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A CORDIC Arithmetic Processor Chip

GENE L. HAVILAND anD AL A. TUSZYNSKI

Abstract— A monolithic processor computes products, quotients,
and several common transcendental functions. The algorithms are
based on the well-known principles of “CORDIC,” but recourse to a
subtle novel corollary results in a scale factor of unity. Compared to
older machines, the overhead burden is significantly reduced. Also,
expansion of the functional repertoire beyond the circular domain, i.e.,
addition to the menu of hyperbolic and linear operations, is a rela-
tively trivial matter, in terms of both hardware cost and execution
time. A bulk CMOS technology with conservative layout rules is used
* for the sake of high reliability, low-power consumption, and good cycle
speed.

INTRODUCTION

HOUGH the concept of CORDIC Arithmetic is said to be

quite old [1], {4], its implementations and applications
continue to evolve. The acronym comes from Volder’s Coor-
dinate Rotations Digital Computer [1], developed in 1959 for
air navigation and control instrumentation. An avuncular idea,
particularly effective in decimal radix computations, was pre-
sented by Meggit in 1962 [2], under the label of “pseudo-
division and pseudomultiplication.” In 1971, Walther [3]
generalized elegantly the mathematics of CORDIC’s, showing
that the implementation of a wide range of transcendental
functions can be fully represented by a single set of iterative
equations. Cochran [4] benchmarked, about the same time,
various algorithms and found that CORDIC techniques surpass
alternative methods in scientific calculator applications.

The pertinent effort of the Naval Ocean Systems Center
(NOSC) culminates in the CORDIC Arithmetic Processor Chip
(CAP Chip) of Fig. 1 that simplifies the architecture, boosts
the speed, and reduces the power consumption of monolithic
arithmetic modules. All computations are based on the ex-
ecution of either

=x; £y;27" (1a)

Xisy
or

X@s1),2 = +Y27) X4 1)1+ (1v)
While the first of these equations represents the regular
CORDIC iterations, the second [5], [6] forces the scale fac-
tors of circular and hyperbolic functions to unity. ROM in-
structions govern the selection of either (1a) or (1b), but the
* option is executed by the sign bit of one of the operands.

This paper begins with multiplication and division, because
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Fig. 1. (a) The CAP chip. (b) Block diagram of the CAP chip.

the pertinent algorithm compares well, in its own right, with
alternative techniques, especially in digital filter applications
[71, [8], [17]. Moreover, the said algorithm is simple and
transparent enough to project the feedback principle as the
fundamental and common link of the CORDIC [1], [3],
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Fig. 2. (a) The multiply-divide algorithm. (b) Reduction to zero of operand z.

[4], the Meggitt [2] and the Chen [16] procedures. Also,
once established, it can be easily expanded to trigonometric
and hyperbolic functions,

A Dicital FEEDBACK Loopr

Take three numbers, xq, Vo, and zy, zo being restricted to
the range

0<z <1 ()
Perform the following iterations:
Vier =Vi+X08;27 (3a)
=y +x02(8;27") for i=1 throughn (3b)
and
Zivy =2;- 8,27 (3¢c)
=z~ 2(6;27% (34d)

but
(3¢)
(31)

To the §; operator assign the values of either plus one or minus
one, depending on the polarity of z;. In other words, let

+1 if Z,'>0
81': 1

if ;<0
A partial flow diagram of the above operation is given in
Fig. 2(a), and a few steps of the z; iteration are developed in
Fig. 2(b). Note that

[2;4,1< 27,

Xivt T X

=Xo-

C)

)

although the magnitude of z;,, is not necessarily smaller than
that of z;. The absolute value of z is gradually reduced to-
wards zero, but the reduction may proceed zig-zag fashion.
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Fig. 3. Schematic diagram of the 2~° scaler.
What we have here is an arrangement which amounts to an THE CHIP

autonomous feedback loop of attractive simplicity. The zero-
seeking mechanism of the loop is controlled entirely by the
sign bit of z; the sign bit determines 6; and that operator imple-
ments, in turn, the crucial add-subtract option of (3) and (4).

