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Abstract— Since September 11, 2001, there has been increas-
ing interest in providing first responders with radiation detectors
for use in the search for and isotope identification of potentially-
smuggled special nuclear material (SNM) or radiological dis-
persal devices (RDDs). These devices are typically comprised
of low-resolution detectors such as NaI, thus limiting their
identification abilities. We present a new technique of wavelet
analysis of low-resolution spectra for the use in isotope iden-
tification. Wavelet analysis has the benefit of excellent feature
localization while, unlike with Fourier analysis, maintaining the
signals frequency and time characteristics. We will demonstrate
this technique with a series of gamma-ray spectra obtained from
typical hand-held isotope identifiers, illustrate figures-of-merit
to be applied to these results, and discuss future algorithm
optimization.

Index Terms— Gamma-ray spectroscopy, isotope identifica-
tion, wavelets.

I. Introduction
It has been reported by several sources that the hand-

held isotope identifiers currently being used by first-
responders have problems with their identification abilities.
[1], [2] It can be difficult to implement complicated peak
localization and identification algorithms due to limitations
of the on-board computer memory, thus limiting their
effectiveness in the field of nuclear emergency response.
These algorithms are further hindered by problems such
as gain drift, which is very common when the devices are
moved between temperature extremes such as from an air-
conditioned vehicle to the warm outdoors. Furthermore,
these algorithms become more complicated as the detector
resolution increases making the identification of multiple-
lined sources difficult. A new algorithm is needed that
requires minimal computer memory to be used to locate
and identify peaks within a medium- or low-resolution
gamma-ray spectrometer.

Wavelet analysis was presented in the mid-1980’s to solve
problems such as image compression, gamma-ray burst
analysis, the study of earthquakes, and numerous other
problems in signal analysis where the signal is aperiodic,
noisy, transient, and so on. More recently, wavelets have
been applied to problems such as feature detection and
localization in both one- and two-dimensional signals. The
concept of wavelet analysis has been applied by other
researchers to the analysis of high-resolution gamma-ray
spectra where the initial spectrum was denoised using the

C.J. Sullivan, S.E. Garner, and K.B. Butterfield are with Los
Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos,
NM 87545, U.S.A. (Corresponding telephone: 505-664-0236, email:
clair@lanl.gov). LANL Document Number LA-UR-04-7149.

discrete wavelet transform (DWT) and then the peaks
were located by subtracting a fit of the continuum from
the signal. [3], [4] We present a new approach where the
features of a spectrum are identified directly with a wavelet
transform using the modulus maxima technique. [5], [6],
[7] This eliminates the requirements of continuum fitting
for the detection of peaks and takes full advantage of the
capabilities of wavelet analysis without losing any data due
to smoothing.

II. Wavelet Transforms and the Modulus Maxima
The technique of wavelet analysis involves observing

a signal at a particular time (or, in this case, energy)
simultaneously over a broad range of scales, (the wavelet
pseudo-equivalent of frequency). Like Fourier analysis, the
signal is broken down into frequency components. However,
standard Fourier analysis suffers from the fact that it does
not maintain the information about the location in a signal
of the given frequency. The windowed Fourier transform,
or Gabor transform, provides a basic frequency analysis as
a function of position. However, the Gabor transform is of
fixed time-frequency resolution. In the case of gamma-ray
spectroscopy, to analyze a signal over a fixed number of
channels across the entire spectrum would be prohibitive
since, for most systems, the width of a peak in channels
increases with increasing channel number.

Wavelet analysis permits the user to analyze the signal
in the time-frequency (or energy-scale) domain simultane-
ously at different scales, which is referred to as “multireso-
lution analysis” (MRA). The wavelet transform of a signal
x is given by

T (E, s) =
∫ ∞

−∞
x(t)ψ∗

E,s(t)dt (1)

where E is position (in our case, energy), s is the scale,
and ψE,s(t) is the mother wavelet. By adjusting both the
scale and the location of the mother wavelet during the
convolution, the transform coefficient, T , can be obtained
that indicates the degree to which the mother wavelet
matches the original signal. The result of the wavelet
transform is then a three-dimensional array of position,
scale, and wavelet coefficient, most effectively shown as
an image called a scalogram where the shading indicates
the magnitude of the wavelet coefficients, T (E, s). The
exact details of the wavelet transform have been covered
extensively by authors elsewhere. [5], [6]

There are numerous choices for mother wavelets and the
selection of the proper wavelet depends on the application.
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Fig. 1. Various sample wavelets: (a) Haar wavelet, (b) Meyer wavelet,
(c) Mexican hat wavelet, (d) Morlet wavelet.

