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Abstract—Wireless sensor networks (WSNs) are frameworks
for modern pervasive computing infrastructures, and are often
subject to operational difficulties, such as the inability to
effectively mitigate signal noise or sensor failure. Natural
systems, such as gene regulatory networks (GRNs), participate
in similar information transport and are often subject to similar
operational disruptions (noise, damage, etc.). Moreover, they
self-adapt to maintain system function under adverse condi-
tions. Using a PBN-type model valid in the operational and
functional overlap between GRNs and WSNs, we study how
attractors in the GRN-the target state of an evolving network-
behave under selective gene or sensor failure. For “larger”
networks, attractors are “robust”, in the sense that gene failures
(or selective sensor failures in the WSN) conditionally increase
their total number; the “distance” between initial states and
their attractors (interpreted as the end-to-end packet delay)
simultaneously decreases. Moreover, the number of attractors
is conserved if the receiving sensor returns packets to the trans-
mitting node; however, the distance to the attractors increases
under similar conditions and sensor failures. Interpreting
network state-transitions as packet transmission scenarios may
allow for trade-offs between network topology and attractor
robustness to be exploited to design novel fault-tolerant routing
protocols, or other damage-mitigation strategies.

Keywords-gene regulatory network; attractor; probabilistic
boolean network; robustness; network science;

I. INTRODUCTION

Wireless sensor networks (WSNs) are platforms for in-
formation transport, possessing sensor protocols that adapt
to dynamic changes in channel traffic and noise, sensor
failures, and other disruptions, to maximize the probability
of signal receipt while minimizing the end-to-end packet
delay. A conceptually similar and self-adapting system can
be found in gene regulatory networks (GRNs), wherein the
interactions between genes couple to cell-signaling networks
by synthesizing enzymes and other biomolecules. Genes and
sensors possess intriguing operational parallels: signaling
molecules synthesized by genes, such as microRNAs, can
influence whether other genes are triggered to produce their
associated RNA transcript, while sensors decide to interact
according to some on-board routing protocol, forwarding
information packets to the appropriate neighbor sensor. Both

genes and sensors possess on-board “rules” that determine
how incoming signals are processed, and is either encoded
in the nucleotide sequence of the gene or in the routing
protocol of the sensor.

Here we propose that the functional response of network
“attractors”-the terminal states of a network’s state-transition
diagram [1]-capture the “robustness” of gene regulatory
networks under certain conditions of stress, namely under
strong inhibition of gene function. Based on our analysis of
the attractor dynamics under this stress, and the generality of
the model system we consider, it can be argued that routing
protocols of similarly described WSNs can be engineered to
provide analogous “robustness” of signal transmission under
selective sensor failures.

While others have considered the problem of adaptive
routing in WSNs, where, for example, messages may be
dropped due to channel errors, node failures or conges-
tion [2], reliable packet transmission remains a current area
of active research. While current protocols, such as the
MAC protocol, ensure reliable multi-hop data forwarding,
NS2-based simulation studies have demonstrated that others,
such as IEEE 802.15.4, can have a very low reliability
in terms of packet transmission-especially when power
management is enabled for energy conservation [3]. Other
packet-forwarding approaches have been proposed as trans-
port protocols specifically designed for WSNs [4], and their
performance is typically evaluated by simulation.

The operation of sensor networks under real-world con-
ditions, however, often introduces complexities not entirely
captured through simulation; a “hands-on” approach is re-
quired for evaluating data forwarding solutions. One ex-
ample is given by the improperly tuned interactions be-
tween different layers of the networking stack, leading to
very low packet transmission rates [5]. Other solutions
focus on an experimental validation of routing strategies
for improving general communication reliability [6], [7].
Generally, however, a routing protocol is supported by a
link-quality estimation mechanism that evaluates the stability
and reliability of routes [8], [9], and locates alternate routes
when presented with sensor failures [10]. This is also the
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case for the default protocols available in the common sensor
platforms: the Motes [11] and the Sunspot [12].

This paper is organized as follows: in Section II we
present the concept of attractor-based genomic robustness
and discuss existing frameworks for their study; in Section
III we define a one-to-one mapping between genes and
sensors, and present a model system valid under operating
conditions shared by GRNs and WSNs; in Section IV, we
study the dynamical aspects of the model’s attractors; in
Section V, we analyze the attractor state-space; we discuss
the extension of our results to networks of arbitrary size
in Section VI; in Section VII we outline promising future
research directions.