Equation (5) implies that a sufficiently high i, say i = n, will
justify the approximation

Zps1 =2 =0 (6a)
and will, therefore, lead to the expression

n .

2 (6,27 =z (6b)

i=1

and hence, by substitution into (3b), to the product equation

Yne1 =Y = Yo +XoZo. (6¢)

It goes without saying that we could have reduced to zero
the operand y rather than z. Exercising that option, one ar-
rives at

Va1 =¥ =0 (72)
or
n .
x| 3 6]~ ()
i=1
and, therefore, at the quotient equation
: y
z'=z9 + x—:. (7¢)

Equations (6) and (7) demonstrate that the digital feedback
algorithm, defined by (2)-(4), leads to practical implementa-
tions of functions germane to multiplication and division [3].
Compared to alternative techniques [9], digital feedback looks
good in division and, as we shall soon see, it becomes even
more attractive when circular and hyperbolic functions are
considered.

Block diagram particulars and layout details of the CAP chip
are shown in Fig. 1(a) and (b), respectively. There are but
three major circuit blocks: the all important 27" scaler [11], 2
12-bit two’s complement adder, and a 24-bit accumulator of
the shift-register variety. The narrow block at the top of the
chip is the “i” counter, called the “sequencer.” The I/O buf-
fers are distributed around the periphery of the chip, but all
multiplexers are merged with the appertaining functional
blocks.

The 24-bit data are processed in two 12-bit steps. The lower
byte of the word held by the accumulator is released into the
adder-subtractor by the local clock, an intermediate step of
addition or subtraction is performed, and the result is returned
to the accumulator. The upper byte is subjected to similar
treatment, beginning with the release of data that now in-
cludes the carry generated by the lower byte, and terminating
with the acceptance of the result by the accumulator.

The scaler takes up a large part of the chip’s surface and a
sizable fraction of the cycle time. This is both understandable
and acceptable considering its function, namely, the two’s
complement multiplication of every §; and every xo6; by 278
The scaler is indeed the centerpiece of CORDIC hardware;
the present implementation is distinctly faster than its shift-
register counterparts. The circuitry is really quite simple,
owing to the highly efficacious transmission gates of the
CMOS technology [12]. A matrix of such gates, arranged as
shown in Fig. 3, propagates the sign bit while it shifts the data
by “i” bits. The signal flow matrix of the scaler is square
(Fig. 4) with 24 columns for bit locations and as many rows
for cycle numbers. However, since there is some redundance
in Fig. 4, the physical matrix need only be half as large as is
its model, and that is why we have in Fig. 3 a matrix of 12
rows for 12 exponents and 24 columns for as many bits.

The transmission gates are driven by a sequencer with out-
puts 4, B, and C (Fig. 5). Output A enables either the upper
or the lower byte and output C picks the first or the second
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quadrémt while outputs B select one out of the 12 pertinent
columns Only regular CORDIC cycles are courited by the se-
quencer. Clock signals which pace the “double cycle” and the
“scale factor” operations are inhibited by status bits outputted
by the instruction ROM (Fig. 10).

The adder has a configuration Wthh resenbles conventiotial
look ahead loglc but its circuitry is unique. Selected frag:
mients of our “dynamic CMOS” circuits are shown in Tig. 6(a)
dnd (b). Whereas thére are 2n transistors in a conventional

n-inpiit CMOS gaté, the complementary CMOS configuration
of Fig. 6(a) has only n+ 1. The resultant savings in surface

‘ )
Fig. 6. (2) Dynamic CMOS, carry 1. (b) Fragment of the adder.

area are most welcome in the CARRY module which has a total
of 98 ports in the Cy, gate. The precharge clocks ¢; and ¢,
are, of course, synchronized with the clock which controls the
timing of the lower and upper byte add-subtract operations.