To be considered a wavelet, a function ψ ∈ L2 must have
finite energy: ∫ ∞

−∞
| ψ(t) |2 dt <∞. (2)

Also, if ψ̂(f) is the Fourier transform of ψ(t), then
∫ ∞

0

| ψ̂(f) |2
f

df <∞, (3)

which implies that the wavelet must have zero mean. ψ is
then scaled by s and translated by E as:

ψE,s(t) =
1√
s
ψ(
t− E

s
). (4)

Thus the wavelet transform can be rewritten as:

T (E, s) =
∫ ∞

−∞
x(t)

1√
s
ψ∗(

t− E

s
)dt = 〈x, ψE,s〉. (5)

Several example wavelets are shown in Figure 1 and a
sample scalogram of an input signal using the Mexican hat
wavelet is illustrated in Figure 2.

As can be observed in Figure 2, the wavelet coefficients
in the scalogram create a cone-like appearance whose
boundaries converge at small scales on the location of an
abrupt change such as a singularity or peak. This position,
called the cone of influence, which is defined by:

| E − E0 |≤ Cs (6)

where E0 is the location of the feature and C is a constant.
In order to determine the precise location of E0, we
employ the wavelet transform modulus maxima technique
(WTMM). The WTMM is used to describe any point in
the scalogram such that the wavelet coefficients are a local
maximum:

∂T (E0, s)
∂E

= 0. (7)

A modulus maxima line is any line that connects neighbor-
ing maxima points in the scalogram. Singularities or peaks
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Fig. 2. Wavelet transform of test signal (top) and its corresponding
scalogram (bottom) using the Mexican hat wavelet. Dark shading
indicates a large wavelet coefficient.
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Fig. 3. The wavelet transform modulus maximum (WTMM) line
using the Sombrero wavelet for the cusp in Figure 2 centered at
approximately channel 410. The circles are the data while the solid line
shows the fit. The equation shows a slope of 1.0 so α = 1.0−0.5 = 0.5.

are detected by finding the abscissa where the modulus
maxima lines converge at fine scales. Therefore, the wavelet
transform can focus on a localized singularity or similar
feature with a zooming procedure that gradually reduces
the scale.

However, to actually detect a singularity, it is not suffi-
cient to simply follow the modulus maxima lines since small
fluctuations such as noise in the signal could create a local
maximum, especially at small scales. The singularity itself
is characterized by the decay of the wavelet coefficients
along maxima lines. This decay quantifies how regular the
function is either over all space or at a particular location.
One measure of the regularity of a signal at position E0

is the value of the Lipschitz exponent (also referred to as
the Hölder exponent) at that position. If ψ is continuously
differentiable with compact support and real values, then
for any ε > 0 , x is uniformly Lipschitz α if and only if
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there exists a constant, Aε, such that for x ∈]α+ ε, β − ε[
and s > 0

| T (E, s) |≤ Aεs
α+ 1

2 (8)

where α is the Lipschitz exponent. This is a condition
on the asymptotic decay of the wavelet coefficients as the
scale approaches zero. If x has a singularity at E0, then
the Lipschitz exponent characterizes the singular behavior.
One must determine α for each line, which is generally
calculated by fitting:

log2 | T (E, s) |≤ log2A+ (α+
1
2
)log2s. (9)

to the magnitude of the wavelet coefficient along a modulus
maxima line. If the slope of this line is calculated at E0,
this determines the Lipschitz regularity. This is shown in
Figure 3 for the cusp in the test signal of Figure 2. In this
case, the singularity illustrated was Lipschitz 0.5. Note that
large values of α indicate a more regular function whereas
smaller values indicate more singular function. An actual
singularity is found when 0 < α < 1.

III. Results on Gamma-Ray Spectra

This paper presents a proof-of-principles experiment
using the WTMM and Lipschitz exponent to locate peaks
within a spectrum. The data were taken either with a
15 x 15 x 7.5 mm3 CdZnTe hand-held isotope identifier
or a 3 in diameter x 3 in high NaI scintillator. The
computations were performed using MATLAB (version 6)
with the MATLAB Wavelet Toolbox (version 2) and the
Wavelab Toolbox (version 802). [8], [9]

The first step was to determine the wavelet transform of
the spectrum, using a continuous, real wavelet transform.
It may seem counterintuitive to have data that is sampled
discretely analyzed with a continuous filter. However, to be
clear, what is meant by “continuous” in this case involves
the set of scales and positions on which the transform
operates. The continuous wavelet transform (CWT) can
operate at every scale, from that of the original signal to
that of the user’s choosing. It also is continuous in terms of
shifting the mother wavelet smoothly over the entire signal.
The cost in having a very large number of scales or shifted
positions is a significant increase in the time required to
complete the transform.

