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Abstract—Radio Frequency RF Distinct Native Attribute 
(RF-DNA) Fingerprinting is a PHY-based security method that 
enhances device identification (ID). ZigBee 802.15.4 security is of 
interest here given its widespread deployment in Critical Infra-
structure (CI) applications. RF-DNA features can be numerous, 
correlated, and noisy. Feature Dimensional Reduction Analysis 
(DRA) is considered here with a goal of: 1) selecting appropriate 
features (feature selection) and 2) selecting the appropriate 
number of features (dimensionality assessment). Five selection 
methods are considered based on Generalized Relevance 
Learning Vector Quantization-Improved (GRLVQI) feature 
relevance ranking, and p-value and test statistic rankings from 
both the two-sample Kolmogorov-Smirnov (KS) Test and the 
one-way Analysis of Variance (ANOVA) F-test. Dimensionality 
assessment is considered using previous qualitative (subjective) 
methods and quantitative methods developed herein using data 
covariance matrices and the KS and F-test p-values. ZigBee 
discrimination (classification and ID verification) is evaluated 
under varying signal-to-noise ratio (SNR) conditions for both 
authorized and unauthorized rogue devices. Test statistic 
approaches emerge as superior to p-value approaches and offer 
both higher resolution in selecting features and generally better 
device discrimination. With appropriate feature selection, using 
only 16% of the data is shown to achieve better classification 
performance than when using all of the data. Preliminary first-
look results for Z-Wave devices are also presented and shown to 
be consistent with ZigBee device fingerprinting performance.  

Keywords—ANOVA, dimensionality reduction, GRLVQI, F-
test, feature selection, Kolmogorov-Smirnov, network security, 
physical layer, RF-DNA, ZigBee, Z-Wave 

I. INTRODUCTION 
Wireless Personal Area Network (WPAN) technologies, 

such as ZigBee and Z-Wave, enable low-power, low-cost mesh 
networks of numerous smart devices. WPANs are in active use 
throughout military and commercial enterprises, from hospitals 
[1, 2] to industrial control systems and transportation 
monitoring [3, 4]. ZigBee devices can form networks 
containing up to 65,000 devices while Z-Wave networks can 
include up to 232 devices [5]. Robust WPAN security is 
essential because they connect more devices to the physical 
world than any other wireless technology [6]. 

Low-cost wireless embedded systems do not possess the 
computational power or physical security of traditional 
computing devices. As a result, WPAN defense must be 

implemented within all OSI stack layers [7]. One of the most 
novel and robust techniques for identifying suspicious wireless 
activity is Physical Layer (PHY) fingerprinting. Encryption 
key-based measures generally neglect useful PHY information 
as an element of multi-factor authentication that includes [3]:  

1. “Something you know” (NWK – encryption keys) 
2. “Something you have” (MAC – MAC address) 
3. “Something you are” (PHY – RF Fingerprints). 

 PHY layer characteristics are unique to each device and 
result from production variances and operational conditions, 
and therefore are considered as an additional, more robust, 
level of security. Additional reasons also exist for examining 
the PHY layer, including: authentication, intrusion detection, 
malfunction detection, and rogue access [8]. 

RF Distinct Native Attribute (RF-DNA) Fingerprinting 
uses statistical methods of feature extraction, classification 
(one vs. many), and ID verification (one vs. one) for device 
discrimination [9]. RF-DNA enables both classification and 
verification and has shown practical utility for both cross-
model [10], e.g. similar devices from different manufacturers, 
and like-model (serial number) device discrimination [11].   

In operational environments, RF-DNA fingerprint features 
can be numerous and of varying saliency. Therefore, this work 
addresses Dimensional Reduction Analysis (DRA) using 
ZigBee and Z-Wave devices as the application of interest. This 
work extends previous DRA studies [3, 12, 13] by examining 
and comparing results from five DRA methods: Generalized 
Relevance Learning Vector Quantization-Improved (GRLVQI) 
feature relevance ranking, and p-values and test statistic values 
from both the Kolmogorov-Smirnov test (KS-test) and a one-
way Analysis of Variance (ANOVA) F-test. Additionally, 
DRA assessment methods are presented using both qualitative 
(subjective) and quantitative selection. As considered 
previously for RF-DNA applications [11] GRLVQI feature 
relevance ranking was used to provide the post-classification 
DRA performance baseline using a full-dimensional feature 
set. This baseline was used for assessing performance of the 
pre-classification DRA feature selection methods. While 
feature selection using p-values for ranking is quite common 
[3, 12-16], herein it is illustrated that test statistic values offer 
many advantages for feature relevance ranking.  

