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Abstract – Airborne tracking and identification (ID) of 

high value ground targets is a difficult task impacted by 

sensor, target, and environmental conditions. Layered 

sensing, using a combination of standoff and short-range 

sensors, maintains target track and identification in 

cluttered environments such as cities or densely vegetated 

areas through sensor diversity.  Data, feature, decision, or 

information fusion is necessary for high confidence target 

classification to be achieved using multiple sensors and 

sensor modalities.  Target identification performance is 

improved by exploiting the extra information gained from 

independent sensing modalities through information 

fusion for automatic target recognition (ATR).  Increased 

target ID has been demonstrated using spatial-temporal 

multi-look sensor fusion and decision level fusion.  To 

further enhance target ID performance and increase 

decision confidence, feature level fusion techniques are 

being investigated. A fusion performance model for 

feature level fusion was applied to a combination of 

sensor types and features to provide estimates of a fusion 

gain.  This paper presents a fusion performance gain for 

Synthetic Aperture Radar (SAR), electro-optical (EO), and 

infrared (IR) video stationary target identification.  

Keywords:  decision level fusion, feature level fusion, 

electro-optical (EO), infrared (IR), synthetic aperture 

radar (SAR), information fusion, automatic target 

recognition (ATR), national imagery interpretability 

rating scale (NIIRS). 

1 Introduction 

  High confidence combat identification (CID) is important 

to military operations to determine where friendly, enemy, 

and neutral combatants are located on the battle field.  The 

goal of CID is to reduce fratricide and collateral damage to 

civilians while making it difficult for enemy targets to hide 

among friendly and neutral populations.  Architectures 

employing cooperative and non-cooperative sensors have 

great potential to improve combat identification 

technologies and capabilities.  However; sensors can be 

adversely affected by environmental factors such as 

weather and time of day, imaging geometries which 

obscure the target of interest, and/or enemy counter 

measures.  Sensor, target, and environmental variations 

make robust CID difficult [1].   

  Many recognition algorithms have been proposed and 

performance results published in the literature to address 

the combat identification problem for both moving and 

stationary targets.  The majority of the identification 

results have concentrated on single sensor measured and 

synthetic EO, IR, and SAR data [2, 3, 4, 5, 6, 7].  Much of this 

work focused on a single sensor look at an area of interest 

to produce object identification decisions from one 

dimensional (1-D) signatures and two dimensional (2-D) 

images [8].  To improve upon single sensor look 

identification performance, CID algorithms fused multiple 

looks from the same sensor over different viewing 

geometries and times, exploiting additional target 

information gained from changes in the sensor-target 

geometry.  Multi-look fusion can be accomplished a 

number of ways [9, 10], such as using a decision-level 

fusion algorithm [11] to combine single look recognition 

results in a serial fashion or by averaging 1-D signatures 

from all looks to create a mean signature that is then run 

through an ATR algorithm [12].  

  More recently, other sensor modalities, including 

hyperspectral (HSI), multispectral (MSI) [13, 14], laser 

radar (LADAR) [15, 16], and acoustic have been applied to 

the CID problem with some results appearing in the 

literature.  Fusing features from different sensor 

geometries requires precise data registration as in [17] for 

HSI and SAR data because registration errors will 

adversely impact ATR decisions.  The variable nature of 

different sensor modalities such as data format, operational 

sensitivities, and available features for fusion along with 

the issues that arise with registration of this data must be 

understood for successful demonstration of feature-level 

fusion algorithms.   

