access to an accurate time
source. This may render fuzzy time totally un-
acceptable for certain applications-e.g., real-time
systems.

2. As discussed in Section 2.1, the effectiveness of
fuzzy time relies partly on slowing all synchroniza-
tion between processes at different levels; this in-
cludes synchronization from low to high. For exam-
ple, if we were to allow a high process to have read
access to a segment of memory for which a low pro-
cess had write access, then this would allow the low
process to quickly signal to the high process (e.g.,
as soon as it receives each of its fuzzy clock ticks).
This would allow the high process to synchronize its
sending activities to the low process’ receiving ac-
tivities and would thus negate much of the effective-
ness of fuzzy time. Therefore, in the VAX security
kernel, the timing of all reads to shared memory are
fuzzed.8 Unfortunately, fast reading down may be
important in certain applications. For example, re-
cent algorithms for multilevel-secure database con-
currency control require such reading down (see [l]
and [5]) .

8Actually, in the latest implementation of the VAX security
kernel, shared memory (between virtual machines) was not im-
plemented at all. But before the project was cancelled, the de-
velopers had planned to implement (fuzzy) shared memory in a
f u t w version.

93

3.

4.

3

All of the discussion in [7] and [8] regarding the
performance impact of fuzzy time seems to focus
on throughput. For example, in [8, $VI.E], it is
stated that the “performance degradation due to
fuzzy time was only 5 6 % of CPU usage on multi-
programmed benchmarks”. While the minimal im-
pact of fuzzy time on (bus and CPU) throughput
is one of its major advantages, it is unclear how it
affects response time. For example, every 1/0 re-
quest is delayed until the fuzzy clock tick after it
is submitted. Then, any replies to this request are
delayed until the fuzzy clock tick after the reply
arrives. These delays must have some impact on
the overall response time of the system-especially
for 1/0 intensive applications such as database sys-
tems. However, this impact is not analyzed or dis-
cussed in [7] or [SI.

The implementation of fuzzy time requires a lot
of random data. Typically, better random num-
ber generators (i.e., better in terms of how difficult
they are to predict) take longer to produce ran-
dom numbers. Therefore, random data should be
considered a resource. An approach, such as fuzzy
time, that uses random data at a high rate can be
expensive to implement if really good random data
is required. In 7, $6.21, Hu describes how the VAX

their random number generator in order to obtain
the necessary amount of random data. Naturally,
this is another area that is subject to attack-for if
the penetrators can predict (or even determine at
a later time) the sequence of fuzzy clock intervals,
then fuzzy time loses much of its effectiveness.

Security Kerne I designers sacrificed the quality of

Probabilistic Partitioning
In this section, we describe and analyze an alternative
approach to introducing noise into the bus-contention
channel. This approach has the following advantages.

1. It allows processes to have accurate reference
clocks.

2. It does not depend on the lack of fast synchroniza

3. It is analyzable using information theory.

4. It is parameterizable and provides a precise tradeoff
between covert channel capacity and performance.

5. It requires less random data than fuzzy time.

6. It can be used to completely close the bus-

tion from low to high.

contention channel.

3.1 The Mechanism
The basic idea is that the bus interface controller (BIC)
(i.e., the mechanism that serves as the interface between
a given processor and the bus) will have two modes of

