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Abstract-Classifying an edge or a node within a network 
graph according to its bridging characteristics is an important 
structural measure that has many practical analytic applications. 
Bridging centrality is a relatively new graph-based centrality 
metric for classifying nodes serving as key structural connections 
between dense components. A global bridging centrality has been 
previously introduced and requires global knowledge of the entire 
graph structure to perform the centrality computation. Recently, 
a local bridging centrality variant was also introduced that can 
be calculated locally requiring only limited local neighborhood 
graph information. We introduce an extended model of the 
recently introduced local bridging centrality based upon the the 
concept of a local "friends of friends" or 2-hop neighbor distance 
egocentric graph. We further develop and analyze the use of 
this extended centrality with both unweighted and weighted 
graph structures. Finally we present a series of comparative 
studies using a variety of graph models and examine ranking 
correlation comparisons with global bridging centrality results. 
Our analysis includes comparisons with both past literature 
models and newer temporal graph results of a tOO-node mobile 
wireless network scenario with link weights representing dynamic 
reception quality. 

I. INTRODUCTION 

Complex network theory measures include the broad use 
and definition of a variety of centrality metrics. Centralities 
represent the statistical ranking of the importance or influence 
of vertices (i.e., nodes) or edges within a network graph 
based upon a particular structural or interaction model [7], 
[19]. Many centrality measures have a strong relationship 
to statistical mechanics models and are useful in predicting 
forms of behavior or dynamic performance of network node 
interaction and related traffic flows. 

Bridging centrality was first introduced in [11] as means to 
identify nodes acting as significant structural bridges between 
dense areas of a network. Understanding such statistical rela
tionships is an important analytical concept in applied areas 
of complex graph analysis. As one example, chemical biology 
has been invigorated by the application of such structural cen
tralities to investigate diseases and related treatment responses 
when modeling such interactions as graphs [10]. Within our 
focus, conununication network structures, the knowledge of 
important bridging nodes and edges helps one better determine 
key nodes statistically residing between existing network clus
ters. Clusters are defined here as areas of higher neighborhood 
density or affinity. Bridging characteristics of a network also 
help predict areas of significant potential congestion and 
identify key features related to structural robustness against 
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network failures or attacks. The latter application is close to 
the rationale behind the use of bridging centrality measures in 
other disciplines, such as the study of biomedical interactions 
or in the study of network pharmacology to better understand 
the efficacy of drug treatments for a variety of diseases. 

Because of the distributed nature of wireless mobile com
munication networks, we are often motivated to investigate 
localized or distributed calculations of structural metrics while 
realizing there exists a tradeoff between measurement accu
racy, computation, and communications. Localized centrality 
calculations can reduce both cOlmnunication and computation 
complexity and there are a myriad of potential applications. 
We are mostly interested in the application of these metrics to 
distributed communication systems, a related past work [18] 
demonstrated the potential for such approaches to assist in the 
operations and analysis of mobile ad hoc networks by influenc
ing distributed forwarding control and election mechanisms. 

We first present our extension to an existing local algorithm 
variant and then presents empirical measurements and ranking 
correlations between local and global estimation for a variety 
of scenarios. We also present and discuss important consider
ations and issues related to weighted graph application of the 
estimation. 

II. BRIDGING CENTRALITY 

So what does bridging mean and how is it defined? Bridging 
nodes within network graphs are described as nodes rela
tively more important in connecting and providing effective 
pathways for separate dense components within the graph. 
Centralities are relative statistical measures of certain prop
erties within a given network graph structure, bridging being 
one such potential structural property. The global bridging 
centrality, BC, of a node was more formally defined in [11] 
and is formed as the product of the betweenness centrality, 
Cbet, and a tenn called the bridging coefficient, (3c' 

BC = Cbet * (3c (1) 

Cbet takes into account global features of a nodes' topolog
ical role in terms of how many shortest path flows it resides 
on between other node pairs, while the coefficient Bc takes 
into account local bridging structural features of the node (i.e., 
its function in providing connections between locally dense 
portions of a graph within an immediate neighborhood). 
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A. Betweenness Centrality 

The basic Betweenness Centrality is defined in Equation 2. 

G ( )  _ " a st ( v) 
bet V - � 

s#v#t ast 
(2) 

In Equation 2, a st is the total number of shortest paths 
from node s to node t and a st (v) is the number of those 
shortest paths that pass through v. Betweenness centrality is 
an extremely popular complex network measure and its use as 
a statistical contributor in the bridging centrality calculation 
captures one dimension of the statistical flow properties of a 
node. One can easily imagine different flow models providing 
alternative statistical input at this point (e.g., a multipath 
current centrality model), but we will limit our present com
parison and development to this presently defined bridging 
centrality model from [11]. 