The adder gate logic utilizes a combination of a XOR-AND-
OR element and a HALF-ADDER: Various gate configurations,
including the conventional CMOS NoR and the Floating XxORr
[13], are emiployed, but the whole thing adds up to only 26
transistors. The chip layout for this section of logic is shown
in Fig. 6(b). 10000 u* of surface area are corisumed if metal-
gate bulk-CMOS with 8 uin spacing is employed.
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GeENERAL CORDIC EQUATIONS Y 72"i)y(i+1), 1 (11b)

i i ional f t, the CORDIC tions look =
aSVZ;i;:)?S:n conventional format, the C equations loo Zsiye =Zerys +0. (11c)
(%2) The flow diagram of the generalized instruction cycle is given
. in Fig. 7. Equations (10) and (11) represent the “double
Vier =Vi- 6;27'x; (9b) cycle” and the “scaling factor K” operations, respectively.
The raison d’etre of these operations is explained below.

Xipy =X; 48,27y,

and Let us focus our attention on the variable “i”” in (9). We
Z;0,=2;- 8,0, (9¢)  have already come across the relationship
The CAP chip executes the above and two supplementary 0;= o (12a)

sets of equations:
and will yet tackle the functions

Xi+1)2 =X@+1),1 827 Ve (10a) .
» 0;=arctan (27%) (12b)
Y@+1),2 TVE+1),1 ~ 6,2 X(@i+1),1 (10b)
5,0 a0g ™
Zeia =Zeie - 6.0 . C R
(G+1),2 Z 8@+ 1)1 7 T 6, = arctanh (27). (12¢)
and

. Implied in (6), as well as in the concept of feedback itself, is
X@i+1),2 =(1 +v279) X@i+1),1 (112)  the convergence relationship:
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TABLE I
THE K SCALING FACTOR FOR TRIGONOMETRIC FUNCTIONS
nin COSINE PRODUCT
0 .7071067811865 .7071067811865
1 .8944271909999 .6324555320337
2 .9701425001453 .6135719910779
3 .9922778767137 .6088339125177
4 .9980525784829 .6076482562562
5 .9995120760871 .6073517701413
6 .9998779520347 .6072776440935
7 .9999694838188 .6072591122989
8 .9999923706928 .6072544793325
9 .9999980926568 .6072533210899
10 .9999995231632 .6072530315291
11 .9999998807907 .6072529591389
12 . 9999999701977 .6072529410414
13 .9999999925494 .6072529365170
14 .9999999981374 .6072529353859
15 .9999999995343 .6072529351031
16 .9999999998836 .6072529350324
17 .9999999999709 .6072529350147
18 9999999999927 .6072529350103
19 .9999999999982 .6072529350092
20 .9999999999995 .6072529350089
21 .9999999999999 .6072529350089
22 1.0000000000000 .6072529350088
23 1.0000000000000 .6072529350088
24 1.0000000000000 .6072529350088
"i" K CYCLE CORRECTION MULTIPLIER DIFFERENCE
1 0 .5000000000000 1.0000000000000 .3927470649912
2 2 .7500000000000 .7500000000000 .1427470649912
3 3 .8750000000000 .6562500000000 .0489970649912
4 4 .9375000000000 .6152343750000 .0079814399912
5 0 . 9687500000000 .6152343750000 .0079814399912
6 0 . 9843750000000 .6152343750000 .0079814399912
7 7 .9921875000000 .6104278564453 .0031749214365
8 8 .9960937500000 .6080433726311 .0007904376222
9 0 .9980468750000 .6080433726311 .0007904376222
10 10 9990234375000 .6074495802750 0001966452662
11 0 .9995117187500 .6074495802750 .0001966452662
12 12 .89997558593750 .6073012771548 .0000483421460
13 0 .9998779296875 .6073012771548 .0000483421460
14 14 .9999389648438 .6072642104265 .0000112754176
15 0 .9999694824219 .6072642104265 .0000112754176
16 16 .9999847412109 .6072549443100 .0000020093011
17 0 .9999923706055 .6072549443100 .0000020093011
18 0 .9999961853027 .6072549443100 .0000020093011
19 19 .9999980926514 .6072537860631 .0000008510542
20 20 .9999990463257 .6072532069407 .0000002719319
21 21 .9999995231628 .6072529173798 -.0000000176290
Required Product of Cosines = .6072529350088
K Multiplier for Cosines = .6072529173798
Error at 24 cycles of 40 bits = .0000000176290

n
zo- 2. (8;0)|<0,. (13)
i=1

This inequality is fulfilled by (12a) and (12b) but not (12¢),
for the simple reason that