The paper is organized as follows. Section II provides a 
summary of ZigBee RF-DNA Fingerprinting as adopted from 
[9], and the GRLVQI classifier of [11]. Section III addresses 
DRA methods, followed by Section IV and Section V which 
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present PHY security contributions, including: 1) introduction 
of F-test DRA, 2) quantitative vs. qualitative DRA, 3) p-values 
vs. test statistics for feature selection resolution, and 4) DRA 
performance evaluation driven by device classification and ID 
verification accuracy. Preliminary Z-Wave device classifi-
cation is addressed in Section VI and illustrates potential for 
extended applicability while motivating subsequent research. 

II. BACKGROUND  
ZigBee devices transmit a structured burst type signal 

based on a PHY Protocol Data Unit (PPDU) and containing a 
consistent 40-bit binary zero string Synchronization Header 
Response (SHR), a defined 8-bit PHY Header Response 
(PHR), and a variable length ‘payload’ (PSDU) which consists 
of a MAC sublayer frame [3, 12, 13]. The RF-DNA process 
has been previously demonstrated using the entire SHR 
response to generate RF-DNA fingerprints [3, 12, 13].  

A. ZigBee Signal Collection 
ZigBee emissions from four Texas Instruments CC2420 

2.4GHz transmitters were used here for like-model assessments 
[3, 12, 13] and device differences are therefore attributable to 
production variation. The ZigBee devices transmitted at 
2.4GHz, within the Agilent collection receiver range of 
[20.0MHz to 6.0GHz]. As described by [3, 12, 13], burst 
signals (1000 SHR responses) were collected under three 
different operating conditions: 1) in a Ramsey STE3000B RF 
anechoic chamber (CAGE), 2) along a direct line-of-sight 
(LOS) in an office hallway, and 3) through an office wall 
(WALL). Additive White Gaussian Noise (AWGN) was 
combined with collected emissions to achieve SNR∈[0 30] dB 
and simulate varying channel conditions [3, 12, 13]. 

B. RF-DNA Statistical Fingerprint Generation 
RF-DNA Fingerprinting enables device discrimination 

using differences in transmitted signal characteristics among 
various devices [9]. RF-DNA fingerprints have been shown to 
be reliable and accurate for various devices and standards, see 
[9]. Herein, RF-DNA for intra-device variations of ZigBee 
devices is considered, extending [3, 12, 13]. 

Consistent with prior work, [3, 10-13], NS=3 RF-DNA 
fingerprints features of variance (𝜎2 ), skewness ( 𝛾 ), and 
kurtosis (𝜅 ) were computed for NR=80 regions of interest 
within NC=3 ZigBee instantaneous time domain amplitude (𝑎), 
phase (𝜙), and frequency (𝑓) responses. RF-DNA fingerprints 
were generated by 1) dividing each of the signal responses into 
𝑁𝑅 contiguous and equal length bins, 2) calculating 𝑁𝑆 features 
for each bin, plus an additional set for the entire response 
(𝑁𝑅 + 1  total bins), and 3) computed features into regional 
fingerprint vectors as, 

 𝐹𝑅𝑖 = [𝜎𝑅𝑖2 , 𝛾𝑅𝑖 , 𝜅𝑅𝑖  ]1×3,  (1) 

where 𝑖 = 1,2, … ,𝑁𝑅 + 1 [3].  A fingerprint vector for each of 
the NC characteristics is formed from (1) as,  

 𝐹𝐶 = �𝐹𝑅1 ⋮ 𝐹𝑅2 ⋯𝐹𝑅(𝑁𝑅+1) �
1×𝑁𝑠(𝑁𝑅+1)

,  (2) 

which are concatenated to form the final fingerprint vector: 

 𝑭 = �𝑭𝒂 ⋮ 𝑭𝝓 ⋮ 𝑭𝒇 �
1×𝑁𝑠(𝑁𝑅+1)×𝑁𝐶

.   (3) 

 For ZigBee device discrimination assessments, a total of 
NF=729 features are computed with NTRN=1,500 Training 
(TNG) and NTST=1,500 Testing (TST) observations; given such 
a large amount of data DRA is therefore of interest.   