  To determine the best near-term feature fusion 

opportunities, the strengths, weaknesses, and technology 

maturity for six general categories of sensing systems were 

considered for potential CID performance gain.  The 

sensing architectures investigated are SAR, LADAR, 

Spectral (MSI/HSI), EO, IR, and Vibrometry.  Table 1 

shows the general strengths and weaknesses for each 

category with the background color indicating the relative 

maturity (high maturity, moderate maturity, low 

maturity) of the sensor technology and data processing 

algorithms that include feature extraction and available 

ATR’s.  The authors acknowledge some sensor systems are 

more developed than others in any given category and 

table 1 is intended to represent the overlying technology 

and not any particular sensor system or development 

program.  
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Sensor 

Category

Strength Weakness

SAR Long range, 2-D/3-D  imaging, 

day/night, weather  insensitive

Active sensing

LADAR 2-D/3-D imaging,

day/night operation

Active sensing, sensitive to 

weather, sensitive to range

MSI/HSI Passive sensing, material 

identification,  feature extraction 

algorithms available

Sensitive to weather,

Sensitive to range, 

Day operation only for some 

systems

Electro-optic Passive sensing day, color 

capable, motion video capable, 

feature extraction algorithms 

available

Sensitive to time of day, 

range dependant, sensitive to 

weather

Infrared Passive sensing day/night, 

motion video capable, 

temperature, feature extraction 

algorithms available

Range dependant,

Sensitive to weather

Vibrometry Passive acoustic sensing, 

day/night operation 

1-D signature for 2-D 

location, low resolution,

active LADAR sensing
 

Table 1. Sensor Phenomenology for Feature Level Fusion 

  LADAR, acoustical vibrometry, and MSI/HSI sensors 

provide a rich feature space for fusion exploitation; 

however, these technologies are still maturing and the 

fusion payoff will not be fully realized for a decade or 

more.  Radar and electro-optical sensing technology is 

widely available and currently in use around the world for 

both military and civilian applications.  An example of 

some of the military platforms and sensor modes [18, 19, 20] 

in use are shown in Figure 1 along with representative 

sensor coverage areas for each system.  A number of 

feature extraction and identification algorithms exist for 

use with EO/IR/SAR sensor data, leading to the conclusion 

that the greatest near-term high confidence identification 

performance potentially achievable is with EO/IR/SAR 

feature fusion. 

U2: AF > 19,800 m 

EO, IR, SAR

Global Hawk: AF – 19,800 m 

EO, IR, SAR

Predator: AF – 7,620 m 

EO, IR, SAR

Hunter (ARMY)

UCARs (Navy) 

30 m  - EO, IR

 

Figure 1. Example platforms, sensors, and coverage area 

  The selected scenario to study potential CID gains from 

the feature fusion of EO/IR/SAR sensors is a surveillance 

mission using EO/IR video and SAR stationary target 

identification.  

  The selection of EO, IR, and SAR sensor technology 

based on level of maturity allowed for the development of 

a fusion performance model that drew from the vast 

amount of performance prediction and modeling work 

applied to CID problems published in the available 

literature.  The sections that follow will detail the key 

components of the fusion model, predict expected CID 

task discrimination results and fusion gains for each 

scenario, and discuss results and conclusions from the 

study.  

2 Feature Level Fusion Model 

  An EO/IR/SAR fusion performance model was created to 

examine the impact of feature fusion to combat 

identification (CID) decisions and to assess the fusion gain 

potential for the modeled sensors.  A single sensor, single 

look task discrimination model was created first to 

determine a CID performance baseline for each sensor 

mode selected.  A feature fusion ID performance model 

was then developed to predict CID results.  Task 

discrimination performance for both single sensor and 

fused feature models were compared to published results 

for verification. 

2.1 Feature Quality 

  Feature-level fusion algorithms need to account for data 

quality.  The quality of the data affects the value and 

number of available features that can be extracted for CID 

applications.  Target features in poor quality imagery are 

increasingly merged together or obscured as quality 

degrades, rendering feature extraction difficult and 

adversely impacting CID decisions.  An image quality 

model was developed using the national imagery 

interpretability rating scale (NIIRS) to assess the quality 

of EO/IR/SAR data.  A description of the rating scale is 

found in Table 2 with estimated resolutions [21, 22, 23] 

included. 