operation--secure mode and insecure mode-and dur-
ing normal operation of the bus, with some probabil-
ity distribution, the bus controller will switch back and
forth between these two modes.
Consider the architecture shown in Figure 2. In this
architecture, there is a central clock that supplies clock
ticks to all processors and to a central random number
generator. For our later analysis, we will say that this
clock has a fixed interval of 10 milliseconds (i.e., clock
ticks are produced at a rate of 100 per second). The
processors will buffer all asynchronous events (using the
techniques described by Hu) and deliver them to their
respective processes on the arrival of the central clock
ticks. In this way, the central clock will be the fastest
and most accurate reference clock available for covert
channel exploitations. In contrast with Hu’s work, this
clock will not be fuzzy.
Also on each central clock tick, the random number gen-
erator will produce a single random bit and send it to
all of the BICs. If the bit is a 0, then the BICs will
operate in secure mode during the current central clock
interval; if the bit is a 1, then they will operate in in-
secure mode. Clearly, the distribution on 0’s and 1’s
produced by the random number generator parameter-
izes this scheme. In fact, we envision this distribution
being software configurable (e.g., via the system secu-
rity officer’s trusted interface to the security kernel). We
will analyze the scheme for various distributions below.
Now, what are the two modes? For insecure mode, we
can use any standard resource contention scheme. That
is, in insecure mode, the processors will contend for the
bus in the standard way; both performance and covert
channel capacity are at their peak.
For secure mode, the BICs can implement a fixed-time-
slice, round-robin allocation policy. That is, each pro-
cessor will be allowed to access the bus during its fixed
time slice; there will be no contention and time slices
may go unused even when there are other processors
waiting to use the bus. In this mode, each processor
will be permitted to use, at most, one nth of the bus’
total capacity; but, the covert channel capacity will be
zero.
We call this mechanism probabilistic partitioning be-
cause the bus is partitioned (i.e., in secure mode) at
certain times according to some probability distribution.
Before we analyze probabilistic partitioning, a few notes
are in order.

1. If every memory access was mediated by the secu-
rity kernel, then it would be possible to implement
probabilistic partitioning in software. However, for
performance reasons, it is preferable that the se-
curity kernel only mediate requests to open a file
i.e., to bring a file into a process’ address space). L nce the file has been opened, all security checks

have been performed and the process can proceed
to access it without any intervention from the secu-
rity kernel. This is the approach used in the VAX
security kernel. Given this, the functionality of our
special-purpose BICs cannot be placed in (the soft-

94

+

Figure 2: Architecture for Probabilistic Partitioning

Processor 1

ware part of) the security kernel; it must be placed
in hardware.

other means of synchronization from low to high
for that matter) does not reduce the effectiveness

Processor n

of the mechanism. Further, by eliminating all bus
contention, the covert channel capacity will be re-
duced to zero (although at a rather high perfor-
mance penalty).

Hu did not consider mechanisms such as probabilis-
tic partitioning since he (explicitly) wanted to use
off-the-shelf hardware. (As discussed above, proba
bilistic partitioning requires special-purpose BICs.)

BIC 1 4--

The accuracy of the clock available to a given pro-
cess in probabilistic partitioning is ten times better
than that available under fuzzy time; viz, proba-
bilistic partitioning provides an accurate 10 mil-
lisecond clock interval whereas fuzzy time provides
the system time rounded to the nearest tenth of a
second (100 milliseconds).

The rate of random data used by probabilistic par-
titioning is one bit per 10 milliseconds (i.e., 100 bits
per second , whereas fuzzy time uses on average)
log,(18001] bits per 10 milliseconds [i.e., greater
than 1400 bits per ~ e c o n d) . ~

The effectiveness of probabilistic partitioning relies
on reducing bus contention, rather than on destroy-
ing the synchronization between processes. There-
fore, allowing high to read down (or allowing any

__c BIC n

3.2 Capacity Analysis
In contrast with fuzzy time, the information-theoretic
analysis of the bus-contention channel under probabilis-
tic partitioning is straightforward. Since the two pro-
cesses are now synchronized by the central clock and
there is no memory in the channel from one clock tick to
the next, we can model the channel as a discrete mem-
oryless channello where one channel use in the model
represents one central clock interval. This allows us to
dispense with any consideration of high and low strate-
gies and also simplifies the definition of capacity. We
will only need to make one assumption; that is, we must
make some assumption regarding the viable alphabet
size for a covert channel exploitation using the given
reference clock.
For examde. let’s sumose that the exDected bus-
request seivice time varies between 1 and‘2 microsec-
onds, depending on the current bus traffic. Now, in a 10
millisecond reference clock interval, the low process will

might say that this gives us an alphabet size of 5,001.