B. Bridging Coefficient 

The bridging coefficient, !3c, introduced in [11] is defined 
as shown in Equation 3. 

1 

!3 - d(V) (3) c- ", 1 
L..iEN(v) d(i) 

In Equation 3, d(v) is the degree of node v, and N(v) is the 
set of graph neighbors of node v. 

In this way, the bridging coefficient attempts to model how 
well situated a node is between other high degree nodes within 
a localized topology. 

III. PAST WORK ON EGO NETWORKS AND BRIDGING 

CENTRALITY 

Egocentric network analysis focuses on something termed 
the ego network which is based upon a single node, the 
ego, and its direct neighbors or alters. The analysis of ego 
networks and their various applications was first explored in 
Ron Burt's 1992 "Structural Holes: The Social Structure of 

Competition" [3]. Later Everett and Borgatti in [8] developed 
from this a concept of egocentric betweenness centrality. A 
synthetic network used as a model in both [8] and in the 
original bridging centrality paper [11], is shown in Figure 1. 

Fig. 1: Synthetic Network Example 

An ego network is defined as the subgraph made up of a 
node itself (i.e., ego node) and its alters, or direct neighbors, 
and direct connections between alters. As an example, node 

F's ego network is extracted and presented in Figure 2. In 
this case, F has a high egocentric betweenness because all 
shortest path pairs between alters contain F. If we added an 
additional edge in the ego network between nodes G and H, 
the relative egocentric betweenness of F decreases because F 
is no longer on the shortest path between some endpoint pairs 
(H,G) 

G 

E )-----a F 

H 

Fig. 2: Node F Egocentric Network 

A. Past Work on Local Bridging Centrality 

Egocentric betweenness in [8] was combined with the 
concepts of bridging centrality from [11] to develop a local 
bridging centrality measure by N anda, et al in [17]. Local 
bridging centrality is a basic follow-on to the method for 
global bridging centrality calculation introduced in Section 
II. The basic equation for calculation is shown as Equation 
4, where Glbet represents a localized egocentric betweenness 
measure rather than the global betweenness measure. 

LBG = Glbet * !3c (4) 

The concept for calculating Glbet presented in [17] is com
putationally simplified over the calculation of global between
ness centrality and only requires the I-hop adjacency matrix. 
Efficient means for calculating Glbet were also discussed in 
[5], [16]. 

Analyses of multiple example graph data sets in [5], [16] 
demonstrated some reasonable correlation between local 

bridging centrality and global bridging centrality for the 
networks presented and studied. These results provided moti
vation for the use of local bridging centrality for two potential 
reasons: 

1) local estimation with limited global information 
2) reduction in the computation complexity of bridging 

centrality estimates 

In distributed wireless and other highly dynamic systems, 
we are often interested in structural algorithms with fast 
convergence using local estimators. Such approaches can be 
used for local real-time analytics and for potentially improving 
self-organization and routing. Computational improvements 
are also of interest in more general analytic applications. 
Reducing the computational impact of a global betweenness 
calculation is one potential contribution of a localized es
timation approach. Freeman's betweenness centrality [9], a 
basic contributor to the global bridging centrality calculation, 
is calculable on the order of O(mn) for un weighted graphs 
and O(nm + n2 logn)for weighted graphs [2], where n is the 
number of nodes and m is the number of edges. For fully 
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connected networks m rv n 2 but may be much smaller for 
sparser networks. 

IV. EXTENDING THE EGO NETWORK CONSTRUCT FOR 

USE IN WIRELESS NETWORK TOPOLOGIES 

When applying ego network concepts to distributed wireless 
networks or mobile ad hoc network (manet) use as suggested 
in [17], we consider extending the adopted betweenness model 
to include additional local information often available within 
such networks. Upon consideration, it turns out this same 
information is also often available in many social network 
datasets. For instance, most manet or wireless ad hoc routing 
protocols include a local discovery protocol mechanism that 
collects 2-hop topology information at each node via local 
neighbor discovery messaging [1], [4], [13], [20]. Neighbors 
include information about their neighbors in such discovery 
messages. Sociologically this can also be thought of as having 
a dynamic model of an egocentric friends of friends network. 
Going back to the example from Section III we now construct 
and provide an example of the 2-hop egocentric network for 
node F as shown in Figure 3. 

