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Abstract—Millimeter wave radars have been widely used for
atmospheric remote sensing and tracking hard-targets from
airborne platforms. For these radars, the product of the un-
ambiguous range and Doppler velocity is limited by the radar
wavelength. This work focuses on a novel method to extend the
Nyquist rate of millemeter radars, which uses frequency diversity
pulse-pairs for Doppler phase estimation. Two short pulses with
center-frequencies of f1 followed by f2 are transmitted during
the first pulse repetition interval (PRI). During the next PRI, the
pulses transmitted are in the order f2 followed by f1 respectively.
There are two mechanisms for error reduction. First, the “beat”
phases of the f1/f2 and f2/f1 pairs cancel out in the expected
value sense. Second, since the f1/f2 and f2/f1 phase estimates
are highly anti-correlated, the sum of the two phase estimates
has a much smaller variance than the individual phase estimates.
Based on Monte-Carlo simulations, the feasibility of this method
is demonstrated herein. Ongoing data analysis is discussed.

I. INTRODUCTION

Millimeter wave radars have been widely used for atmo-

spheric remote sensing and tracking hard-targets from airborne

platforms [1-5]. In large part, the popularity of these millimeter

wave radars is because fine antenna beamwidths can be real-

ized while still allowing for physically small and lightweight

designs, as well as higher backscattering efficiency for weather

targets such as cloud particles. However, the product of the

unambiguous range and Doppler velocity is limited by the

radar wavelength (i.e. cλ
8

)). Airborne millimeter wave radars

that are required to have long range coverage therefore may

have Doppler Nyquist ranges that are much smaller than the

relative speeds of competing aircrafts.

Different techniques to mitigate the Doppler-Range ambi-

guity dilemma have been explored. For example, the stag-

gered PRT [6] and Polarization Diverse Pulse-Pair (PDPP)

[7] techniques are methods that are already employed for

these purposes. The “staggered” PRT is a multi-rate sampling

method that unfolds the Doppler velocity based on the ratio of

Doppler velocities measured by 2 PRTs. A weakness of this

approach is that the resulting Doppler velocity estimates have

increased sensitivity to noise, relative to the usage of a single

PRT. The Polarization Diversty Pulse-Pair method utilizes two

pulses with orthogoal polarizations. These two pulses can be

placed with shorter time interval to extend the Doppler Nyquist

range, while the PRT can be adjusted independently for range

coverage. Notwithstanding, finite polarization isolation of the

antenna and the receivers may overwhelm retrievals close to

regions with high SNR [7].

This work focuses on a novel alternative - which uses

frequency diversity (in lieu of polarization diversity) pulse-

pair for Doppler phase estimation. Along with the cutting-edge

digital waveform generation and digital receiver/processor

technologies, this frequency diversity pulse-pair technique can

be easily implemented on a modern radar without additional

microwave hardware. If proven practical, this frequency di-

verse pulse-pair method would potentially enable low-cost

and light weight air-borne millimeter wave radars with wide

Nyquist Doppler capability. The following section outlines the

theoretical formulation of the Frequency Diversity Pulse-Pair

algorithm (FDPP). Numerical simulations are then presented

to validate the theory developed herein.

II. METHODOLOGY

A. Conceptual description of FDPP algorithm

Two pulses at center frequencies of f1 and f2 are transmitted

with a separation of lag ∆T . While retaining ∆T , the order of

the pulses is reversed every alternate transmission. From the

receive channels at f1 and f2, the pulse-pair phase estimate of

the two sequences are individually accumulated and stored as

∆φorder1 and ∆φorder2. Finally Doppler velocity is estimated

from the sum of an equal number of the two individual pulse-

pair phase estimates (denote as ∆φ). Note that the use of

two closely spaced radar frequencies introduces two primary

sources of error. First, a “beat” phase that scales as a function

of range is introduced. Nonetheless, this term vanishes when

the phases of the f1/f2 pair and f2/f1 pairs are added.Second,

since there is little correlation between the f1 and f2 pulses,

the variances of the f1/f2 phase estimates is large. However,

since the f1/f2 and f2/f1 phase estimates are highly anti-

correlated, the sum of the two phase estimates has a much

smaller variance.

B. Mathematical description of FDPP algorithm

Denote the transmitted waveform at frequency f1 as

ETx,f1(t). Let E0,f1 be the amplitude of the transmitted

signal, the phase of the transmitted signal be ΨTx,f1 and t
denote time.
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Fig. 1. Illustration of the Frequency Diversity Pulse-Pair (FDPP) concept.
Two short pulses with center-frequencies of f1 and f2 are transmitted during
the first pulse repetition interval (PRI). During the next PRI, the pulses are
transmitted in the order of f2 and f1 respectively. There are two mechanisms
for error cancellation. First, the “beat” phases of the f1-f2 and f2-f1 pairs
cancel out in the expected value sense. Second, since the f1-f2 and f2-f1

phase estimates are highly anti-correlated, the sum of the two phase estimates
has a much smaller variance than the individual phase estimates.