C. GRLVQI Classifier Model Development  
The GRLVQI classifier method is employed herein, as in 

[11]. GRLVQI is an extension of Kohonen’s self-organizing 
maps that employs gradient descents, relevance learning, and a 
sigmoid cost function to train prototype vectors to a given class 
label [11]. For all devices used herein, prior probabilities were 
considered equal between devices and the GRLVQI classifier 
model was created as described in [3, 12]. 

D. Classification and Verification 
The PHY device identification process follows general 

biometric identification and digital forensic processes, e.g. [17-
19]. Consistent with [9], classification performance, “one 
versus many,” is evaluated by considering average percent 
correct training and testing percent correct (%C) versus SNR 
level for authorized devices [12]. DRA “gain” (dB) over 
baseline performance at an arbitrary %C=90% benchmark for 
both the TNG and TST sets. Gain is defined here as the 
reduction in required SNR, expressed in dB, for two methods to 
achieve the same %C when compared to the full dimensional 
baseline. 

Device ID verification is a “one versus one” (claimed vs 
actual) ID assessment where a trained classifier is considered 
along with probability mass functions (PMFs) for both 
authorized and rogue devices [12]. Two relevant performance 
metrics include True Verification Rate (TVR) for authorized 
devices and Rogue Rejection Rate (RRR) for rogue devices 
[12]. Binary grant/deny network access decisions are based on 
verification criteria that includes TVR>90% and RRR>90%. 

III. DIMENSIONALITY REDUCTION ANALYSIS (DRA) 
DRA consists of both feature selection, selecting subsets of 

existing features, and feature extraction, involving data 
transformation and selection of transformed features [20]. 
Inherently, the RF-DNA process itself was feature extraction 
and now selecting salient features is of interest. DRA 
assessment, determining the amount of data to retain, is another 
important DRA aspect. In all DRA cases, only the TNG feature 
set was used, thus preserving the TNG/TST feature set 
sequestration. In all DRA cases, only the TNG feature set was 
used, thus preserving the TNG/TST feature set sequestration.  

A. Feature Selection 
The KS-test, F-test, and GRLVQI relevance ranking are the 

feature selection methods considered herein. The KS-test and 
F-test are pre-classification approaches that consider data 
distribution aspects, while GRLVQI relevance ranking is a 
post-classification approach based on the contribution of each 
feature to the full dimensional baseline classifier model. KS-
test summed p-values were considered and compared for RF-
DNA feature selection previously [3, 12, 13]; KS-test statistic 
values, F-test p-values and F-test statistic values were not 
previously explored for RF-DNA feature ranking application.  

1) GRLVQI Relevance  
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GRLVQI relevance scores, γ, provide a direct indication of 
feature contribution to classifier development [11, 12]. Higher 
γ values indicate a feature provides increased class separation, 
in a GRLVQI classifier, and lower values indicate less class 
separation [12]. Prior work [12] demonstrated γ-values offering 
comparable performance to KS-test p-value ranking for ZigBee 
feature selection with multiple discriminant analysis (MDA).  

2) Kolmogorov-Smirnov Test (KS-Test) 

The two sample KS-test was employed for ZigBee RF-
DNA feature selection in [3, 12, 13]. The KS-test is a 
distribution-based goodness-of-fit test that considers two 
sample data vectors 𝒙1 and 𝒙2 and computes a KS-test statistic,  

 KS = max (|𝐹1(𝐱) − 𝐹2(𝐱)|), (4) 

where 𝐹1(𝐱) is the proportion of 𝒙1 values less than or equal to 
𝒙 and 𝐹1(𝐱) is the proportion of 𝒙2 values less than or equal to 
𝒙 [21]. KS-test p-values are computed against a null 
distribution, with an implicit null hypothesis that 𝒙1and 𝒙2 are 
from the same distribution [12, 13]. For the KS-test, data 
degrees of freedom (DoF) and a null distribution are used to 
compute p-values, with p-values of 0 possible [21]. 