NIIRS 

Level

EO IR SAR Resolution

0 Uninterpretable Image Uninterpretable Image - -

1 Distinguish between taxiways 

& runways @ large airfield

Detect large cleared areas Detect lines of 

transportation

> 9m

2 Detect military training areas Distinguish level of 

vegetation 

Detect very large defensive 

berm

4.5 to 9 m

3 Detect helipad based on 

configuration/ markings

Detect  driver training track ID areas based on building 

pattern

2.5 to 4.5 m

4 Recognize by general type 

(tracked/wheeled)

Detect individual  thermally 

active vehicles

Detect a convoy 1.2 to 2.5

5 ID by type large targets Detect  vehicles in revetment Detect battery of towed 

artillery

0.75 to 1.2 m

6 ID spare tire on medium sized 

truck

Distinguish between 

thermally active APC & tank

Distinguish between 

wheeled & tracked

0.4 to 0.75 m

7 ID missile mount ID missile transfer crane on 

transloader

Distinguish between 

medium tank & APC

0.2 to 0.4 m

8 ID handheld SAM Detect closed hatches Distinguish between guns 

by overall configuration

0.1 to 0.2 m

9 ID vehicle registration 

numbers

ID turret hatch hinges on 

armored vehicle.

Detect gun tubes on SPAA 

gun.

< 0.1 m

 

Table 2. NIIRS Definitions 

  General image quality equations (GIQE) were developed 

to predict NIIRS values based on sensor parameters.  The 

general image quality equations for EO and IR sensors 

were implemented and related to a SAR sensor.  The 

equation for an EO sensor [21] is given by 

     NIIRSEO = 10.251 – a log10 (GSD) + b log10(RER) 

                    – 0.656 H – [0.344(G/SNR)]       (1) 

where GSD is the geometric mean of the ground sample 

distance, H is the geometric mean height due to edge 

overshoot, RER is the geometric mean of the normalized 

relative edge response, G is the noise gain, SNR is the 
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signal to noise ratio, a is constant (3.32 if RER = 0.9, 3.16 

if RER<0.9), and b is constant (1.559 if RER = 0.9, 2.817 

if RER < 0.9).  The variables and constant values remain 

the same for the infrared GIQE [21] given by the following 

expression 

   NIIRSIR = 10.751 – a log10 (GSD) + b log10(RER) 

                  – 0.656 H – [0.344(G/SNR)]        (2) 

The SAR NIIRS is related to the IR NIIRS using the 

following equation developed in [21]. 

   NIIRSIR = 1.14 + 0.18NIIRSSAR + 0.08NIIRS
2

SAR.  (3) 

The SAR resolution [21] is then determined by 

   GSD = 10
[(10.751-NIIRSIR)/a] 

              (4) 

Where a is the constant value from the GIQE and NIIRSIR 

is determined by Equation 3.  The number of cycles 

across the target of interest is then given by 

 N = Dc/(2  GSD)                (5) 

Where Dc is the critical target dimension given by  

 Dc = (l  w  h)
(1/3)

                (6) 

and l is target length, w is target width, and h is target 

height.  The image quality results can then be related to the 

target discrimination tasks: detection, recognition, and 

identification using the target transfer probability function 

[21, 24, 25] given in Equation 7.   

        P(N) = (N/N50)
a+b(N/N50)

/[1+(N/N50)
a+b(N/N50)

]    (7) 

where a and b are constants 1.75 and 0.35 respectively and 

N50 is the N value for 50% probability of success for a 

given discrimination task. 

 

Figure 2. Sensor task discrimination vs. image quality 

  The probability of task success for EO, IR, and SAR 

sensors for a 6.6 x 3.3 x 3.4 meter sized target are found in 

Figure 2.  The curves illustrate the unique sensitivities of 

each sensor based on the various NIIRS levels necessary 

for successful task discrimination.  Figure 2 indicates the 

feature independence between EO/IR/SAR imagery. 

