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1. ABSTRACT 

This paper will report the results 
of the study of the sensitivity of 
digital EW receivers. The best 
sensitivity one can expect from an EW 
receiver is achieved by designing the 
bandwidth of the receiver to match the 
pulse width of the input signals. Under 
this condition, the receiver can be 
considered as a matched filter. 
However, it is probably difficult to 
design an EW receiver which will 
perform as a matched filter to every 
input signal, although theoretically 
this can be done. This paper will 
provide an approach to improve the 
sensitivity of the receiver with 
reasonable complexity. 

2. DATA OUTPUTS FROM A DIGITAL 
RECEIVER 

Instead of starting with a 
theoretical approach, the outputs from 
a digital receiver will be examined I' WYNCCNMRTER 
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Figure 1 Experimental Setup 

first. The experimental set-up is shown 
in Figure 1. 
The first unit is an RF tuner with an 
input frequency range from .5 to 18 GHz 
and an instantaneous bandwidth of 
500MHz. The output is from 750 to 
1250MHz. The second unit is a quadrature 
downconverter which converts the 
750-125OMHz to 0-25OMHz and provides 
both I and Q channels. The two channels 
are matched within 1 dB and 15 degrees 
across the operating bandwidth. At the I 
channel a 160MHz log amplifier with 40 
MHz bandwidth was connected and the Q 
channel was connected to the input of an 
HP sampling scope. 

The input signal frequency was set 
so that the output from the second 
converter was 160MHz which matched the 
operating frequency of the log 
amplifier. The amplitude of the input 
was adjusted until the video output from 
the log amplifier was at tangential 
sensitivity. The video output from the 
log amplifier was digitized and is shown 
in Figure 2a. The output from the Q 
channel was also digitized and is shown 
in,Figure 2b. Figure 2b shows the effect 
of integration of the signal when the 
scope has infinite persistence. This 
allows the duration of the signal to be 
clearly seen. Figure 2c shows the data 
from a single digital scope sweep. It is 

difficult to see the existence of the 
signal, therefore, it would be difficult 
to build a filter to match the bandwidth 
of the signal. It should be noted that 
the output level from Figure 2b seems 
lower than at tangential sensitivity. 
The reason is that the log amplifier has 
less bandwidth (40 MHz) than the digital 
scope (250 MHz). 

3 .  IDEAL AND PRACTICAL APPROACHES 
The ideal approach to finding the 

signal is to perform a frequency 
analysis on the input data including 
only the portion that contains the 
input signal. In other words, one must 
know the leading and trailing edges of 
the input signal. Since from Figure 2c 
one does not know the leading and 
trailing edges of the signals, it is 
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difficult to perform the ideal approach. 
Further, if the input data contains two 
pulses of different length, one has to 
perform the frequency analysis on the 
same data but with different starting 
and ending points to match the two 
different pulses. Obviously, although 
the ideal approach can be accomplished 
if enough processing is performed, it 
is, in general, not practical. 

There are many different practical 
approaches to the analysis of the input 
data that would improve the sensitivity 
of the receiver. In this paper, one 
approach will be presented. This 
approach does not provide the best 
sensitivity that can be accomplished 
but it will provide an improvement over 
conventional EW receivers. 

In this proposed approach, the 
Digital Fourier Transform (DFT) will be 
used to find the frequencies of the 
input signals. From the experimental 
data, one can see that in order to 
accomplish maximum sensitivity, the 
starting and ending data points must be 
known. In others words, the starting 
points and the length of the DFT must 
be determined. In this approach, several 
DFTs with fixed lengths are used. The 
length of the DFT can be related to the 
frequency resolution 6f through 

8 f - 2  NT 

where N is the total number of data 
points used in the DFT and 7 is the 
time between sampling points. If one 
performs 64, 256, 1024, and 2048 points 
DFTs with 7=lnSI the corresponding 
frequency resolutions will be 31.3, 
7 . 8 ,  2 and 1 MHz. Since the Nyquist 
sampling rate requires 2 points per 
cycle, the corresponding maximum 
instantaneous bandwidth of the system is 
500 MHz. In order to limit the aliasing 
from the DFT, the input bandwidth is 
usually less than 500 MHz, say 250 MHz. 
From an analog receiver point of view, 
this approach is equivalent to building 
4 channelized receivers, each with 250 
MHz instantaneous bandwidth. The 4 
receivers have frequency resolutions of 
31.3, 7.8, 2 and 1 MHz. 

The next question is when to start 
processing the input data, and how the 
data should be overlapped. Different 
overlapping can be applied to the DFT. 
If there is zero overlapping, there is 
minimum processing required butthere is 
less possibility of matching the input 
signals. More-data overlapping requires 
more processlng but also increase the 
possibility of matching the input 
signals to obtain better sensitivity. 
In this paper a sliding window will be 
used. In this approach, the input will 
shift by 32 data points each time. Thus, 
this approach will approximate the 
performance of a superhet receiver with 
a fixed bandwidth. In summary, this 
approach is equivalent to several 
channelized receivers each having a 
different resolution bandwidth. 