For classifier development one should logically seek 𝒙1and 
𝒙2 from different distributions to aid group discrimination [3, 
12, 13]. For multiple class problems, such as the ZigBee 
dataset, pairwise KS-test statistic values are computed for each 
feature and then combined through summation or averaging. 
Summed p-values were previously considered for featuring [3, 
12, 13]; herein test statistic values are also considered. 

3) One-way ANOVA F-Test 

General linear models, e.g. ANOVA and linear regression, 
work to understanding variability of data through sums of 
squares [22]. The F-test is a heuristic to compute the test 
statistic for general linear model, with 

 Fstat = � SSF
DoF 

� MSE⁄ , (5) 

where the sum-of-squares for a factor (𝑆𝑆𝐹) and mean squared 
error (𝑀𝑆𝐸 ) are from a computed linear ANOVA model 
involving the data and class labels [22]. Significance for 
ANOVA problems is determined through F-test p-values 
computed from a continuous normal distribution with the null 
that the means of all classes are the same [22].  Feature ranking 
by F-test statistic values considers the philosophy that higher 
𝐹𝑠𝑡𝑎𝑡 values indicate a given feature offers higher 
discrimination between groups [23].  

B. Dimensionality Assessment (DA) 
Dimensionality assessment involves selecting an 

appropriate quantity of features. Three approaches to DA are 
considered: 1) subjective/qualitative, 2) quantitative p-values 
and 3) quantitative data covariance matrix eigenvalues. 

1) Qualitative DRA Assessment 
 Prior RF-DNA research in [3, 12, 13] examined qualitative 
DRA methods of subjective “best guesses” for selecting the 
number of features to retain. For ZigBee, a qualitatively 
selected NF = [25, 50, 100, 200, 243] were examined with 

NF=50 shown to offer sufficient classification performance 
[12]. Therefore, NF=50 is considered herein for comparison. 

2) Quantiative: p-value DRA Assessment 
 One quantitative DRA assessment method involves 
selecting NF from p-value significance [14, 15]. Significance 
levels of [0.1%, 1%, 5%, 10%] are commonly used and 
justifiable in many cases [24]. Table I presents the indicated 
number of features to retain for these significance levels using 
the F-test and KS-test at SNR=[0, 10, 18, 30] dB. Comparing 
Table I with results in [3] indicates that p-value DRA 
assessment over-estimates the number of features to retain 
since phase (𝜙) features, NF=243 herein, are known to offer 
performance comparable to the baseline. Therefore, p-value 
dimensionality assessment appears neither appropriate or is 
considered for ZigBee RF-DNA data.     

3) Quantiative: Eigenvalue DRA Assessment 
Quantitative dimensionality selection based on the data‘s 

covariance matrix eigenvalues aim to understand the intrinsic 
dimensionality of a dataset [22].  Two methods are considered: 
Kaiser’s Criterion (K1) and the Maximum Distance Secant 
Line (MDSL). The TNG feature set covariance matrix at 
SNR=18 dB and baseline %C = 90% was considered. 

K1 estimates dimensionality by considering the number of 
covariance eigenvalues greater than the mean covariance 
eigenvalue [22]. K1 at SNR=18 dB retains NF=123 features. 
Cattell’s Scree Test involves visually examining a Scree plot 
(eigenvalues plotted versus rank order) and selecting 
eigenvalues above the inflection point, the proverbial ‘knee in 
the curve’ [22]. MDSL [25] both removes subjectivity and 
automates Cattell’s Scree Test by 1) creating a line between the 
first and last eigenvalue and 2) finding the point with the 
largest perpendicular distance from this line, i.e. the inflection 
point. Using MDSL at SNR=18 dB retains NF=26 features.  

IV. FEATURE SELECTION BY TEST STATISTIC OR P-VALUES 
Consistency is not seen in p-value or test statistic feature 

ranking, with both test statistic [23, 26, 27] and p-values [1, 3, 
13, 14, 28, 29] used in various applications. Thus, a 
phenomenological understanding of test statistic and p-values 
is needed to better understand appropriate uses of both.  