In order to calculate the CWT, it was first necessary to
select a mother wavelet for the transform. It was observed
that the choice of mother wavelet had a significant impact
on the WTMM process in terms of the numbers and
locations of modulus maxima lines detected. This was not
unexpected since different wavelets have different frequency
responses and thus different capabilities in the localization
of peaks within a signal. Previous work used the Haar
wavelet for analysis. [3] This particular wavelet is good at
identifying rapid (high-frequency) changes in the signal,
such as a those from a high-resolution peak in an HPGe
spectrum. However, our goal was to locate peaks within

medium- to low-resolution spectra. Therefore, we choose
to experiment with two different wavelets that resembled
more of the features we were looking for. We decided to
use wavelets that resembled the second derivative of a
Gaussian function. This decision was made to maintain
similarity with other isotope identification algorithms that
are based on Mariscotti’s technique, which analyzes the
second derivative of the signal within a small window
or kernel. [10] Unlike Mariscotti’s technique, the wavelet
approach benefits from the use of MRA, thus permitting
the analysis of peaks at different scales instead of being
restricted to a constant kernel size that may not be optimal
for all peaks. The wavelets chosen for this work both
resembled the “Mexican Hat Wavelet” of Figure 1, which is
the second derivative of a Gaussian. We used the Wavelab
“Sombrero” wavelet:

ψ(t) = t2e−
t2
2 (10)

and the “DerGauss” wavelet:

ψ(t) = ite−
t2
2 , (11)

which is the second derivative of a Gaussian.
Once the CWT of the spectrum was calculated, the

modulus maxima lines were found. This algorithm was
first performed on a 137Cs spectrum taken with a CdZnTe
detector. The results are shown in Figure 4. As can be
seen from the scalograms, the two different wavelets result
in very different wavelet coefficients. This does not matter
for the subsequent determination of the modulus maxima
positions since the algorithm, based on Equation 7, looks
only for the places where the first derivative is zero. In
reality, this could be either a local maximum or minimum
– no further test is applied to determine which it is. What
is important is that there are modulus maxima lines that
are converging on the location of the 662 keV peak. There
are differing numbers of lines converging on 662 keV due
to the selection of the wavelet.

There are several other features to notice in these figures.
First, in both cases there is a maxima line that crosses
the entire scalogram. This is due to edge effects in the
scalogram and can be reduced or eliminated by considering
a more appropriate range of scales within the scalogram.
These particular figures were plotted with a large number
of scales to demonstrate the behavior of the CWT at
very large scale. Additionally, several maxima lines are
observable, particularly at smaller scales, that are not
associated with the photopeak. These are due to the noise
within the signal and other features such as the Compton
edge and backscatter peak within the spectrum.

While the scalogram and plots of the modulus maxima
lines yield interesting results on the potential peak locations
within the spectrum, there are clearly places where these
lines do not represent data of interest, such as the aforemen-
tioned noise and other spectral features. As such, it would
be desirable to eliminate some of these modulus maxima
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Fig. 4. 137Cs spectrum (top) and its corresponding scalograms for
the Sombrero (middle) and DerGauss (bottom) wavelets. The lines
are the modulus maxima lines.

TABLE I

Calculated Lipschitz Exponents

Wavelet Feature α

Sombrero edge effect 0.887
(Figure 4, middle) edge effect 1.100

photopeak (left line) 0.768
photopeak (right line) 1.062
photopeak (center line) 0.894

Compton edge 0.512
backscatter peak 1.011

various in continuum -0.583–0.082
high energy noise -0.380–0.220

DerGauss edge effect 0.949
(Figure 4, bottom) photopeak (left line) 0.837

photopeak (right line) 0.714
Compton edge 0.393

backscatter peak 0.371
high energy noise -0.135–0.108

lines that do not correspond to a true peak. To create
such a filter, the Lipschitz exponent of the various spectral
features was calculated for this spectrum. Table I shows
the fit slope (i.e. the Lipschitz exponent) of the wavelet
coefficient decay along maxima lines for lines associated
with different types of spectral features.

As is evident from the table, maxima lines associated
with a true peaks had significantly larger Lipschitz expo-
nents than those that were associated with the Compton
continuum or noise. Based on this observation, it was
possible to establish a filter for the modulus maxima
lines based on Lipschitz exponent where peaks within the
spectrum were identified if they met the requirement of
α > 0.65. With this threshold, it is clear that in the
cases of both wavelets, the maxima lines corresponding to
the photopeak are preserved. In the case of the Sombrero
wavelet, some of the edge effect lines will also be preserved
as will the backscatter peak. However, this is not true
for the DerGauss wavelet, which maintains only the two
photopeak maxima lines and the edge effect line.