2.2 Resolution and Range 

  Next we relate the NIIRS values to sensor resolution by 

using Equations 1-4 and varying the NIIRS values 

between 0 and 9 to determine the GSD.  The results are 

found in Figure 3.   

 
Figure 3. Image quality vs. sensor resolution 

  Then the sensor resolution is related to range for each 

sensor modality.  Optical sensor resolution can be related 

to operational range by writing the GSD in terms of sensor 

parameters as shown in Equation 8 where FOV is the 

sensor field of view in degrees, P is the number of pixels 

in the largest sensor dimension, and R is the sensor range 

to target in meters. 

        GSD = (FOV / P) R                   (8) 

  SAR resolution is a function of sensor parameters only 

and is therefore independent of range.  The SAR cross 

range resolution is given by Equation 9 and the range 

resolution is found in Equation 10 where λ is the 

wavelength, L is the synthetic aperture extent, BW is the 

radar bandwidth, and c is the speed of light.  

 Cross Range Resolution =  λ / 2L            (9) 

 Range Resolution =  c / 2BW           (10) 

The range sensitivity for optical sensors expressed in 

Equation 8 indicates that resolution improves at closer 

ranges and degrades at standoff sensing ranges.  SAR 

sensor resolution is unaffected by range, making SAR an 

ideal standoff sensor.  Figure 3 confirms better resolution 

increases image quality which in turn improves 

discrimination task performance as shown in Figure 2 for 

EO/IR/SAR sensors.  

2.3 Single Look Task Discrimination Model 

  A single sensor, single look, task discrimination model 

was created using the target transfer probability function 

(TTPF) described in Equation 7 to determine baseline 

CID performance versus range for each sensor selected for 

a common target.  Presented in Table 3 is a list of the 
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sensor parameter values used for prediction of task success 

for each sensor.  Equation 11 was used to determine the 

N50 [26] values of a given sensor for target detection.    

         N50 = 0.75 C [(C/Δt)
2 
+ 1]            (11) 

where C represents the image complexity of the data: 1 – 

low, 1.5 – medium low, 2 – medium, and 2.7- high. Δt is a 

constant ranging from 1 to 10. 

Sensor Parameter EO IR SAR

FOV 2.25˚ 1.5˚ N/A

Array Size 640x480 640x480 N/A

Nominal Critical Target 

Dimension

4.3 m 4.3 m 4.3 m

 
Table 3.  Sensor Parameters for task discrimination 

  Using Equations 5 - 8 for the same target and varying the 

range from 0 to 50 km, the task discrimination 

performance is presented in Figure 4 for EO/IR/SAR 

sensors versus range to target.  The SAR discrimination 

tasks show a gradual performance improvement at closer 

ranges that are caused by improved target-to-clutter ratios 

and not changes in resolution.   

 

Figure 4. Sensor task discrimination vs. range  

The optimal operation range selection for the chosen 

sensor technologies is possible from Figure 4 for 

achieving high probability of success for all three sensor 

modes.  

2.4 Fusion Definitions 

  A fusion model detailing the primary functions, relevant 

information, databases, and interconnectivity for the 

performance of data fusion was developed and refined in 

the late 1980’s and early 1990’s by the Joint Directors of 

Laboratories’ (JDL) Data Fusion Subpanel of the 

Technology Panel for C3 which contained levels 0 – 4 [27].  

The JDL model was refined over the years [28, 29, 30] and 

an additional level was added, User Refinement, as shown 

in Figure 5.  The Data Information Fusion Group (DFIG) 

replaced the JDL model with a similar level 0-5 fusion 

model. 

  Tasks typically performed on a sensor by sensor basis 

such as measurement, signal processing, and filtering of 

the data fall under level 0 of the various fusion models.  