Test statistics (magnitudes) are commonly converted to p-
values (probabilities) to assess statistical significance related to 
the probability of a given outcome given the DoF, hypothesis 
test, and a reference distribution [30]. While p-values are 
related to test statistic values, various issues exist in using p-

 

TABLE I 
DIMENSIONALITY ASSESSMENT BY SIGNIFICANCE LEVEL 

SNR METHOD SIGNIFICANCE LEVEL  
0.1% 1% 5% 10% 

0dB 
F-TEST 196 264 350 402 

KS-TEST (ΣP-VALUES) 37 74 130 160 

10dB 
F-TEST 589 639 674 688 

KS-TEST (ΣP-VALUES) 337 414 512 557 

18dB 
F-TEST 706 713 720 722 

KS-TEST (ΣP-VALUES) 666 692 711 716 

30dB 
F-TEST 718 725 727 728 

KS-TEST (ΣP-VALUES) 727 729 729 729 
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values, including: 1) computing p-values involves an implicit 
distributional assumption whereas test statistics are often only 
ratios; 2) p-values generally involve a nonlinear transformation 
of test statistic values; 3) p-values imply a hypothesis test, but 
these are not always stated in feature selection, e.g. [12, 13]; 4) 
p-values involve an additional computational step; and 5) p-
values often converge on 0 as sample size increases [27, 30].  

Table II considers test statistics and p-values (rank ordered 
by test statistic) for both F-test and KS-test at SNR=18dB. The 
variance of test statistic values and p-values is also presented. 
Noticeably, many p-values are below the approximate decimal 
machine precision value, per [31], which indicates that these 
values are notionally very similar and similarly close to 0. 
Ranking values equal to or equivalent to 0 logically could be 
ineffective when selecting a low number of features. Table III 
further illustrates that p-values are seen to trend towards 
machine precision as SNR increases, indicating that increasing 
signal strength corresponds to increasing significance. Similar 
issues with p-values trending towards 0 were noted in [27, 30].   

Normalized histograms (unit area, identical bin centers and 
widths) for the KS-test summed p-values, Fig. 1, and mean test 

statistic values, Fig. 2, are presented for SNR = [0, 10, 18, 30] 
dB operating points.  Similar to Tables I-III, Fig. 1 shows that 
as noise diminishes, features may appear relevant and approach 
a p-value of 0; therefore p-value ranking presents situations 
where most features are viewed as equally significant. The 
advantage of using test statistic values is illustrated in Fig. 2; 
while resolution is lost in Fig. 1, the mean test statistic values 
in Fig. 2 offer a more consistent approach for finding and 
selecting features. F-test p-values and test statistic values show 
similar distributions (as indicated in Tables I-III. 

V. ZIGBEE RESULTS 

A. Classification Performance 
DRA classification performance was compared against full-

dimensional baseline (NF=729) performance using each DRA 
method considered. Resultant DRA TST classification 
performance for NF = [17, 50, 123, 729] DRA feature sets is 
presented in Fig. 3, with Table IV showing relative DRA 
“gain” (dB) for both TNG and TST classification.  
 Most noticeable in Fig. 3 is an overall trend with most 
DRA methods offering similar curves and with larger 
NF values achieving better performance. While the mean test 
statistic and summed p-value ranking methods show 
comparable performance, the mean KS-test statistic is the only 
method that achieved positive gain. Additionally, the test 
statistic approaches consistently outperform the p-value 
approaches, particularly for NF=17. Of interest in Fig. 3 is that 
retaining the top NF=50 or NF=123 features from F-test, 
GRLVQI rankings, or KS-test rankings offer comparable 
performance to the full-dimensional (NF=729) baseline 
performance for SNR≥8 dB, as noted in [12] for NF=50.  

B. Verification Performance 
Full-dimensional baseline ID verification performance was 

considered for the GRLVQI classifier using the ZigBee dataset 
for both authorized and unauthorized rogue devices. Baseline 
performance was determined as TVR=25% for authorized and 
RRR=66.67% for rogue devices. For DRA classification, the 
results in Table IV shows that most DRA methods offer poor 
verification performance. The only exception is the classifier 
model based GRLVQI relevance rankings, where DRA offers 
an improvement over the baseline. These results differ from 
those of [12], which examined an MDA classifier, and could 
likely be a result of GRLVQI relevance being more applicable 
to results from the nonlinear GRLVQI classifier.  