’The number log2(18001) is obtained as follows. According to
Hu, the “VAX interval-timer is a counter that increments at one-
micraecond intervals and generates intempts when the counter
O V ~ I ~ ~ O W S ” [~ , $5.11. Further, on the VAX security kernel, do&

vary ‘kandody between and 19 miusecon&, with a mean
of 10 milliseconds”[7,$5.3]. Jn other words, for eachfuzzy interval,
the kernel loads a randomly generated integer between 1,000 and
19,000 (inclusive) into the interval timer. Thus, there are 18,001
different possibilities, which means that ~og2(18001) bits must be
generated for each fuzzy clock tick.

between 5,000 and io,ooo bus we

However in practice, the high process
to

not be
(via its Own bus requests) the

“See e.g., [6, $4.21 for a treatment of discrete memoryless
channels.

95

number of bus requests that the low process can com-
plete during a given clock interval. For our analysis,
we will assume that the exploitation can make use of
an alphabet with 100 symbols. Our analysis will not,
however, be tied in any way to the particular alphabet
size; that is, we can easily carry out the following anal-
ysis for any (finite) alphabet size. In practice, this value
would be determined through testing or examination of
the actual system.
Now, how do we model the bus-contention channel un-
der probabilistic partitioning? We'll start by denoting
the set of input letters by {al, a2,. . . , ~ 1 0 0) and the set
of output letters by {bl , b2 , . . . ,6100). Now, the channel
works as follows. During each central clock interval, the
low process submits a constant stream of bus requests
and counts the number of completions. We'll assume
that if the bus is operating in secure mode (i.e., the
random number generator produced a zero), then the
low process will complete the same number of requests
as if the bus were fully loaded." Let's suppose that
this particular output letter is b l . Thus, when the bus
is in secure mode, regardless of the high process' input
letter, the low output letter will be b l . On the other
hand, when the bus is in insecure mode, the low output
letter will correctly reflect the high input letter; that is,
on input aj, the output will be bi.
Now we need to describe the probability distribution of
the random number generator. The case that we will an-
alyze is where the numbers generated are independent
and identically distributed (i.e., each random number in
the sequence is independent of all others and each is gen-
erated according to the same distribution). In this case,
we can simply specify the probability of generating a one
(i.e., the probability of being in insecure mode), which
we'll denote r(1). Then, the probability of generating a
zero (i.e., secure mode) is given by r(0) = 1 - r(1).
Given this, we can describe the probability of a partic-
ular output letter, b j , given a particular input letter,
ai, by a conditional probability function, q, described
as follows.

r(1) i f j = i and i # 1;
1 i f j = i a n d i = l ;
r(0) if j # i and j = 1;
0 otherwise.

q(bj I ai) =

Now, the capacity of the bus-contention channel under
probabilistic partitioning is given by the standard defi-
nition of the capacity for discrete memoryless channels
as follows.'2

"This seems like a realistic assumption. Further, if it does not
hold in the actual implementation, then the following analysis can
easily be changed without significantly Bffecting our results.

12See e.g., [6, 34.21 for the standard definition of capacity for
discrete memoryless channels.

where the maximization is taken over all possible prob-
ability distributions, p(a i) , on high input.
We used the algorithm due to Arimoto [2] and Blahut
[4] to compute this capacity for various values of r (l) ,
the results of which are plotted in Figure 3. Some notes
regarding this graph are in order.

0 From this figure, we see that the channel capacity
is essentially a linear function of r(1). (Note: there
is a slight curve at the top of the plot that is es-
sentially negligible-except in the case of a small
alphabet size .)