Tasks commonly associated with CID operations such as 

object detection, tracking, identification, group 

association, and intent fall in levels 1 – 3.  The higher 

fusion model levels 4 and 5 (JDL & DFIG) are for 

optimization tasks such as mission planning, sensor 

placement, and algorithm selection. 

 

Figure 5. JDL Fusion Model and CID application  

  Object assessment is conducted at level 1 of the fusion 

models to determine when, where, and what an object is 

through data alignment, association, tracking, and 

identification [27].  Alignment projects the data into a 

common reference frame where data for an object of 

interest is associated via sorting or correlating observations 

so that estimating position and velocity is possible and 

object identification may occur.  The types of level 1 

fusion are image fusion, feature fusion, and decision 

fusion. 

  Decision Level Fusion (DLF) is the simplest fusion 

technique to implement but requires each sensor modality 

to have a good object recognition algorithm for 

classification.  The DLF combines individual classifier 

outputs to form a fused identification decision. 

  Feature Level Fusion (FLF) is more complex than DLF 

to implement, requiring greater computational power.  

However, with increased complexity comes the potential 

for enhanced CID performance.  The FLF combines the 

features of objects detected and segmented from each 

sensor domain.  The independently detected object 

features need to be registered spatially and temporally 

before input to the FLF algorithm.  Determining the 

appropriate features from each sensor modality is critical 

to FLF identification success. 

  Image Level Fusion (ILF) which is also known as pixel 

level fusion is the most complicated technique to 

implement and requires significant computational power.  

Registered pixel data from each sensor image is combined 

into a common reference frame for detection, recognition, 
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and identification.  Although this approach offers the 

greatest potential CID performance boost, sensitivity to 

registration errors will adversely impact ILF performance.  

Sensors imaging in different planes, measuring different 

phenomenologies, and in differing resolutions will likely 

require resampling and warping. 

  Many recent publications [11, 31] have explored the 

benefits of DLF to CID.  The use of FLF algorithms is 

expected to further enhance CID performance beyond that 

obtained by using DLF technology.  The optimal mix of 

features [32] must be determined for FLF to provide high 

confidence CID. Identified in Table 4 are some of the 

potential features that can be used for level 1 object 

assessment found in EO/IR/SAR sensor imagery. 

Category Features Utility 
Geometric: 
SAR & EO 

Edges, lines, arcs, line 
relationships 

Size, shape, structure, 
kinematics of objects,  
Pose Estimation 

Structural: 
SAR 

Number of surfaces, 
orientation, position of 
cylinders, cones, boxes 

Pose & configuration 

EO/IR 
Video 

Edges, texture, correlation 
length, fractal dimension, 
shape, aspect ratio, spatial 
frequency distributions, 
shadows  

Target class, coarse 
level ID, & kinematics 

SAR Grayscale, peaks, ridges, 
edges, contours, shadows, 
detection statistic aspect 

Strong discriminators 
of components & 
structure 

IR Edges, regions, texture, 
temperature spatial 
distribution 

Unique thermal 
signature & 
distribution 

Table 4.  Potential Features for CID 

2.5 Feature Fusion Performance Model 

  A performance model was developed to predict the 

feature fused CID results and determine the fusion gain 

with respect to the best single sensor, single look 

recognition results.  CID performance is often reported in a 

confusion matrix (CM) where each test target is compared 

against a library target and the recognition results tabulated 

in the CM with correct identification for each target along 

the diagonal of the CM.  The FLF model was developed to 

predict the expected mean CID performance or report the 

mean of all correct target identities. 

  The predicted feature level fusion probability of correct 

identification is defined by Equation 12. 

    FLFid  = Fa R e
(-1/[1+Σ{9 Pid/NIIRS}])

          (12) 

where Pid is the mean probability of correct identification 

for all targets from a given sensor, NIIRS is the image 

quality for each sensor, Fa is the appropriateness of the 

features being fused (0 – poor through 1 – optimum), and 

R is the feature registration accuracy (0 – no registration 

through 1 – perfect registration). 