Fig. 3: Node F Extended Egocentric Network 

We define our version of local betweenness on this 2-
hop egocentric network as Glbet2 ' We show the calculation 
of I-hop and 2-hop egocentric betweenness for the synthetic 
reference network in Table I. We can see from the results that 
Glbet2 reveals more statistical details of relative topological 
flow structure. Of special note are the differences for nodes 
(B, E, D, I, J) between Glbet and Glbet2 . The relative struc
tural importance of E is completely missed within the I-hop 
egocentric model. What is important to note when examining 
the local centrality results is not actual values but the relative 
rankings of the values of betweenness. In G1bet there are 
only 4 relative levels of ranking for this unweighted network 
model. Whereas, with Glbet2 there are 8 relative ranking levels. 
It should be pointed out, as discussed in [8], we do not 
apply betweenness normalization to our local betweenness 
calculations. 

V. EXTENDED LOCAL BRIDGING CENTRALITY 

In a straightforward manner, we modify the previous local 
bridging centrality formula LBG to include the use of the 
2-hop ego network betweenness, Glbet2 ' We call this 2-hop 
local bridging centrality, LBG2, and equation 5 shows its 
formulation. 

TABLE I: Synthetic Net G1bet and Glbet2 

Name G1bet Glbet2 
A 6 1l.5 
C 0 0.0 
B I 3.0 
E 1 12.0 
D 1 3.0 
G I 1.0 
F 3 6.5 
I 1 0.5 
H I 1.0 
K 0 0.0 
J 3 3.5 

LBG2 = Glbet2 * (3c (5) 

VI. COMPARISON TO PREVIOUS RESULTS AND LARGER 

STATIC MODELS 

Prior to doing more complex network studies, we compare 
results for LBG2 against the results for the simple example 
networks presented in the reference work [17]. We include the 
small synthetic network, the small bank wiring example, and 
our own larger interconnected gaussian cluster examples (5-
Gauss-lOO and 1O-Gauss-200). Our interconnected 5-Gauss-
100 example is a 100 node network with 5 gaussian clus
ters with an interconnection ratio of edges within a cluster 
to interconnecting edges set at 0.9. An example generated 
network is depicted in Figure 4. Similarly, 10-Gauss-200 is a 
200 node network with 10 gaussian clusters with the same 0.9 
interconnection ratio as 5-gauss-100. This defines a moderately 
sized network with some amount of bridging nodes with edges 
that interconnect more densely connected clusters. 

Fig. 4: 100 Node 5 Gaussian Cluster Network 

We present the results of our initial study in Table II. We 
took each un weighted network model and calculated the global 
bridging centrality BG, the local bridging centrality, LBG, 
and the 2-hop extended local bridging centrality, LBG2. 
We present Pearson, Spearman, and Kendall [12] correlation 
between each local bridging centrality and the global bridging 
centrality results. To compare the classification of bridging 
features, relative rankings are most important so we include 
Spearman and Kendall coefficients along with typical Pearson 
coefficients for correlating data sets. Spearman and Kendall 
measures are intended specifically for correlation comparison 
of relative rankings. From examining the results presented 
in Table II, we note that while the Pearson correlation re
sults remain relatively the same between techniques we see 
improvement in the ranking correlation (both Spearman and 



Milcom 2016 Track 5 - Selected Topics in Communications 

Kendall scores) for LBG2 as compared with LBG. This 
is most notable in the referenced synthetic and clustered 
Gaussian network cases. 

TABLE II: LBG,LBG2 to BG Correlation Measures 
Correlation Pearson Spearman Kendall 
Graph LBCp LBC2p LECs LBC2s LECk LBC2k 
Synthetic 0.98 0.99 0.62 0.99 0.53 0.65 
Bank Wiring 1.0 1.0 0.98 1.0 0.92 0.96 
5-Gauss-\OO 0.99 0.99 0.95 0.99 0.78 0.85 
IO·Gauss-200 0.78 0.64 0.90 0.94 0.76 0.8\ 

VII. NOTES ON USE WITH WEIGHTED GRAPH MODELS 

We will now discuss use of localized bridging centrality 
with weighted graph models and to our knowledge some of 
these important issues have not been presented in past bridging 
centrality literature. By re-examining the original formulation 
of bridging centrality derived from [11], one can see it is 
missing important applied discussion when considering its use 
in weighted graph models. A key technical issue is the fact 
that graph edge weights or costs often need to be represented 
mathematically in different ways depending upon the purpose 
of the metric application. For example additive edge metrics 
appropriate for classical shortest cost path computation, Gbet , 
should not be used for weighted degree calculations that 
would contribute to the bridging coefficient, (3c in this case. 
These metrics often have inverse relationships in that smaller 
weights representing poor edge quality are equivalent to a 
higher weights appropriate for least cost path purposes. If link 
cost metrics were used for bridging coefficient calculation, as 
defined, a single high cost edge (e.g., linking two neighbors) 
could make it appear that there were large clustered areas 
surrounding a node, thus inflating bridging coefficient values 
artificially. In the case of uniform weights (e.g., weight=l) this 
is a non-issue. 