27(+1) = 3 @27, e, termi+1= (L) oftermi (l4a)
and 4
arctan [27C*D] > (1) arctan (279,
ie., termi+> 1 of term i, (14b)
but
arctanh [27* V] < (1) archtanh (27%),
ie,termi+ 1<} oftermi. (l4c)

This is why we need the “double pass” operation when hyper-
bolic functions are being processed. Tables I-III illustrate the
point at issue for the specific case of n = 24, showing that

24 .
arctanh 271)- Y arctanh(27%) | >> arctanh (272*), (15a)

i=2

but

{arctanh 2™H- [ % arctanh (27%)

i=2

+ 3" arctanh (27%) | } <arctanh (2724), (15b)
k N

if

k=3,4,7,12,13,18,19, and 21. (15¢)

So much for the double pass capability. Simply put, some
CORDIC operations are run twice, in order to comply with
inequality (13).

The supplementary operations called out in (11) force the
scale factor K to converge toward unity. While the regular
iterations cross-link x and y, the scale factor K is adjusted by
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TABLE 11
COMPUTATION AND LISTING OF DOUBLE PAss CycLES FOR HyPERBOLIC FUNCTIONS
i o1 24 Diff DOUBLE
1 Arctanh(2 ) k=§+{ek) irrerence i PASS THETA REMAINDER
CYCLES
24 .0000000596046 .0000000596046 1 0 .5493061443341 .0431429745373
23 .0000001192093 .0000000596046 .0000000596046 2 0 .2554128118830 .0431429745373
22 .0000002384186 .0000001788139 .0000000596046 3 0 .1256572141405 .0431429745373
21 .0000004768372 .0000004172325 .0000000596046 4 0 .0625815714770 .0431429745373
20 .0000009536743 .0000008940697 .0000000596046 5 1 .0312601784907 .0118827960466
19 .0000019073486 .0000018477440 .0000000596046 6 0 .0156262717521 .0118827960466
18 .0000038146973 .0000037550926 .0000000596046 7 1 .6078126589515 .0040701370951
17 .0000076293945 .0000075697899 .0000000596046 8 1 .0039062698684 .0001638672267
16 .0000152587891 .0000151991844 .0000000596046 9 0 .0019531274835 .0001638672267
15 .0000305175781 .0000304579735 .0000000596047 10 0 .0009765628104 .0001638672267
14 .0000610351563 .0000609755516 .0000000596047 11 0 .0004882812888 .0001638672267
13 .0001220703131 .0001220107079 .0000000596052 12 0 .0002441406299 .0001638672267
12 .0002441406299 .0002440810210 .0000000596088 13 1 .0001220703131 .0000417969136
11 .0004882812888 .0004882216509 .0000000596379 14 0 .0000610351563 .0000417969136
10 .0009765628104 .0009765029397 .0000000598707 15 1 .0000305175781 .0000112793354
9 .0019531274835 .0019530657501 .0000000617334 16 0 .0000152587891 .0000112793354
8 .0039062698684 .0039061932337 .0000000766347 17 1 .0000076293945 .0000036499409
7 .0078126589515 .0078124631021 .0000001958495 18 0 .0000038146973 .0000036499409
6 .0156262717521 .0156251220536 .0000011496984 19 1 .0000019073486 .0000017425923
5 .0312601784907 .0312513938057 .0000087846850 20 1 .0000009536743 .0000007889180
4 .0625815714770 .0625115722963 .0000699991807 21 1 .0000004768372 .0000003120808
3 .1256572141405 .1250931437733 .0005640703671 22 i .0000002384186 .0000000736622
2 .2554128118830 .2507503579138 .0046624539692 23 0 .0000001192093 .0000000736622
1 .5493061443341 .5061631697968 .0431429745373 24 1 .0000000596046 .0000000140576
TABLE 111
SuM oF ARCTANH (27') INCLUDING DoUBLE Pass CYCLES