  The Pid and NIIRS parameters used in Equation 12 are 

obtained from the image quality and resolution equations 

used to generate Figures 2-4.  If the features from three 

sensors are to be fused, using the probability of correct 

identification from each sensor the corresponding NIIRS 

values could be obtained from Figure 2.  These values are 

then put into Equation 12 along with the desired 

registration and feature optimization percentages to obtain 

a predicted FLF ID.  

  Once the predicted fused CID result is known, the feature 

fusion gain with respect to the best single sensor CID 

performance is determined using Equation 13. 

    Fusion Gain = (FLFid - SSSLid)/ SSSLid         (13) 

where FLFid is the probability of correct identification 

obtained from feature level fusion, SSSLid is the best 

single sensor single look probability of correct 

identification regardless of sensor mode. 

2.6 Fusion Model Validation 

  The FLF CID performance model was validated against 

automatic target recognition (ATR) results using measured 

EO/IR/SAR sensor data found in the literature.  A series of 

experiments were conducted and the model predictions 

compared to published data to validate point solutions in 

the decision space. 

  As discussed earlier, feature fusion presumes independent 

detection in each sensor and combines the extracted 

features in a common decision space.  FLF is similar to 

multi-look recognition algorithms which use sensor data 

that is closely associated in space and time to achieve 

enhanced identification performance.  Both multi-look and 

FLF CID algorithms are optimized for classification of 

selected targets.  For a single sensor, the FLF model 

should produce results which correspond to single sensor 

multi-look ATR performance. 

 
Figure 6. SAR Stationary Target Identification 

  In a recent paper [9] investigating multi-look 

classification using collected SAR data of stationary 

targets, three ATR algorithms (K-nearest neighbor, 

Bayesian, and Feed-forward artificial neural network) were 

used to generate classification results to alleviate any 

algorithm bias.  Average classification performance was 

reported for each algorithm as the number of looks 
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increased.  The fusion performance model treated each 

new look as a different sensor and predicted the fused 

CID.  In Figure 6 the expected FLF identification is 

compared to the ATR performance of all three algorithms 

versus the number of looks.  The fusion model from 

Figure 6 shows good agreement with the published data.  

The fusion model used optimal features and ideal feature 

registration to produce the results. 

  Choosing the optimum mix of features for fusion will 

impact CID performance which is why the FLF model 

includes a feature selection parameter.  The effect of 

selecting the wrong features or too many features was the 

topic of a feature based single-look SAR ATR 

investigation [33, 34].  The average ATR performance for 

stationary targets versus a set of features is presented in 

Figure 7 and compared to the FLF performance model.  

The FLF model had constant NIIRS values, ideal 

registration, and constant probability of identification, 

leaving only the feature parameter to be varied. 

 
Figure 7. SAR Feature Optimization 

  The FLF model validation efforts have so far relied on 

SAR performance data.  Published data fusion results for 

EO/IR[35], IR[31], and IR/SAR[36] data is presented in 

Table 5 along with predict FLF performance.  Ideal 

registration and optimal features were selected for all of 

the predicted FLF identification.  The IR data only fusion 

results presented are for the mean of six DLF algorithms 

and the IR probability of identification reported in the 

Table 5 is the average of four single look ATR algorithms 

used for the DLF performance comparison.  The FLF 

model agrees with the published feature level fusion 

performance and exceeds the mean DLF performance. 

Pid FLF

EO IR SAR Reported Predicted

0.88 0.85 N/A 0.91 0.92

N/A 0.75 N/A 0.81 0.95

N/A 0.58 0.40 0.78 0.83
 

Table 5. Predicted vs. Reported FLF Performance 

3 Scenario 

  An intelligence, surveillance, and reconnaissance (ISR) 

type mission was selected for feature fusion analysis using 

a combination of electro-optical, infrared, and synthetic 

aperture radar sensors for target identification.  Each 

sensor images the same area and mix of targets for 

stationary target identification using EO/IR video and 

SAR imagery 

  A combination of sensors and potential target scenarios is 

graphically depicted in Figure 8.  The overlap in the 

center of Figure 8 of the sensors and target conditions is 

the subject of a recent paper [37] discussing the GOTCHA 

Radar and NightStare development programs at the Air 

Force Research Laboratory (AFRL).  The colored sections 

and dots in the center region show potential fusion 

opportunities for enhanced CID.  