ETx,f1(t) = E0,f1cos[2πf1t + ΨTx,f1] (1)

Denote c be the speed of light, fD1 be the Doppler shift

and R the range to a point scatterer. Now, the received signal

ERx,f1 at time t can be written as

ERx,f1(t) = Af1E0,f1cos[2π(f1 + fD1)(t +
2R

c
) + ΨTx,f1]

(2)

Similarly, the Tx and Rx signals at frequency f2 and time

t + ∆T can be written as follows. Note that the range to the

point-scatterer is now R + vr∆T . Here, vr denotes the radial

velocity of the point-scatterer.

ETx,f2(t + ∆T ) = E0,f2cos[2πf2(t + ∆T ) + ΨTx,f2] (3)

ERx,f2(t + ∆T ) = Af2E0,f2cos[2π(f2 + fD2)(t + 2R+vr∆T
c

) + ΨTx,f2]

Assume Af1 = Af2, E0,f1 = E0,f2, f1 ≫ fD1 and f2 ≫
fD2. Denote the echo phase φRx −φTx for the frequencies f1

and f2 as Φf1 and Φf2 respectively.

Φf1 = 2πf1(t +
2R

c
) + ΨTx,f1 − 2πf1t − ΨTx,f1 (4)

Φf1 = 2πf1

2R

c
(5)

Φf2 = 2πf2[(t + ∆T ) +
2(R + ∆T )

c
] − 2πf2(t + ∆T ) (6)

Φf2 = 2πf2

2R + 2vr∆T

c
(7)

The frequency-diversity pulse pair algorithm is based on the

two qauntities ∆Φorder1 and ∆Φorder2. Here, ∆Φorder1 =
Φf2 − Φf1 and ∆Φorder2 = Φf1 − Φf2. Denote λ1 = c/f1,

k1 = 2π
λ1

, λ2 = c/f2 and k2 = 2π
λ2

.

∆Φorder1 = 2Rorder1(k1 − k2) + 2k1v∆T (8)

Similarly,

∆Φorder2 = 2Rorder2(k2 − k1) + 2k2v∆T (9)

Recognizing that Rorder2 = Rorder1 + vτ . Here τ denotes

the pulse repetition time. Denote ∆Φ = ∆Φorder1+∆Φorder2.

∆Φ = 2(k2 − k1)vrτ + 2(k1 + k2)vr∆T (10)

∆Φ = 2[(k2 − k1)τ + (k1 + k2)∆T ]vr (11)

The implementation we consider herein typically has fre-

quencies that are spead apart by a few MHz. Therefore, the

term k2 −k1 can be neglected in the context of the rest of the

equation. Further, we approximate k1 + k2 ≈ 2k1. The above

equation simplifies to the following -

vr =
1

4k1∆T
∆Φ (12)

Since all values other than ∆Φ are solely system dependent,

the radial component of target mean radial velocity vr can

be obtained from the ensemble-averaged ∆Φ. Two comments

about the Nyquist velocity of the frequency diversity pulse-

pair equation are in order. First, for a given lag ∆T the

Nyquist interval is diminished by a factor of 2 compared to

a traditional pulse-pair or a polarization diversity pulse-pair.

This is because the frequency diversity pulse-pair algorithm

accumulates two phase estimates ∆Φorder1 and ∆Φorder2

and the resultant sum has a range of variation from [−π, π].
Second, the frequency diversity pulse-pair algorithm developed

herein allows an extension of the Nyquist interval as compared

to a traditional pulse-pair which necessarily needs long lags

to accomodate sufficiently unambiguos ranges. For example, if

the FDPP algorithm is denoted by lag ∆T and the pulse-pair

algorithm denoted by a lag τ , then the Nyquist interval of the

FDPP algorithm is improved by a factor τ
2∆T

.

A short analysis of the error of the FDPP phase estimate is

in order. To this end, let σ denote the variance and ρ denote

the correlation operators respectively.