In our approach, we will apply a floating point edge quality 
weight as shown in Equation 6 so that the edge weights, Evi, 
are between the values (0,1) and represent some notion of edge 
quality not cost for use in bridging coefficient calculation and 
will use a related additive cost metric for betweenness we 
introduce in Section VIII . 

Deg(v) = L Evi :s; Vneigh 
iENv 

VIII. DYNAMIC MOBILE NETWORK MODEL 

(6) 

Encouraged by our initial reference model findings in Ta
ble II, we now investigate a larger and more complex set of 
weighted networks. For the next set of analyses we apply 
an existing temporal mobile wireless conununication network 
model. A snapshot topology of the modeled JavaSea (JS) 
network scenario we will be using is shown in Figure 5. This 
network model was previously introduced and discussed in 
detail for graph-based temporal clustering and routing path 
studies within [14], [15], [21]. In Figure 5, the upper right 
cluster represents mobile nodes within a littoral region and the 
lower left region represents nodes moving with a sea-based re
gion. There are nodes performing aerial flight patterns amongst 

these areas throughout the scenario. The average degree-based 
assortativity coefficient, r, for the JS scenario is r = 0.57, 
meaning vertex degree distributions are reasonably assortative 
and because of the maritime, littoral, and airborne nodes there 
are clearly nodes at various times with bridging functionality 
between dense areas of the scenario. Due to mobility and link 
quality variations, network structural characteristics modulate 
throughout the scenario. 
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Fig. 5: JavaSea Scenario Snapshot 

To capture the temporal nature of the network, we model JS 
as a time series of weighted graphs G = (V, E, w, t), where 
t is time or the sequence value of our data set, V is the set 
of vertices (representing the data or nodes in the network) 
and E is the set of edges connecting the vertices in V. w 

represents a set of edge weights in E that may be asymmetric. 
In our analysis, w represents a stochastic probability of packet 
reception given a wireless link quality and mobility model. The 
weighted graph betweenness calculation required for bridging 
centrality needs an additive cost metric within the weighted 
graph model so we convert the neighbor link quality-based 
asymmetric w weights (i.e., packet reception probability) in 
the original JS model to an additive cost metric. We chose 
to use the well-cited expected transmission count (ETX) 
metric [6] as the additive cost metric for the dynamic edges 
within our scenario. Prior to analysis, we filter the graph 
edge quality retaining only edges with a minimum probability 
of successful reception threshold � 0.8 in both directions. 
This models the neighbor adjacency establishment of typical 
routing protocols through localized neighborhood protocol 
exchanges. We then convert the asymmetric probability of 
successful packet reception weights (calculated from range and 
fading models) in E to a set of ETX weights for edge in the 
graph. While details and dynamics of the overall model are 
interesting, we are most interested in using it as an example 
of a complex, weighted temporal graph model relevant to 
potential real world dynamic scenarios. 

For each temporal graph, we calculate local and global 
bridging centrality ranking measures for both weighted and 
unweighted cases using the JS scenario temporal graph data. 
We analyze a series of one second temporal snapshots of the 
scenario over a total of 600 seconds. For the weighted case, 
we use ETX for betweenness cost and a packet reception 
probability metric for bridging coefficient calculations. The 
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unweighted case treats all edge weights as unit value = 1. 
We then compute ranking correlations over the time series for 
each of the local bridging centrality values, (LBG, LBG2), 
and the global bridging centrality values, BG. 

The weighted graph results are shown in Figures (6,7) 
the correlation between local and global bridging centrality 
is always positive for these trials and the LBG2 model 
improves the ranking correlation results over LBG for all of 
the temporal graph snapshots analyzed. Pearson correlation 
results are removed as ranking correlation is more important 
for applied purposes of classifying and identifying structural 
characteristics. 
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Fig. 6: JavaSea Spearman Rank Correlation 
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Fig. 7: JavaSea Kendall Rank Correlation 

The unweighted graph results demonstrated similar trends 
and results to the weighted graph studies although rank corre
lation values tended to be slightly higher in general. Again the 
LBC2 ranking correlations were improved over LBC across 
the temporal graph snapshots studied. As an illustration of 
un weighted results, we present the Spearman correlation in 
Figure 8 and one can compare this against the weighted graph 
results from Figure 6. 
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Fig. 8: JavaSea Spearman Rank Correlation 