0 We see that when r(1) is 1 (i.e., the bus is always in
insecure mode), the capacity of the buscontention
channel is less than 700 bits per second. In con-
trast, Hu claims that without the fuzzy time coun-
termeasure in place, the bus-contention channel can
be exploited at a rate exceeding 1000 bits per sec-
ond. Primarily, this discrepancy is due to the fact
that even when r(1) is 1, (under the probabilis-
tic partitionin countermeasure) the exploitation
of this channefis slowed down to the rate of the
central clock (100 signals per second); for it is still
the best available reference clock. In Hu's exploita
tion of the channel, a much faster reference clock is
used.

Now how does probabilistic partitioning affect perfor-
mance? A thorough analysis would require experiments
with an actual implementation (or perhaps a simula-
tion) of probabilistic partitioning. We have not per-
formed such experiments. We can however analyze one
(admittedly simplistic) measure of performance, which
gives us some indication of how probabilistic partition-
ing affects performance. Namely, we will consider the
maximum bus throughput that is available to any one
processor.
Note that probabilistic partitioning does not reduce the
overall throughput attainable on the bus; for in the case
where all processors are constantly attempting to access
the even in secure mode the bus will be in con-
stant use. Rather, probabilistic partitioning reduces the
maximum throughput attainable by any one processor.
The bus throughput that is available to a given proces-
sor, henceforth called single-processor bus throughput, is
bounded by a linear function of r(1); viz, we can define
this bound as a function, T(r(l)), as follows.

T(r(1)) e (1 - r(1))Tl + r(1)T2

where TI and T2 are constants representing the single-
processor bus throughput when the bus is operating in
Secure mode and insecure mode, respectively.
Thus, we see that probabilistic partitioning provides
us with a linear tradeoff between channel capacity and
single-processor bus throughput. This precise tradeoff

l3 We do not mean to imply that this case occurs often in prac-
tice; it does not.

96

Figure 3: Capacity of the bus-contention channel under probabilistic partitioning

is perhaps the main advantage of probabilistic partition-
ing over fuzzy time. To the extent that single-processor
bus throughput gives system designers an indication of
overall system performance, the use of probabilistic par-
titioning gives system designers intellectual control over
(1) the capacity of the bus-contention channel and (2)
the impact of the covert channel countermeasure on sys-
tem performance.

3.3 Disadvantages of Probabilistic Parti-

There are, of course, some disadvantages of probabilistic
partitioning in comparison with fuzzy time. We describe
these here.

tioning

1.

2

4

Probabilistic partitioning addresses only the bus-
contention channel; that is, it does not reduce the
capacity of any other covert channels that may be
present in the system. Therefore, separate counter-
measures must be introduced for each covert chan-
nel. In contrast, fuzzy time is a general-purpose
covert channel countermeasure; it reduces the sig-
nalling rate (and, we would expect, the capacity)
of all covert channels in the system.

Since probabilistic partitioning relies on special-
purpose hardware, it is not as portable as fuzzy
time. This may be a significant factor in whether
or not system designers will adopt its use.

Conclusions
Naturally, the two approaches explored in this paper
give rise to a wide range of possibilities. The two ap-
proaches can be used in conjunction, and each approach