σ(∆Φ) = σ(∆ΦOrder1) + σ(∆ΦOrder2) + 2Cov(∆Φorder1, ∆Φorder2)

Now, the covariance term can be conveniently decomposed as

Cov(∆ΦOrder1, ∆ΦOrder2) = ρ(∆ΦOrder1, ∆ΦOrder2) ·
√

σ(∆ΦOrder1) · σ(∆ΦOrder2)

For cases where σ(∆ΦOrder1) = σ(∆ΦOrder2),

Cov(∆ΦOrder1, ∆ΦOrder2) = ρ(∆Φorder1, ∆Φorder2) · σ(∆ΦOrder1)

From the above relationships,

σ(∆Φ) = 2σ(∆ΦOrder1)+2ρ(∆ΦOrder1, ∆ΦOrder2)·σ(∆ΦOrder1)
(13)

Rearranging terms in (13),



σ(∆Φ) = 2σ(∆ΦOrder1)[1+ρ(∆ΦOrder1, ∆ΦOrder2)] (14)

The underlying premise of the frequency-diversity pulse-

pair algorithm is that as ρ(∆ΦOrder1, ∆ΦOrder2) → −1, the
variance of the phase composite estimate σ(∆Φ) → 0.

C. Simulation methodology

Our approach to numerical simulations is to estimate the

phases at lag ∆T using simulated backscattered electric fields

at the antenna port using a Monte-Carlo based simulator.

Specifically, the voltage due to backscattered electric fields

at the receiver is given as

V (t) = A · R · T exp{−2jkr0}. (15)

Here, T the backscattering amplitude due to scattering from

a Swerling III-type target, A denotes the antenna weighting

function and R the range weighting function. The amplitude

fluctations T of the target are samples from a fourth order

Chi-squared distribution as illustrated in Figure 1. Here the

black line shows power fluctuations due to a Swerling type III

target. The red curve - with the x and y-axes indicated in red

- shows the probability density function for the backscattering

efficiency. In essence, this is the PDF for voltage at the receiver

as the change in antenna and range weighting functions is

small over the period of the dwell considered herein. The

antenna weighting function is defined below

A = exp

{

−
(X0 − X)2

2r2
0σ

2
φ

−
(Y0 − Y )2

2r2
0σ

2
θ

}

(16)

where the antenna phase center is denoted by [X0, Y0], the
hard-target location is indicated by [X, Y ] and σφ and σθ are

the second central moment of the effective two way antenna

patterns in the azimuthal and elevational planes respectively.

The range weighting function and its relationship to transmit-

ted chirp bandwidth is given by

Rn = exp

{

−
(Z0 − Z)2

2σ2
R

}

(17)

σR = 0.35
c

2B
(18)

where, Z0 is the center of the resolution volution in range,

Z indicates the scatterer location, c is the speed of light

(m/s) and B is the transmitted chirp bandwidth. The constant

0.35 approximately accounts for losses due to amplitude

modulation of the chirp and finite receiver bandwidth.

Scatterer locations are updated at every pulse repetition

interval given mean and relatively small fluctating veloc-

ity components along each coordinate. Gaussian distributed

pseudo-random values are used to generate the fluctuating

velocity fields. Since the omission of temporal continuity of

the fluctuating velocity causes the scatterer to have abrupt

changes in position, we run a 5-point moving average filter

to low-pass filter the fluctuating velocity in the temporal

Fig. 2. Illustration of Swerling III type target amplitude fluctuations. The
red line - with the corresponding axes indicated in red -shows fluctuations in
backscattering efficiency. In practice, this corresponds to voltage fluctuations
as the variation of the antenna and range weighting functions are negligible
over the period of the dwell. The black line - with the corresponding axes in
black - shows the fluctuations in power of the synthesized time-series.

dimension. It is this low-pass filtering by the moving aver-

age filter that distinguishes velocity variations from random

Brownian motion and from random changes in the phase of

the composite signal introduced by thermal noise.

Once the time series data is generated , thermal noise is

added . Phase estimates at the lag ∆T are then obtained

for the sequences f1/f2 and f2/f1. Typically, 1000 trials are

performed in order to produce the statistics of the next section.

III. PRELIMINARY RESULTS

In this section, Monte-Carlo simulations are qualitatively

compared with data-analysis results (all at W-band). Fig. 3

shows simulations of the FDPP Doppler velocity retrieval

process. The basic idea is that a composite phase that is solely

Doppler dependent is synthesized from noisy but highly anti-

correlated frequency diverse pulse-pair lag-1 phase estimates.

The phase estimate from the sequence in which f1 leads f2 is

shown in Fig. 3a. After 1 PRT, the sequence of f2 followed

by f1 is yields phase estimates shown in Fig. 3b. The sum

of the two frequency diverse pulse-pair estimates is shown in

Fig. 3c. Fig. 3d shows a scaled version of Fig.3c, where the

composite phase is scaled to the Doppler Nyquist interval.

Fig. 4 shows the FDPP algorithm Doppler retrieval accuracy

for a W-band radar as a function of various design parameters.

The simulation methodology employed herein is similar to

that in [7]. Typically, 1000 Monte-Carlo tries were employed

to generate the simulation statistics. The relevant parameters

shown in the corresponding figures. In Fig. 4a, the increasing

errors on the right side are a direct consequence of decreasing

correlation between the f1/f2 and f1/f2 pair phase estimates.