This filtering technique was then applied to a more
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Fig. 5. 137Cs and 133Ba mixed-source spectrum (top) and its
corresponding scalogram (bottom) with modulus maxima lines using
the Sombrero wavelet.
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Fig. 6. 137Cs and 133Ba mixed-source spectrum (top) and its
corresponding scalogram (bottom) with modulus maxima lines using
the DerGauss wavelet.

complicated spectrum, which was a mixture of 137Cs and
133Ba. These results are shown in Figures 5 and 6 with the
remaining modulus maxima lines indicating which lines had
met the Lipschitz slope filtering requirement. The results of
these figures show variations in the sensitivity of the two
wavelets. For example, the Sombrero wavelet is capable
of detecting the 302, 356, and 383 keV photopeaks of
133Ba, but it also is more sensitive to the pseudo-peak
where the spectrum begins around channel number 25. The
DerGauss wavelet, on the other hand, is not as sensitive
to this portion, but it fails to detect the 302 keV peak.
It also detects the Compton edge from the 662 keV 137Cs
photopeak. This suggests that more work is required on
the proper wavelet selection for this application.

In addition to the calculations performed on the CdZnTe
spectra, this technique was also applied to NaI spectra to
determine its abilities with low-resolution detectors. Due
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TABLE II

Calculated Lipschitz Exponents for NaI Spectrum

Wavelet Feature α

Sombrero edge effect 2.754
(Figure 7) photopeak (center line) 2.173

photopeak (right line) 2.155
photopeak (left line) 1.823

Compton edge 0.544
backscatter peak 0.488

various in continuum -0.611–1.316
DerGauss edge effect 1.571
(Figure 8) photopeak (left line) 1.428

photopeak (right line) 1.424
backscatter peak 1.312
Compton edge 0.959

various in continuum 0.163–0.407
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Fig. 7. 137Cs spectrum from NaI (top) and its corresponding
scalogram (bottom) with modulus maxima lines using the Sombrero
wavelet and a slope filter of α > 1.4.

to the lower resolution of these systems, it was expected
that α should be larger to indicate that the signal was
approaching a more regular function. Table II shows how
α varied as a function of spectrum feature. Based on these
data, a slope filter was imposed of α > 1.4. Figures 7 and
8 show the results of analyzing a NaI spectrum of 137Cs
using this filter. As is evident from the table and figures,
the edge effects were detected due to the fact that they
had a significant slope. It is worth considering whether an
upper limit on slope should be imposed. The impact of this
additional filter will be explored in future work.

IV. Summary and Future Work

We have demonstrated a promising new technique involv-
ing the localization of peaks within a gamma-ray spectrum
of low- to medium-resolution using the concepts of the
wavelet transform with the modulus maxima technique.
The modulus maxima lines can be used as a first-pass
indication on the potential location of a peak. It is clear
from the results that the Lipschitz exponent provides useful
information on the nature of the modulus maxima lines to
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Fig. 8. 137Cs spectrum from NaI (top) and its corresponding
scalogram (bottom) with modulus maxima lines using the DerGauss
wavelet and a slope filter of α > 1.4.

determine whether or not they actually are a peak. It was
observed that there was a significant difference between the
values of the Lipschitz exponent between different spectral
features. It was shown that a filter could be established by
requiring a minimum value of the slope. Using this filter,
we were able to discriminate between photopeaks, Compton
edges, and noise within the spectrum. In some cases, we
were also able to distinguish the difference between a
photopeak and a backscatter peak, although more work
is required in this area.

There are still important areas to consider with this tech-
nique. First, while the wavelets chosen for this analysis were
reasonably mathematically similar (both approximated the
second derivative of a Gaussian), their results were rather
different. This suggests that a detailed comparison of
the results using different wavelets and what parameters
(detector resolution, photopeak shape, etc.) are impor-
tant for optimal wavelet selection are necessary. Second,
in keeping with the eventual goal, a fitting algorithm
needs to be employed to determine precisely where the
modulus maxima lines corresponding to a peak intersect
the abscissa. This will provide the means to identify the
energy of the photopeak for comparison with a library to
be used in isotope identification. Finally, it is desirable to
use wavelets or some other technique to fit the continuum
under each peak to provide estimates of the net area for
each peak, which could be used to obtain crude isotopic
ratio information.
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