IX. LBC2 VS. LBC RANKING CORRELATION 

IMPROVEMENT RESULTS 

We present the comparison more directly by plotting the 
global BC correlation improvement to LBC2 vs. LBe. Fig
ure 9 plots the rank correlation value increase of LBC2 over 
LBC for both Spearman and Kendall coefficients over the 
entire temporal scenario. Both the Spearman and Kendall 
results show very similar trends in this regard. Also, while 
rank correlations fluctuate throughout the 600 temporal graph 
experiment the Spearman coefficient for LBC2 to BC stays 
positive within the value range [0.6-0.9]. The average and 
standard deviation of the Spearman coefficient between LBC2 
and BC for weighted JS is 0.93 ± 0.02. 
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Fig. 9: LBC2 vs. LBC Rank Correlation Improvement 

While we performed a general ranking correlation measure 
between local centralities, LBC and LBC2, and a global 
centrality (BC), it is important to compare results for the 
highest ranking results. Therefore, we examined a running 
count of the top 10% of centrality values throughput the entire 
scenario for BC, LBC, and LBC2. We found that LBC had 6 
nodes in conunon with Be's top 10 scoring nodes throughout 
the scenario while LBC2 had a slight increase with 7 nodes 
in common with Be's top 10. Looking even closer at the 
top 3 node results, there are 2 in common between LBC2 
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and BC, while zero are in common for LBC and BC While 
not a comprehensive study, this provides some indication of 
LBC2 ability to improve the identification of global bridging 
characteristics using the extended local estimation model. In 
many practical applications, identifying the highest ranking 
percentage of bridging nodes helps identify a conununity of 
nodes for some specialized purpose in network management, 
routing, and topological optimization (e.g., cacheing, priori
tized forwarding). 

X. ISSUES AND FUTURE WORK 

Bridging centrality was initially developed using shortest 
path betweenness as a main contributor. Since wireless net
work topologies and applications may use multiple paths 
simultaneously to communicate flows, a shortest path model 
may not be the most optimal model for some network data 
flow models or network deployment scenarios. We are in
terested in exploring the extension of the bridging centrality 
models to include other flow-based centralities (e.g., current 
or communicability-based centralities). 

Other areas we plan to address include the potential for 
using weighted, directed network models more effectively 
and understanding the relationship between localized bridg
ing centrality models and manet-based distributed control 
structures and techniques. It is expected that the concept of 
localized bridging centrality can improve existing distributed 
relay or optimization algorithms. Self-electing algorithms in 
use with manet routing control and management, such as the 
essential connected dominating set (E-CDS) algorithm, are 
basically forms of egocentric ranking methods using limited 
local topology knowledge. Similar improvements for ad hoc 
routing with data flow modeling extensions were demonstrated 
using LBC and Localized Load-aware Bridging Centrality 
(LLBC) accounting for some traffic flow loading in [18]. 

XI. CONCLUSIONS 

We have developed and analyzed a recommended extension 
to local bridging centrality (LBC) called LBC2 for use in 
distributed wireless network analytics. Within manet and other 
self-organizing networks 2-hop neighbor topology information 
is often available at each network node through localized 
neighbor message exchanges, so it is strongly justified to 
extend the idea of an alters-only egocentric betweenness 
in [17] to a 2-hop neighbor betweenness calculation. We 
described using this new formulation to develop a 2-hop 
local bridging centrality, LBG2, that can be generally ap
plied when 2-hop topology knowledge or "friends of friends" 
connection information is available. Comparing against past 
simple toy networks presented in previous related work and 
a basic gaussian clustered network model we first showed 
that LBG2 improved some ranking correlations with global 
bridging centrality over the previous egocentric local bridging 
centrality, LBG. 

We next discussed issues in calculating bridging centrality 
for weighted graphs and presented a working model. Next, we 
used an existing 100-node temporal network model to compare 

approaches including link quality weights and we showed that 
LBG2 provided significant improved ranking correlation over 
LBG for all sets of temporal graphs analyzed. 

From this initial work, we demonstrated that application of 
localized bridging centrality to a distributed wireless network 
model benefitted significantly from local 2-hop egotistical 
topology knowledge often available to local nodes in such 
wireless networks. A similar approach is generally applicable 
to k-hop egocentric network analysis within general network 
models but the complexity of communications and computa
tion will increase for larger k-hop variants and may provide 
limited gains in accuracy. 
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