can be tailored in terms of the particular probability dis-
tribution used in the randomization. If we can provide
a precise analysis of the effect of fuzzy time, then it may
be fruitful to explore a combined approach.
For example, suppose system designers face a require-
ment (for real-time control purposes) to provide pro-
cesses with a clock that has a clock-tick interval with a
5 millisecond mean and a 0.5 millisecond variance (or
less). Suppose further that they have a requirement
that all covert channels have capacities below 10 bits
per second. If (under the given clock accuracy require-
ment) the fuzzy time countermeasure cannot sufficiently
reduce the capacity of the bus-contention channel, then
a combined approach may be able to satisfy both re-
quirements while minimizing the performance impact
due to probabilistic partitioning.
We would like to point out that the intention of Sec-
tion 2 is not to discredit fuzzy time; on the contrary,
we think fuzzy time is an excellent idea. Rather, the
intent is to point out some of the disadvantages of the
approach-something which Hu did not really do.
Here is a summary of the major comparisons between
the two approaches.
Impact on Covert Channel Capacity: Clearly,
fuzzy time reduces the capacity of the bus-contention
channel a great deal. However, it is not possible, within
the current state of the art, to give a precise analysis of
the affect of fuzzy time on channel capacity. In contrast,
the effect of probabilistic partitioning on covert channel
capacity is straightforwardly analyzed. This may be
very important in applications where tight tradeoffs are
necessary. Also, it is not clear whether fuzzy time can
reduce the channel capacity to zero, whereas probabilis-

97

tic partitioning can.
Impact on Performance: Fuzzy time has little or no
negative impact on bus throughput or response time.
However, it seems likely that the delays introduced to
slow down the available reference clocks would have a
significant impact on system response time for 1/0 in-
tensive applications. However, this has not yet been
analyzed. On the other hand, probabilistic partitioning
can have a serious negative impact on the bus through-
put for a single processor. So much so, that for certain
applications, it may be desirable to design the system
with a much higher capacity bus in order to offset this
impact.
Suitability for Applications: Fuzzy time is proba
bly not suitable for real-time applications requiring fine
grain control with respect to time. Nor is it suitable
when fast reading down or writing up (in security level)
is required. In contrast, these applications present no
problems for probabilistic partitioning.
Applicability: Fuzzy time is effective against all covert
channels, whereas probabilistic partitioning is effective
only against the bus-contention channel.
Portability: Fuzzy time is a software solution, and
thus can be highly portable. In contrast, probabilistic
partitioning requires special-purpose hardware (viz, bus
interface controllers) and, therefore, can be used only on
hardware platforms that provide such hardware.

Acknowledgements
I would like to thank Wei-Ming Hu of DEC, Paul Syver-
son of NRL, Jonathan Trostle of MITRE, John Wray of
DEC, and the anonymous referees for their comments
on a previous draft of this paper.

References
[l] Paul Ammann, Frank Jaeckle, and Sushi1 Jajodia.

A two snapshot algorithm for concurrency control
in multi-level secure databases. In Proceedings of
the 1992 Computer Society Symposium on Research
in Security and Privacy, pages 204-215, Oakland,
CA, May 1992.

[2] Suguru Arimoto. An algorithm for computing
the capacity of arbitrary discrete memoryless chan-
nels. IEEE Transactions on Information Theory,
IT-18(1):14-20, January 1972.

[3] D. E. Bell and L. J. LaPadula. Secure Computer Sys-
tem: Unified Exposition and Multics Interpretation,
Technical Report MTR-2997 Rev. 1 . The MITRE
Corporation, March 1976.

141 Richard E. Blahut. Computation of channel capacity
and rate-distortion functions. IEEE Thnsactions on
Information Theory, IT-18(4):460473, July 1972.

[5] Oliver Costich and John McDermott. A multilevel
transaction problem for multilevel secure database
systems and its solution for the replicated architec-
ture. In Proc. 1992 IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages
192-203, Oakland, CA, May 1992.

[6] Fbbert G. Gallager. Infomat ion Theory and Re-
liable Communication. John Wiley and Sons, Inc.,
New York, 1968.

[q Wei-Ming Hu. Reducing timing channels with fuzzy
time. In Proceedings of the 1991 IEEE Computer
Society Symposium on Research in Security and Pri-
vacy, Oakland, CA, 1991.

[8] Paul A. Karger, Mary Ellen Zurko, Douglas W.
Bonin, Andrew H. Mason, and Clifford E. Kahn. A
retrospective on the vax vmm security kernel. IEEE
Tmnsactions on Software Engineering, 17(11):1147-
1165, November 1991.

98