II. MODELING ATTRACTORS

If the genes of an interacting network occupy one of only
two possible states (on or off ), and if transitions may occur
between the corresponding network states by selective gene
activation/deactivation (on to off and vice versa), then the
network state in the long-time limit is called an attractor [1].
In general, there can be many attractors for a given network,
and it may cycle through some of them indefinitely. The
network’s state-transition diagram is partitioned into level
sets lj , that include all of the states that terminate with an
attractor state in exactly j transitions. Such attractor cycles
are mutually disjoint, and the partition class corresponding
to an attractor cycle is called the basin of the cycle, with
any transient state belonging to a unique basin and level.

The dynamical behavior of a GRN can be represented
by its state transitions-along with some degree of fault-
tolerance-in which its genes are continually expressed and
repressed, and ultimately terminate with attractors and cy-
cles. To quantify these states, two formalisms have been
proposed: Boolean and Probabilistic Boolean networks.

A. Boolean Networks

Boolean Network (BN) models were first introduced
to study the expression patterns of randomly constructed
“genetic nets” [1]. In a BN, a gene can be in either of
two possible states, ON/OFF, where the state (or expression
level) of each gene is functionally related to that of other
genes using logical rules, or ”functions”. A BN is defined
by a set of nodes, V = {x1, x2, ..., xN}, corresponding to
a set of genes, together with a list of Boolean functions
F = {f1, f2, ..., fN}, one for each node, that determine
the node-node interactions. The state of the entire network
is labeled in the form x1x2...xN (e.g. 010...1), wherein
the individual gene-states are either 1 (ON) or 0 (OFF).
Transitions between them are triggered by adjusting a gene’s
state, and are represented by a directed graph (Fig 1A).

As an example, consider a Boolean network with only
three genes: V = {x1, x2, x3}, wherein a Boolean function
is associated to each of them according to the truth table
shown in Fig 1A. Out of potentially 23 = 8 attractors, this

Figure 1. BN vs PBN dynamics for GRNs. The attractor nodes are 000
and 111 in both cases. The truth tables for the BN and PBN are shown
alongside

BN has exactly two: 000 and 111. Here, a single Boolean
function describes the next state of any gene based upon the
wiring rules of the corresponding GRN; the probability to
choose these particular functions is always 1.

B. Probabilistic Boolean Networks

The Probabilistic Boolean Network (PBN) formalism was
developed out of the need for a network to cope with un-
certainty; one challenge is to identify the correct regulatory
relationships for a target gene [13], while also preserving
the rule-based properties of BNs.

More specifically, PBNs accommodate more than one
possible function for each node in the network. A set of
functions Fi = {f i

j : j = 1, 2, ..., li} is associated with each
gene xi, where each function associated to a given gene, f i

j ,
determines the expression value xi of that gene, and li is
the number of possible functions for that particular gene. In
Fig 1B, the values for the first and third gene, x1 and x3,
are, respectively, determined by two possible functions; i.e.,
f1
1 and f1

2 for x1 (with others similarly described).
A realization of the PBN at any given instant is deter-

mined by a vector of Boolean functions, where the ith

element of the vector contains the predictor selected for
the gene xi. This vector function maps one network state
onto another, and is referred to as a multiple-output Boolean
function. Since each of the N possible realizations (for N
genes) is a standard BN, valid for only one time step, a
PBN describes the evolution of an ensemble of alternative
BN states for each gene. The probability for the ith BN to
be selected is written in terms of the individual selection
probabilities, shown in the bottom row of the truth table
within Fig 1B (see [13] for further details).