Double . 24 24
v pass  Arctanh(27) L (0y) 8; - T (8y)
k=i+1 k=i+1
Cycles
24 0 .0000000596046 .0000000596046
24 1 .0000000596046 .0000000596046
23 0 .0000001192093 .0000001192093 -.0000000000000
22 0 .0000002384186 .0000002384186 -.0000000000000
22 1 .0000002384186 .0000004768372 -.0000002384186
21 0 .0000004768372 .0000007152557 -.0000002384186
21 1 .0000004768372 .0000011920929 -.0000007152557
20 0 .0000009536743 .0000016689301 ~.0000007152557
20 1 .0000009536743 .0000026226044 ~.0000016689301
19 0 .0000019073486 .0000035762787 -.0000016689301
19 1 .0000019073486 .0000054836273 -.0000035762787
18 0 .0000938146973 .0000073909760 -.0000035762787
17 0 .0000076293945 .0000112056732 -.0000035762787
17 1 .0000076293945 .0000188350677 ~.0000112056732
16 0 .0000152587891 .0000264644623 -.0000112056732
15 0 .0000305175781 .0000417232513 -.0000112056732
15 1 .0000305175781 .0000722408295 -.0000417232513
14 0 .0000610351563 .0001027584076 -.0000417232513
13 0 .0001220703131 .0001637935639 ~.0000417232508
13 1 .0001220703131 .0002858638770 -.0001637935639
12 0 .0002441406299 .0004679341902 -.0001537935603
11 0 .0004882812888 .0006520748200 -.0001637935312
10 0 .0009765628104 .0011403561088 -.0001637932984
9 0 .0019531274835 .0021169189192 -.0001637914357
8 0 .0039062698684 .0040700464028 -.0001637765344
8 1 .0039062698684 .0079763162712 -.0040700454028
7 0 .0078126589515 .0118825861396 -.0040699271880
7 1 .0078126589515 .0196952450911 -.0118825861396
6 0 .0156262717521 .0275079040426 -.0118816322906
5 0 .0312601784907 .0431341757947 -.0118739973040
5 1 .0312601764907 .0743943542854 -.0431341757947
4 0 .0625815714770 .1056545327760 -.0430729612990
3 0 .1256572141405 .1682361042530 -.0425788901126
2 0 .2554128118830 .2938933183935 -.0384805065105
1 0 .5493061443341 .5493061302765 .0000000140576

separate, though identical, manipulations of x and y. For ex-
ample, setting the gammas in (11) to plus 1 for i =2, 4, one
multiplies both output variables by 1.32812:

X=(1+2H)Q+2Hx

=1.32812x (16a)
and
Y= +2) A +2)y
=1.32812y. (16b)

The role of the scale factors in the realization of circular and
hyperbolic functions will be discussed in a later section.

CircULAR FuUNCTIONS

Prominent among the functions used in servo control is the
resolver operation defined by (17) [10]. The search for
“solid-state” resolver hardware is lively and likely to continue
for some time to come. Mathematically, however, one deals
with the old and commonplace rotation of axes depicted in
Fig. 8. When a pair of rectangular axes is rotated anticlock-
wise by an angle 8, then the coordinates of a point P transform
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1y, P
R
10’
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Fig. 8. (a) “Rotation,” given xq, yg, and 8¢ find x’ and y'. (b) “Vec-
toring,” given x¢ and y¢ find R and 6'.

from x,, Yo to x, ¥ in accordance with the equations:

(17a)

(17b)

Interesting, from the viewpoint of implementation, is the
fragmentation property of 6: Theta can be split up into an
arbitrary number of other angles. For example, if

X =x¢ cosf +yq sin 0

=-xo sin @ +yq cos 6.