 

TABLE II 
P-VALUES VS TEST STATISTICS AT SNR = 18dB ORDERED BY 

DECREASING F-TEST AND KS-TEST TEST STATISTIC VALUES 

FEATURE 
F-test KS-TEST  

Test 
Statistic p-value* Summed test 

statistic 
summed p-

value* 
1 542.64 N/A 2.7349 N/A 
2 471.78 N/A 2.6487 0 
3 432.97 N/A 2.5685 N/A 
4 424.26 N/A 2.3065 N/A 
5 420.74 N/A ,2.2999 N/A 
⁞ ⁞ ⁞ ⁞ ⁞ 

728 0.280 0.839 0.1260 0.9297 
729 0.043 0.988 0.1179 1.2285 

VARIANCE 6,324.8 0.0094 0.2417 0.0646 
 

*N/A indicates a value at or below an approximate decimal value of general 
machine precision of 2.22x10-16 [31], for the 64-bit PC used herein. Zero 
variance was assumed for N/A entries. 

  
Fig. 1. Normalized histogram of summed pairwise KS-test p-values for full 
dimensional (𝑁𝐹 = 729) TNG features for varying SNR = [0, 10, 18, 30] dB.  

Fig. 2. Normalized histograms of mean pairwise KS-test statistic values for full 
dimensional (𝑁𝐹 = 729) TNG features for SNR = [0, 10, 18, 30] dB. 
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TABLE III 
ZIGBEE  P-VALUES LESS THAN OR EQUAL TO MACHINE PRECISION  

 SNR (dB) 
0 10 18 30 

F-TEST 1.65% 44.99% 78.6% 87.11% 
KS-TEST (ΣP-VALUES) 0% 16.74% 54.46% 93.14% 
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VI. Z-WAVE PRELIMINARY RESULTS 
Z-Wave is considered less secure than ZigBee [32]. Three 

Aeotec Z-Stick S2 transmitters were thus considered as an 
extension to this research. For analysis, a total of 230 Z-Wave 
preambles (the first 8.3 ms at 2Msps) collected for NC=3 
devices. Transmission detection from background noise was 
accomplished through amplitude-based leading edge detection 
with a -6 dB threshold. The Z-Stick S2 transmitters were 
located 10 cm from a vertically-oriented LP0410 log periodic 
antenna, connected via a Gigabit Ethernet cable directly to the 
USRP-2921 RF input. The resultant collected was SNR=24 dB 
and like-filtered. AWGN was added to collected signals to 
achieve desired operating points of SNR∈[0 24] dB in 2 dB 
steps. A total of 189 RF-DNA features were computed for Z-
Wave with NS=3, NR=20, NC = 3, NTRN=115, and NTST=115.  

Z-Wave RF-DNA fingerprint features were examined via 
the F-test and KS-test feature relevance ranking approaches. 
Table VI presents the number of p-values less than or equal to 
machine precision, illustrating on Z-Wave devices that p-value 
ranking again presents many unusable results.  

The GRLVQI classifier achieved %C=90% at SNR=20dB, 
the operating point used for DRA dimensionality assessment. 
No prior research exists on DRA or RF-DNA for Z-Wave, 
therefore the quantitative dimensionality approaches in Section 
III.B.3 were considered with K1 indicating NF=7 and MDSL 
indicating NF=34. Overall results in Table VII and Fig. 4 show 

that all DRA approaches consistently provide positive dB gain 
over the full-dimensional baseline.  