 

Figure 8. Sensor-Scenario Combinations 

  The use of unmanned air vehicles (UAVs) in military 

operations especially in hostile environments has increased 

dramatically.  EO/IR sensors are commonly found on 

many of these UAV systems.  SAR sensors are typically 

employed on standoff platforms because radars are range 

invariant.  Fusing the features of forward deployed EO/IR 

sensors with those of standoff SAR sensors should provide 

high confidence CID of stationary high value targets.  

Registration errors of the extracted features from multiple 

geometries will impact FLF ID performance but could be 

mitigated by combining the EO/IR video sensors with the 

SAR sensor on a single platform. 

Parameter Value

EO Pid 0.70

EO NIIRS 5.6

IR Pid 0.60

IR NIIRS 7

SAR Pid 0.70

SAR NIIRS 6.8

Feature Registration 0 – 1

Feature Optimization 0.25, 1.0
 

Table 6. Fusion model parameters  
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  The parameters that were used to predict FLF 

identification performance for stationary target 

identification are found in Table 6.  The sensor collection 

geometries were all different leading to variable NIIRS 

and Pid values.  Registration and optimal features are 

varied to produce upper and lower performance bounds. 

4 Results 

  Feature level fusion performance was predicted for each 

scenario defined in the previous section using the 

parameters identified in Table 6.  The FLF model was 

used to predict expected performance limits by varying the 

available features and corresponding feature registration.  

The results of the ISR scenario are found in Figure 9.  

 

Figure 9. Predicted FLF Stationary Target ID Performance 

The predicted FLF performance is related to the best single 

sensor identification performance for each scenario to 

determine relative fusion gain or loss using Equation 13.  

A significant improvement in CID performance is shown 

for the stationary target scenario in Table 7 with a 33.41% 

increase in object identification. 

Description Value

Best Sensor Pid 0.70

FLF Pid 0.93

Fusion Gain 0.33
 

Table 7. EO/IR/SAR Stationary Target ID Fusion Gain 

5 Conclusion 

  A feature fusion model was developed by first creating 

task discrimination models for EO/IR/SAR sensors which 

take into account key factors for object identification such 

as sensor resolution, image quality, and range to target.  

Estimated detection, recognition, and identification curves 

were created for each sensor for a nominal sized target 

versus the key factors listed previously.  The output from 

the task discrimination model was input into a feature level 

fusion target identification model which related the 

probability of correct identification to image quality on a 

sensor by sensor basis and accounted for the 

appropriateness of the features and how well the features 

were registered.  Finally, an expected fusion gain was 

determined by relating the predicted FLF ID to the best 

single look, single sensor ID.  Stationary target 

identification achieved a significant performance increase, 

33.41%. 

  To verify the prediction behavior of the FLF performance 

model, mean identification performance values were 

determined from published multi-look ATR results using 

measured data for comparison.  A few examples of FLF 

target identification using EO/IR/SAR sensors were 

located in the literature as another comparison point.  The 

model showed good agreement with all of the published 

data.  

  Predicted feature fusion performance from multiple 

sensors of diverse phenomenology and viewing geometries 

has been demonstrated to improve target identification 

performance over single sensor CID.  Expected FLF 

performance bounds were determined that took into 

account the importance of using optimal features for 

identification and how well the selected features were 

registered to one another.  Feature level fusion using the 

optimal combination of target features, kinematic and 

mission data significantly enhances CID performance 

relative to single look sensor recognition. 
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