0=0,+0,, (18a)
then
Xy =Xo cosf; +y¢ sin 0, (18b)
Yy =-xpsin8y +yo cosd, (18¢c)
and consequently,
xX=x; cosf, +y; sinf, (192)
=xo (cos 83 cos B, - sin By sin §,)
+0 (sin 6, cos 8§, +sin 8, cos ;) (19b)
=xq cos(0; +0,)+yosin(0; +8,). (19¢)

Interpretation of this result in terms of multiple fragmen-
tations leads to a set of recursive formulas, which read as
follows:

Xjeq =X;€088;0;+y;sind;0; (20a)

Viey =-X;8in8;8;+y;cos 8;0; (20b)
and

Zivy T 2;7 8;0; (20¢)

There are no restrictions on the various @’s, other than those
considered in (10)-(14), in connection with the double cycle
operation. For that matter, (20c) is exactly the same as (9¢),
though there are significant discrepancies between the other

members of sets (9) and (20). These discrepancies will now
be eliminated as much as possible, for the sake of hardware
simplicity.

First off, one can factorize cos 8,0, in (20a) and (20b):

X;eq =c0s 8;0;(x; +y;tan §,6)) (21a)
=cos 0;(x; +8;y;tan 8;) (21v)

and
Vis1 =c0s0;(y;- 8;x;tan §;). (21¢c)

Next, one can make the arbitrary, but highly convenient, sub-
stitution

9; = arctan (27) (22)
in order to arrive at

Xieq =c0s8;0;+68;27'y)) (23a2)

Vie1 =c0s0;(y; - 6,27 x;) (23b)

Zjuq =2;- 8; arctan (279). (23¢)

Finally, one can compare the end results (x*, y*, z*) of itera-
tions (23) with the end results (x', ¥', z") of iterations (9) and
conclude that

x*=x' [ ﬁ cos (arctan 2")} (24a)
i=0

=x'[ ﬁ (1+ 2-2")-1/2} (24b)

=K,x'. (24¢)

That spells out the overall dependence between the two sets
of numbers as

X* =K, x' (24d)
and

y*=K,y' (24¢)
but

z¥=7' (24f)

Since it depends on “n” only, the scale factor K,, is a ma-
chine constant. Consequently, given x’ and y', one can realize
x* and y* by many simple methods, including ROM look-up
tables and regular combinatorial logic, but the scaling factor K
technique, spelled out in (24) and Fig. 7, is particularly attrac-
tive because it offers a host of advantages such as speed, real
estate economy, and conceptual simplicity.

INITIALIZATION

While the inverse tangent of 27! ic only 26°, the processor
must accommodate angles as large as +180°. This does not
present any great difficulty, but for the sake of compatibility
with other functions, it is convenient to implement the range
extension in two special “initialization” cycles (Fig. 9). The
first shifts § by 90°:
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Fig. 9. (a) Initialization with 6¢ = 150°. (b) Initialization with
6o = -15°.

X =X cos (90°) + y, sin 8(90°) (252)
=8y (25b)
=~ X sin 6(90°) + y, cos (90°) (25¢)
= - 6XO (25d)

and

z=1z4 - 8(90°). (25¢)

The second cycle executes the 45° shift,
x = x cos (45°) +y sin 8 (45°) (26a)
1
= ﬁ (x + 5y) (26b)
1

Y27 (¥ - 8x) (26¢)

and

z=z- 8§(45°). (26d)

The 1/4/2 multiplier in (26) had been actually anticipated and
incorporated into the geometric K,,, when (24¢) was written as

3

K,=>Y (1+27%)12, @n
i=0
Equation (26) can be normalized, therefore, to read
x=x+(8)y (28a)
y=y-(@)x (28b)
and
z=2z- (8)(45°). (28¢)

HyPeERBOLIC FUNCTIONS
When they are written in vector format, (17) read as follows:

*®

x cos @ sin@

y

Xo

}’o'

* (29)

-sinf cos@

The coefficient matrix is orthogonal, and so are the three
germane matrices shown below:

4 = cosf -sin@ (30)
"“lsin 8 cosf

cosf -jsind

Ay = | (31)
~jsinf cos @
cosf ~jsind

As=| . (32)
-jsin® cos®@

Any one of these matrices can be used in expressions equiv-
alent to (29) but, naturally enough, a unique geometrical in-
terpretation must be associated with any particular matrix.
For example, taking 43 and relating it to the imaginary angle

0=jo, (33)
one gets the hyperbolic relationship:
x* cosjo -jsinjo||x
N A (34a)
y ~isinjg cosjo ||y
cosh¢ sinh¢ | [x
= ¢ ? (34b)
sinh ¢ cosh ¢| {ye
1 tanh ¢ | x
= cosh ¢ °l (34c¢)
tanh ¢ 1 Yo

The last of these equations leads directly to the iterative
formulas

Xie1 =%+ (8;27) y; (353)
Vier =i+t (8;27)x; (35b)
Zipy =25 61' tanh (2_i) (35C)
and to the scale factor
n .
K, =[] cosh (279 (36a)
i=1
n Py
=[] (- 272)2, (36b)

1

]
-

The hyperbolic routine does not require initialization, but
it does call for the “double cycle” operations of (10), Tables
II and HI, drawn for n = 24, show 9 double cycles and 11 scale
factor operations; the former produce an overall shift in 8 of

#(max) = zo(max) = 1.09 37

while the latter generate the scale factor
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Kaa = 1.205. (38)

Operations which reduce z to zero (rotations) implement the
transformation

x¥=x, cosh a+y, sinh & (392)
and

y*¥=xq sinha+y, cosha (39b)
where

a0, (39¢)

or alternatively, generate the functions sinh ¢, cosh a, e*, ™%,

etc., when appropriate values are assigned to the input vari-
ables xo and yo, [2]. Vector operations, on the other hand,
produce

z* =z, +arctanh (xo/yo) (40a)
and
x*=(x§ - y§) (400)

as well as perspicuous mutations of these functions.

OVERVIEW

Figs. 10 and 11 show a complete set-up for the execution
of rotation and vectoring operations in the linear, circular,
and hyperbolic modes. There are six modules, namely, three
CAP chips, a 16 X 512 ROM, an ROM ADDRESS counter, a
clock, and an 1/O box. The I/O box loads the data into the
processor and returns the results to the bus; it also sets the
two most significant bits of the ROM address. These two bits
(A9 and A8) select one of the three sectors of the ROM begin-
ning at address zero for linear operations, address 128 for
circular functions, and 256 for hyperbolics. The counter,
which generates the other 7 address bits, is first reset and then
allowed to advance one bit per block cycle. The operation of
the CAP chips is under the control of the instruction section
of the ROM: Status bits from the ROM cause the execution
of either a regular CORDIC cycle, or a “double™ cycle, or a
scaling factor K operation; they also signal arrival at the “last”
cycle, that is, completion of the computation. The sign bit of
either y or z controls the add/subtract options of all three
chips.

The external instruction which activates the processor must
include three function selection bits: one for either rotation or
vectoring and two for either linear or trigonometric or hyper-
bolic functions. These three bits take care of the two deci-
sions which start-off the signal flow diagram of Fig. 11. Once
the function to be executed has been identified, the operation
of the calculator is paced along by the local clock. Linear
processing is purely “CORDIC,” but the trigonometric rou-
tines add scaling factor K cycles to the menu, while hyperbolic
algorithms use both the double cycle and scaling factor K sup-
plements. The execution time of circular functions is slightly
longer than that of linear functions, and the execution time
of hyperbolic functions is longer still, but the implementation

13
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Fig. 10. System organization.

of all three classes of functions is equally simple. Simplicity,
of both architecture and circuitry, may indeed be the most
striking and important feature of the CAP chip implementa-
tion of the CORDIC concept. Where reliability is at a pre-
mium, nothing scores higher than well-founded simplicity.