III. WIRELESS SENSOR NETWORKS

Transmission inconsistencies often plague WSNs where
they suffer from signal disruptions due to sensor failure, or
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Figure 2. Attractor state space evolution in GRNs, and their equivalent
WSNs: (A) A 10-node GRN from the yeast cell cycle; (B) Equivalent 10-
node WSN from (A) where each edge is undirected as two sensor nodes
within transmission radius of each other (assuming homogeneous nodes)
can send packets to each other and there is no down-regulation involved;
(C) Restricted WSN from (A) with no down-regulation and an edge from
Gi to Gj does not imply the existence of an edge between Gj to Gi.
This network abstracts the case for heterogeneous sensors and also the
scenario of dynamic routing where a sensor only transmits packets along
its outgoing edges although it is capable of sending packets back to the
transmitting nodes (incoming edges).

from the absence of routing protocols that are sufficiently
insensitive to local as well as global network conditions.
As GRNs are subject to operating conditions conceptually
similar to WSNs, the evolution of their attractor state-
space can be equivalently described within a WSN context
according to the following rules: (1) for every gene within
the GRN, we replace it with a sensor; (2) sensor interactions
are restricted to existing edges between corresponding genes
in the GRN. In the following sections, we discuss the
implications of these gene-to-sensor mapping rules to WSN
packet-transmission characteristics.

A. Packet Transmission along Wireless Channels

The first rule preserves node structure from GRN to
WSN, while the second rule defines the interactions between
sensors in terms of packet transmission, with respect to the
GRN architecture. According to the second rule, a sensor
(or equivalently, a gene) at time point t can either send or
not send a packet to another sensor-one that either promotes
or suppresses another gene-at time point t+1 with a certain
probability (as a function of the network state, packet error
rate, or the distance between corresponding sensors) and
destination node break-down probability. Thus, a gene is
considered to be in state ”1/0”, based on whether it is up- or
down-regulated; a sensor will have states ”1/0” depending
on whether it has received a packet or not.

B. Wireless Sensor Topology

The physical signaling structure of sensors within the
WSN must be adapted to reflect the interplay between genes
in the GRN. If gene G1 up-regulates G2, then the equivalent
interaction in the WSN is that sensor G1 sends a packet to
G2 according to some probability distribution defined by the
originating gene-gene interactions.

For homogeneous sensor nodes, each up-regulation edge
(denoted by +) in a GRN is replaced by a bi-directional
edge; if we allow sensor G1 to send a packet to G2, then
G2 should also be able to send a packet to G1 (see Fig 2B).
For heterogeneous sensor nodes, however, it is not necessary
that both G1 and G2 possess the same transmission radii,
giving a directed edge from G1 to G2 and not vice versa
(such a network is shown in Fig 2C).

C. Packet Collisions

According to the second rule, biological down-regulation
must also be mapped from a GRN to a WSN. If G1

down-regulates G2, then sensor G1 prohibits the receipt of
packets at sensor G2. This phenomenon is interpreted as
packet ”collisions” in the WSN; data packets simultaneously
received by G2 from both G1 and G3 result in effectively
zero packets received by G2.

D. Attractors and Packet Transmission Scenarios

Using the BN formalism, each attractor will record the
transmission history of the packet. Fig 1A depicts two
attractor states of an exemplary BN -000 and 111. Here, the
evolution of the initial state 001 to an attractor is analogous
to one in which gene x3 transmits a signal to its neighbors;
the network then evolves according to a sequence of state-
transitions until it terminates in attractor 111. Ultimately, all
three genes x1, x2 and x3 of Fig 1A will receive a signal
originating from gene x3. Similarly, if gene x2 receives a
signal from all the other ones (equivalent to setting node x2

as the Cluster Head in the WSN), then each of the three
initial states of 001, 010 and 100 will ultimately reach the
attractor 111 in 3, 3 and 4 state transitions, respectively.

The PBN formulation reproduces the attractors 000 and
111 of this 3-node system, shown in Fig 1B. In both the BN
and PBN models of this network, the receipt of a packet by
any node is independent of the initial conditions, ensuring
that every node participates in packet transport. The PBN
formalism allows us to incorporate the packet-drop rates due
to ”noisy” channel characteristics into the packet transmis-
sion state-space by redefining the perturbation probability
from [13] for each edge in the WSN. In the next section,
we will present a case study to illustrate the evolution of
attractors under different network conditions.