TABLE IV 
ZIGBEE DEVICES: RELATIVE DRA GAIN* (dB) OVER FULL-

DIMENSIONAL BASELINE PERFORMANCE AT %C = 90% ACCURACY. 
DRA METHOD KS TEST STATISTIC KS ΣP-VALUE 

NF 17 50 123 17 50 123 
TNG -5.00 -0.93 -0.16 -6.39 -1.22 0.00 
TST -6.32 -1.01 +0.44 -6.97 -1.33 -0.70 

DRA METHOD F TEST STATISTIC F TEST P-VALUE 
NF 17 50 123 17 50 123 

TNG -6.83 -2.00 -0.73 -10.92 -1.93 -0.57 
TST -7.59 -1.74 -0.91 -10.36 -1.7 -1.18 

DRA METHOD GRLVQI 
NF 17 50 123 

TNG -1.44 -0.60 -0.16 
TST -2.61 -0.63 -0.73 

*Bold indicates best or worst results for a given NF 
 

 
Fig. 3. ZigBee GRLVQI Testing (TST) classification performance for full-
dimensional (NF=729) and DRA  (NF=17) feature sets. 
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TABLE VI 
PERCENTAGE OF Z-WAVE P-VALUES LESS THAN OR EQUAL TO 

MACHINE PRECISION AS A FUNCTION OF SNR 

 SNR (dB) 
0 10 20 24 

F-TEST 0% 0% 57.14% 60.85% 
KS-TEST (ΣP-VALUES) 0% 0% 3.7% 12.17% 

 

TABLE V 
DRA VERIFICATION PERFORMANCE* FOR AUTHORIZED AND ROGUE 

DEVICES AT SNR = 18dB FOR TVR≥ 90% AND RRR≥90%. 
DRA METHOD KS TEST STATISTIC KS ΣP-VALUE 

NF 17 50 123 17 50 123 
TVR  0% 0% 0% 0% 0% 0% 
RRR 8.33% 8.33% 0% 52.8% 2.78% 0% 

DRA METHOD F TEST STATISTIC F TEST P-VALUE 
NF 17 50 123 17 50 123 

TVR 0% 0% 0% 25% 0% 0% 
RRR 8.33% 5.56% 0% 38.9% 19.4% 0% 

DRA METHOD GRLVQI 
NF 17 50 123 

TVR 25% 50% 50% 
RRR 52.8% 66.7% 72.2% 

*Bold indicates best performance for a given 𝑁𝐹 

 
Fig. 4. Z-Wave GRLVQI Testing (TST) classification performance for full-
dimensional (NF=189) and DRA  (NF=34) feature sets. 
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TABLE VII 
Z-WAVE RELATIVE DRA GAIN (DB) OVER BASELINE 

PERFORMANCE AT %C = 90% ACCURACY* 
DRA METHOD KS TEST STATISTIC KS ΣP-VALUE 

NF 7 34 7 34 
TNG  +1.92 +1.83 +1.7 +1.64 
TST +1.79 +0.63 +1.79 +1.37 

DRA METHOD F TEST STATISTIC F TEST P-VALUE 
NF 7 34 7 34 

TNG  +1.95 +2.13 +2.22 +1.82 
TST +0.79 +0.54 +0.63 +2.16 

DRA METHOD GRLVQI 
NF 7 34 

TNG  +0.63 +0.24 
TST +1.41 +0.18 

*Bold indicates best or worst results for a given NF 
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VII. SUMMARY AND CONCLUSIONS 
The work provided four contributions for improving 

ZigBee PHY device identification using DRA selected RF-
DNA features: 1) the introduction of F-test for RF-DNA DRA; 
2) comparative test statistic and p-value assessment showing 
multiple benefits of test statistic values over p-values, with test 
statistic values shown to not converge on any specific number 
and offer a more natural tool for comparison than p-values; 
3) introduction of quantitative DRA assessment for RF-DNA 
features; and 4) a performance comparisons for five DRA 
approaches using a GRLVQI classifier. Preliminary results 
using Z-Wave devices showed similar implications.  

Both ZigBee and Z-Wave results show that a properly 
selected feature set provides better device classification and ID 
verification performance than the full-dimensional baseline 
feature set. ZigBee results with NF=123 also achieved better 
classification performance than earlier NF=243 results in [12]. 
DRA was explored with a goal toward selecting 1) robust 
salient features and 2) an appropriate number of features to 
maintain classifier integrity. Additionally, the results 
collectively illustrated that 1) DRA does not always imply 
classification/ verification performance improvements and 2) 
DRA closest to the computations used for classifier model 
development is beneficial for verification performance. 
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