4. DFT VERSUS FFT 
In this last section, the digital 

Fourier transform 
(DFT) is used rather than fast Fourier 
transform (FFT) . The ma] or differences 
between the two approaches are as 
follows: For general calculation of the 
Fourier transform in digital form, the 
well known fact is that the FFT is more 
efficient than the DFT. However for 
sliding operation, the DFT is more 
efficient than the FFT. This is because 
the new components can be calculated 
from the old ones. Assume that the 
input data is from xo, xl, . . . x,,~, and 
the mth component in the frequency 
domain is Xo,N.r(m). If one new point xN 
is obtained, the mth component from the 
data x,, x2, . . . , X,,rr(m) can be 
calculated as follows? 

X1,N = exp(j2mW) [ Xo,N-l(m) + XN - xo I 

The major advantage of this equation is 
that the calculation is simpler than 
the FFT because one just needs to modify 
the previous values. 

The FFT can be used to perform the 
initial calculation. For example, if 
1024 data points will be used in the 
Fourier transform, it is reasonable to 
use the FFT to perform the initial 
calculation from xo to xlyLe If the DFT 
is used to calculate initial 
Fourier transform, N' operations will be 
required. 

(2) 

5. FREQUENCY DETERMINATION 
Another difficult problem is to 

choose the peaks in the frequency 
domain. After the power spectrum is 
calculated in the frequency domain a 
threshold must be set such that the 
signal amplitude will cross it. One way 
to set the threshold is to take the 
average of all the frequency components. 
A frequency is then declared to be 
present when its amplitude is 5 times 
this average. This method was tested 
successfully. 

The peaks must be evaluated at the 

Output Of each DFT calculation. 
However, the peak component may not be 
consistent from one DFT output to the 
next. It may switch from one frequency 
component to its neighboring ones. This 
is true, particularly for the cases 
where the input frequency is between two 
adjacent frequency components. In order 
to take this problem into consideration 
one must allow comparison within 
limits. 
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6. EXPERIMENTAL RESULTS 
Some preliminary results were 

processed and the results will be 
presented here. The I and Q components 
of a signal were' digitized at a 1 GHz 
rate. The input was a pulsed signal with 

a center frequency of 2840MHz, at - 
85dbm and a pulse width of about 250ns. 
The data collected in the time domain 
is shown in Figure 3a and b. From these 
figures, it is difficult to detect the 
presence of the input signal. The 
program used to perform the DFT was the 
sliding FFT represented by Equation 2. 
The data from the I channel was used as 
the real part of the input signal and 
the Q channel as the imaginary part. 
For simplicity, the frequency components 
from the DFT were not compared to 
select the center frequency of the 
signal. Instead, the known frequency 
component was calculated. The output of 
the selected frequency component was 
plotted as a function of time. The 
results are shown in Figures 3c through 
3h. The difference in these figures is 
the length of the DFT. 

a. Output from I channel b. Output from 
Q channel c. Output from 
1024 DFT d. Output from 512 DFT e. 
Output from 256 DFT f. Output from 128 
DFT g. Output from 64  DFT h. Output from 
32 DFT 
Figure 3 Input and Output of the DFT 

Since the data length in Figure 3e 
corresponds to 256 ns which 
approximately matches the pulse width, 
the output has the highest 
signal-to-noise ratio. Under this 
condition, the frequency resolution 
bandwidth matches the signal bandwidth. 
As expected, when the resolution 
bandwidth of the receiver does not match 
the signal bandwidth, the 
signal-to-noise ratio deteriorates. 

It appears that the output in 
Figure 3f has a higher signal- to-noise 
ratio than Figure 3d. If this result is 

true, or even if they have the same 
signal-to-noise ratio, it shows that it 
is possible to use shorter DFTs to 
detect the presence of a signal. It is 
desirable to use a shorter DFT, because 
it takes less calculation time. From 
these Figures, one can see that the 
outputs from the DFT can be considered 
as the correlation of two rectangular 
windows as shown in Figure 4 .  When the 
two windows have the same length, the 

TOA 

a.Window equal La signal 
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b Window l o n g e r  than s i ~ n o l  
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Figure 4 Correlation of two rectangular 

output is a triangle as shown in Figure 
4a. If the window is longer than the 
input signal, the result is shown in 
Figure 4b. Figure 4c shows the result 
if the window is shorter than the input 
signal. Since the length of the window 
is known, the time of arrival (TOA) and 
pulse width (PW) can also be determined 
from the output of the DFT as shown in 
Figure 4 under different conditions. 

windows 

7. SUMMARY 
It has been demonstrated with 

actual digitized data that the 
sensitivity of a digital receiver can be 
improved if enough signal processing is 
applied. The approach presented can be 
considered as a brute force one. In 
order to obtain the optimum 
signal-to-noise ratio, excess processing 
is required. If some kind of adaptive 
signal processing can be developed, a 
wide band receiver with frequency 
resolution bandwidth depending on the 
signal length can be designed. This 
approach can improve the receiver 
sensitivity to match that of a specially 
designed superheterodyne receiver. One 
can apply this idea to figure 3 ,  the TOA 
and PW can be obtained accordingly. 
However, when the signal-to-noise ratio 
is low, their obtained accuracy 
degrades. 
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