IV. THE MODEL

To study attractors under different network conditions, we
used GeneNetWeaver [14] to derive a 10-node sub-GRN
from the yeast Saccharomyces cerevisiae (Fig 2A), from
a total of 4441 genes and 12873 interactions. Using the
mapping rules defined in Section III, we established a cor-
responding WSN for homogeneous sensor nodes (Fig 2B);
each sensor is “equivalent”, in that they possess similar
transmission radii. Each directional edge from the GRN
(Fig 2A) is replaced by an undirected one (Fig 2B), assuming
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Figure 3. Distances (in units of ”hop counts”) to corresponding attractor states for the networks shown in Fig 2 from the sample starting states that mimic
each node sending a packet: (A) distances reported for the original 10-node network in Fig 2A (A-10) and that with the corresponding 9-node network
with G3 removed (A-9); (B) distances reported for the original 10-node network in Fig 2B (B-10) and that with the corresponding 9-node network with
G3 removed (B-9); (C) distances reported for the original 10-node network in Fig 2C (C-10) and that with the corresponding 9-node network with G3

removed (C-9); (D) Combined plot showing the relationship of distances for each of the different networks considered.

that two directly connected nodes are capable of mutual
communication. Only up-regulation edges exist in this WSN
mapping, because we restrict sensors from destroying any
received packets (i.e., a collision-free time slot allocation
algorithm is assumed). Ideally, if both sensors G1 and G6

transmit packets to G2, and are received in the same time
slot, then a ”down-regulation edge” should be assigned from
G6 to G2, and an up-regulation edge is assigned connecting
G1 to G2. Packet collision scenarios will be considered
elsewhere.

The WSN in Fig 2C allows for the same directed edges
(without the +/− signs) assigned in the GRN from Fig 2A,
denoting two scenarios: (i) the transmission radii of the
nodes are unequal (a heterogeneous WSN); (ii) the transmis-
sion of packets from a particular sensor node are restricted
to only a subset of its neighbors (following some routing
protocol). The resulting network (Fig 2C) therefore contains
only directed and up-regulated edges.

A requirement of the PBN-based framework is that it gives
the probabilities for an associated gene-activating Boolean
function to be realized. To map this GRN onto a WSN-
based scenario, a power set must be defined, allowing for one
logical Boolean function to be associated to each possible
subset of the neighboring sensors. For a sensor with m
neighbors there are therefore 2m possible Boolean functions,
and the PBN-based dynamics allow for the selection of the
“best” neighbor set (i.e., the one with highest probability)
for any sensor in the network. Here, each node’s Boolean
function is an “OR” function, relating all the sensors from

a node’s particular subset of neighbors, as if any of the
incident sensors send a packet, the node may receive it and
transit to a ′1′ state.

In the toy model we consider, one Boolean function is
associated with each node, accounting for all incoming edges
that set it to 1/0; the probability for a gene’s state to be
altered is set to zero, effectively reducing the PBN model
into a BN one. This has the advantage of restricting the
network so that each sensor potentially forwards data packets
to all of its neighboring nodes.

V. RESULTS

A. The Attractor Space

The undirected network (corresponding to B−9 and B−
10, see figure caption for details) results in the minimum
number of attractors (two). Ideally, if all sensor interactions
are undirected, then only two attractors are possible (either
all 0’s or 1’s), because all sensors eventually participate in
packet transmission.

A 9-node network was created by removing gene G3

from the original 10-node network; subsequently, all of its
incoming and outgoing edges were removed. With directed
edges, the number of attractors is higher, with 10 and 8
attractors for the 10-node networks shown in Fig 2A and
C, respectively, out of potentially 210 = 1024 attractors.
The 9-node networks corresponding to these cases (with G3

removed) resulted in an increase in the number of attractors
(16 for both cases), suggesting a decrease in the robustness
of the network facilitated by node deletion. Fig 4 reports
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these observations. Comprehensive simulation based studies
are required to better understand the trade-offs between
attractor cardinality and network structure.

Clearly, the number of attractors must increase only
locally with node deletion. On one hand, if a network
contains N nodes, then in an ordered sequence of single
node “deletions,” the removal of the N − 1st node gives
exactly one nontrivial attractor. On the other hand, removing
the last node gives the empty set. Identifying the critical
node, or number of nodes, that maximize the number of
attractors (with respect to the initial network) provides a
metric for the system’s robustness to node removal.