The increasing errors on the left hand side are due to sensitivity

to thermal noise. As expected, this is exacerbated at shorter

lags and decreasing SNR. Similar reasoning deems a 3 kHz

pulse repetition frequency (PRF) optimal in Fig. 4b. In Fig. 4c,



Fig. 3. Monte-Carlo simulations showing the FDPP algorithm concept. Clock-
wise from top left. (a) Phase estimates from f1-f2 pulse-pair (∆φorder1).
(b) Phase estimates from f2-f1 pulse-pair (∆φorder2). (c) Sum of Fig. 2a
and 2b., after unwrapping. (d) FDPP Doppler estimates using a scaled version
of (c).

Fig. 4. Monte-Carlo simulations of the FDPP algorithm error space. (a) FDPP
Doppler retrieval error as a function of time-lag. (b) FDPP Doppler retrieval
error as a function of Pulse Repetition Frequency. (c) FDPP Doppler retrieval
accuracy as a function of number of simultaneously transmitted/received
FDPP pairs for 136 millisecond, 272 millisecond and 680 milliseconds dwell
times.



the increasing errors on the right side are a direct consequence

of decreasing correlation between the f1/f2 and f1/f2 pair

phase estimates. The increasing errors on the left hand side

are due to sensitivity to thermal noise.

Fig. 5 shows preliminary data analysis results using NASA’s

Cloud Radar System (CRS) during the OLYMPEX mission.

The CLoud Radar System was mounted on an ER-2 aircraft

with the antenna pointed “nearly” at nadir. Aircraft attitude

fluctuations cause the antenna to point slightly away from

nadir, thereby inducing a surface velocity measurement con-

taminated with the motion of the aircraft. Traditional pulse-

pair measurements are used as “truth” and compared to the

frequency diversity algorithm developed herein. Two com-

ments are in order. First, high SNR cases from the surface

were isolated for this analysis to be consistent with the

simulation predictions that the algorithm requires high SNR to

yield reasonable estimates. For most part, we also expect that

they have lower spectrum width as compared to the layer of

clouds evident in the Fig. 5a. Second, Fig. 5b shows excellent

agreement of the frequency diverse pulse-pair algorithm with

traditional pulse-pair measurements. In essence, this validates

the approach developed herein to first order. More detailed

analysis of the error space is ongoing at NASA Goddard Space

Flight Center.

IV. SUMMARY

Herein, we have investigated a novel algorithm to overcome

the Doppler-Range velocity dilemma using millimeter wave

radars. The frequency diversity pulse-pair algorithm first trans-

mits a sequence of two pulses modulated by frequencies f1

and f2 in that order. During the next sequence the order of f2

and f1 are reversed. In both cases, the pulses are seperated

by a time lag ∆T . The sum of the phase estimates from

the f1/f2 and f2/f1 pairs yields a resultant phase which is

linearly related to Doppler velocity. There are two mechanisms

for error reduction. First, the “beat” phases of the f1/f2 and

f2/f1 pairs cancel out in the expected value sense. Second,

since the f1/f2 and f2/f1 phase estimates are highly anti-

correlated, the sum of the two phase estimates has a much

smaller variance than the individual phase estimates. The error

space of the algorithm was investigated with Monte-Carlo

simulations.Based on numerical simulations, the algorithm

was deemed to require high SNR. Data was collected using

NASA’s Cloud Radar System and the high SNR data points

from the surface showed excellent agreement with traditional

pulse pair-estimates of Doppler velocity. More detailed anal-

ysis is ongoing at Goddard.

With modern digital waveform generation, digital receiver

and solid-state power amplifier technologies, FDPP can be

implemented without additional microwave hardware like a

second receiver channel. Compared to PDPP, FDPP provides

better channel isolation, therefore better mitigates contamina-

tion from strong targets. Monte-Carlo simulations and pre-

liminary data analysis indicate that the algorithm has strong

potential for applications such as correcting space-borne radar

Fig. 5. Data analysis from NASA’s Cloud Radar System during the OLYM-
PEX mission. (a) Power profiles collected during a segment of the flight
on the ER-2 aircraft with the antenna pointing “nearly” at nadir. Changes
in aircraft attitude cause the antenna to point away from nadir thereby
measuring a surface velocity contaminated with the aircraft motion. Note that
the surface has high received power, and a layer of clouds above the surface
has much lower received power. (b) Quantivative comparisons of the frequency
diversity pulse-pair algorithm estimates with traditional pulse-pair algorithm
measurements. Note that the FDPP estimates track the changes in pulse-pair
velocity measurements very well. More quantitative analysis is underway at
NASA Goddard Spaceflight Center.



antenna pointing errors, air-traffic control. military aircraft and

missile tracking.
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