CONCLUSION

Whereas the performance of a chip depends on its architec-
ture, circuit design, and processing, one may want to separate
processing from the other two factors when attempting to
assess the quality of a device. It is understood that perfor-
mance is always technology limited. A faster technology will
invariably bring about higher speed and, possibly, reduce
power dissipation af the same time. For a given circuit sche-
matic, conversion from conservatively laid out metal-gate
CMOS to tightly spaced poly-gate SOS will produce spectac-
ular improvement. For that reason, speed alone is hardly a
satisfactory measure of circuit design quality; to compare dif-
ferent embodiments of an idea, one must speak of minimum
cycle’ times, expressed in multiples (n) of “typical” gate de-
lays. The propagation delay of a gate sums up the quality of
the technology, while “n” gives an estimate of the combined
quality of the architecture and the circuit design. Naturally,
one needs a definition of the “typical” gate. Physical dimen-
sions present no difficulty—one simply picks a “minimum
size” device—but the typical configuration may be open to
dispute. We use an inverter with a fan out of three.

SPICE analysis {151 of the CAP chip suggests # = 13 as the
minimum cycle time of a two-byte (24-bit) operation. The
““gate” delay is roughly 100 ns. More than half of the overall
delay is attributable to the 27% scaler. This is understandable,
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Fig. 11. Flow diagram of the CORDIC system,

considering the size of the structure in Fig. 3. Next in order of
nuisance ratings comes the carry circuit C12, whose layout. is
shown in Fig, 6(b). Taken together, the scaler and the carry
determine, just about, the effective “n” of the system. Fur-
ther improvements in “n” will have to come either from modi-
fications of these elements, or from conversion to single-byte
operation. The former approach must await inventive contri-
butions, but the latter is feasible right now. The entire system
can be implemented in single-byte format by recourse to
three micron layout rules; an “n’’ of 7.5 can thus be realized
without changes in circuitry. Furthermore, even an early vin-
tage edition of submicron cLosep COSMOS [14] will accom-
modate a complete single-byte system on just one chip. What
we have then, in addition to a system which executes tran-
scendental functions in 40 us, is a good candidate for sub-
micron phototyping.
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Dedlcated LS| for a I\/Ilcroprocessor -Controlled
Hand- Carrled OCR System

MICHEL C. RAHIER, MEMBER, IEEE, AND PAUL G.A. JESPERS, SENIOR MEMBER, IEEE

Abstract—The binary picture processing and recognizing stages of an
optical -character recognition (OCR) system have been designed using
both flexibility of available microprocessors and speed of peripheral
custom-designed integrated- circuits. A dedicated large-scale integrated
(LSI) procesﬁor performs edge detection and thinning of a 32 X 24 digi-
tized one-piece pattern. The output signal—a set of 3 bit vectors de-
scribing ‘the skeletonized character contour—feeds a microprocessor
which controls the character recogmtlon algonthm including pattern
segmentatlon, flltermg, feature extraction, and classification decision.
This low-cost equipment is especially sqxtable for hand-car_ned OCR
systems where well-formed printed alphanumerics are to be read, How-
ever, continously deformed patterns like carefully handprinted charac-
ters are recognized as well. A system reading speed of 100 characters/s
(or 30 cm/s) can be achleved
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I. INTRODUCTION

HE steadily growing use of computers in industrial and

business ' environments involves a huge need for data-
entry devices with document direct- reading capability w1thout
use of tedious high-cost keyboarding operations.

Currently available optical character recognition (OCR)
equipments can roughly be divided into three main classes
according to their complexity level. In the first one arbitrary
controlled source documents, using bar codes or magnetic-ink
supports [1], lead to fairly simple recognition schemes and
related hardwares, but the algorithms can generally not be
extended for real-world character reading. At the other end of
the available OCR systems, large machines have been built in
an attempt to recognize handwriting. For example, automatic
mail sorting [2] was successfully achieved with handwritten
postal zip-code classification even though the large variety of
character shapes encountered and the random background
noise often mixed with the numerals. This generally results in
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