Figure 3 shows that the path length required to reach
an attractor decreases with the number of attractors in the
network. For example, the 10-node GRN, as opposed to
its 9-node variant (Fig. 2A), maps to a WSN (Fig. 2B)
providing the fewest attractors of both WSNs studied, yet
gives the maximum path length to its attractor. Removing
G3 generates the 9-node network, resulting in a decrease
in the distance to attractors for the following variants (see
figure caption for details): from A− 10 to A− 9 and from
C−10 to C−9; whereas the distance increases from B−10
to B − 9. This is because the deletion of G3 increases the
number of attractors, and hence the sink nodes in A−9 and
C−9, resulting in shorter distances, whereas, the number of
attractors stay the same in B−9 resulting in larger distances.

A node’s Boolean functions (in terms of the neighbor set
it uses to forward packets) are central elements involved in
the regulation of both the number of a network’s attractors
and the end-to-end delay in packet transmission (which
is directly proportional to the path length). If a sensor is
allowed to forward packets to all the other nodes within
its transmission radius, then such packet flooding results
in maximum reliability; every other node will ultimately
receive the packet, albeit after a larger end-to-end delay
(assuming a realistic packet drop rate due to channel errors).

B. Scalability issues and Incremental solutions

Using BNs and PBNs to study packet transmission sce-
narios invites a combinatorial “explosion” in the state-
space, leaving only “smaller” networks tractable to practical
study-for a 100-node WSN, the corresponding BN/PBN-type
model will have 2100 possible states. It is therefore important
to discover ways to scale-up results from smaller WSNs to
larger ones. Here, we discuss two such potential solutions.

If WSN state-transitions, recording the transport of pack-
ets across the network, are viewed as Markov chains, then
it may be useful to interpret the influence of the Boolean
functions on isotropic packet “diffusion” as diffusional bias.
Here, a packet initially hops to neighbor nodes with equal
probability, but such probabilities are weighted and renor-
malized by the Boolean functions controlling the routing of
packets at the nodes. An advantage of this description is that
its inversion would allow one to reconstruct an appropriate

Figure 4. Number of attractor states for the different network scenarios
considered in the example

Boolean function for a node (though the inversion may not
be unique). A subset of state-transitions terminating with
certain attractors, taken as “boundary conditions” in the
state-evolution, might be identified by placing bounds on
desirable network properties, such as the end-to-end packet
delay, providing a mechanism to “prune” wasteful portions
of the state-transition diagrams.

Another potential solution involves the “growth” of a
WSN according to some protocol, beginning from a much
smaller, but well understood, network, termed a generator.
Beginning from the generator, growth rules determine which
nodes receive new connections. For example, using the
10-node network previously discussed, if 0111010101 is
an attractor in A − 10, the problem is to identify the
rules to create A − 11 such that one of its attractors is
given by 10111010101. Such strategies may also be used
to incrementally alter the topology of static WSNs with
less overhead, guaranteeing that “larger” networks adopt the
robust properties of the “smaller” ones.

C. Topology aware sensor deployment strategies

The transformation rules presented in this paper may
potentially be used to identify context-specific sensor de-
ployment algorithms through an examination of the topo-
logical properties of an appropriate GRN, taking cues from
its interaction structure to maximize the sensor coverage
area. GRN-inspired WSN topologies only provide wiring
rules between sensors-new sensor deployment algorithms
must be designed that maximize the coverage area while
simultaneously preserving these wiring rules.

VI. CONCLUSION

We introduced two rules that, when applied to a GRN,
map its attractor state properties onto an equivalent WSN.
We applied these rules to study the attractor properties of
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a toy 10 node network, where we showed that, in a lim-
ited context, the packet-transmission characteristics across a
WSN, suffering from sensor and communication failure, is
deeply connected with the availability of its attractors.

Interestingly, the number of a network’s attractors does
not monotonically decrease with node removal. In fact, it
is possible for the size of the attractor space to locally
increase with selective removal of the network’s nodes.
Further work is needed to identify and understand the
peculiar relationship between attractor evolution and system
stress, for any practical development of WSN topology and
routing protocols.

Down-regulation between genes determines the packet
collision properties of the equivalent WSN. Understanding
how the attractor space evolves when several sensors trans-
mit packets in the same time slot, under a finite channel error
rate and sensor breakdown probability, may lead to designs
for novel time-slot allocation and synchronization schemes.

Although preliminary results look promising, much work
is needed to fully integrate the self-regulation properties
of GRNs with the fault-tolerance required of any sensor
network expected to successfully operate in practical, real-
world applications.
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