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A CORDIC Arithmetic Processor Chip

GENE L. HAVILAND AND ALA. TUSZYNSKI

A bstracf- A monolithic processor computes products, quotients,
and several common transcendental functions. The algorithms are
based on the well-known principles of “CORDIC,” but recourse to a
subtle novel coroflary results in a scale factor of unity. Compared to
older machines, the overhead burden is significantly reduced. Also,
expansion of the functional repertoire beyond the circular domain, i.e.,
addition to the menu of hyperbolic and linear operations, is a rela-
tively trivkd matter, in terms of both hardware cost and execution
time. A bulk CMOS technology with conservative layout rules is used
for the sake of high reliability, low-power consumption, and good cycle
speed.

INTRODUCTION

T HOUGH the concept of CORDIC Arithmetic is said to be
quite old [1] , [4] , its implementations and applications

continue to evolve. The acronym comes from Voider’s Coor-
dinate Rotations Digital Computer [1] , developed in 1959 for
air navigation and control instrumentation. An avuncular idea,

particularly effective in decimal radix computations, was pre-
sented by Meggit in 1962 [2] , under the label of “pseudo-
division and pseudomultiplication.” In 1971, Walther [3]
generalized elegantly the mathematics of CORDIC’S, showing
that the implementation of a wide range of transcendental
functions can be fully represented by a single set of iterative

equations. Cochran [4] benchmarked, about the same time,
various algorithms and found that CORDIC techniques surpass

alternative methods in scientific calculator applications.

The pertinent effort of the Naval Ocean Systems Center
(NOSC) culminates in the CORDIC Arithmetic Processor Chip
(CAP Chip) of Fig. 1 that simplifies the architecture, boosts
the speed, and reduces the power consumption of monolithic

arithmetic modules. All computations are based on the ex-
ecution of either

Xj+~ ‘Xi *J’~2-z (la)

or

X(i+l), z =(1 ‘72-i) X(i+l),l. (lb)

While the first of these equations represents the regular
CORDIC iterations, the second [5], [6] forces the scale fac-
tors of circular and hyperbolic functions to unity. ROM in-
structions govern the selection of either (1a) or (1 b), but the
* option is executed by the sign bit of one of the operands.

This paper begins with multiplication and division, because
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Fig. 1. (a) The CAP chip. (b) Block diagram of the CAP chip.

the pertinent algorithm compares well, in its own right, with
alternative techniques, especially in digital filter applications
[7] , [8], [17]. Moreover, the said algorithm is simple and
transparent enough to project the feedback principle as the
fundamental and common link of the CORDIC [1], [3],
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Fig. 2. (a) The multiply-divide algorithm. (b) Reduction to zero of operand z.

[4], the Meggitt [2] and the Chen [16] procedures. Also,
once established, it can be easily expanded to trigonometric

and hyperbolic functions.

A DIGITAL FEEDBACK LooP

Take three numbers, XO, y., and Z., Z. being restricted to
the range

O<z” <l. (2)

Perform the following iterations:

~i+~ ‘~~ +X~6i2-i (3a)

‘~~ +X~ X(6i2-i) for i = 1 through n (3b)

and

Zi+i ‘Zi - 6i2-’ (3C)

= Zo - Z(tii2-i) (3d)

but

Xi+~ ‘Xi (3e)

=Xo. (3f)

To the ~i operator assign the values of either plus one or minus
one, depending on the polarity of zi. In other words, let

{

+1 if Zi>O
6i =

-1 if Zt <0’
(4)

A partial flow diagram of the above operation is given in

Fig. 2(a), and a few steps of the zi iteration are developed in
Fig. 2(b). Note that

lZi+~ I < 2-i, (5)

although the magnitude of zi. ~ is not necessarily smaller than
that of zi. The absolute value of z is gradually reduced to-
wards zero, but the reduction may proceed zig-zag fashion.
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Fig. 3. Schematic diagram of the 2-Z scaler.

What we have here is an arrangement which amounts to an
autonomous feedback loop of attractive simplicity. The zero-
seeking mechanism of the loop is controlled entirely by the
sign bit of z; the sign bit determines tii and that operator imple-

ments, in turn, the crucial add-subtract option of (3) and (4).
Equation (5) implies that a sufficiently high i, say i = n, will

justify the approximation

Zn+l=z’=o (6a)

and will, therefore, lead to the expression

(6b)
j=l

and hence, by substitution into (3 b), to the procluct equation

Yn+l =3’’=YO +Xozo. (6c)

It goes without saying that we could have reduced to zero
the operand y rather than z. Exercising that option, one ar-

rives at

yn+~ =y’=o

or

(7a)

=-YO (7b)

and, therefore, at the quotient equation

YoZ’=zo+—.
Xo

(7C)

Equations (6) and (7) demonstrate that the di@al feedback
algorithm, defined by (2)-(4), leads to practical implementa-
tions of functions germane to multiplication and division [3].
Compared to alternative techniques [9], digital feedback looks
good in division and, as we shall soon see, it becomes even
more attractive when circular and hyperbolic functions are
considered.

THE CHIP

Block diagram particulars and layout details of the CAP chip

are shown in Fig. 1(a) and (b), respectively. There are but
three major circuit blocks: the all important 2-i scaler [11 ], a

12-bit two’s complement adder, and a 24-bit accumulator of

the shift-register variety. The narrow block at the top of the
chip is the “i” counter, called the “sequencer.” The 1/0 buf-
fers are distributed around the periphery of the chip, but all

multiplexer are merged with the appertaining functional
blocks.

The 24-bit data are processed in two 12-bit steps. The lower
byte of the word held by the accumulator is released into the
adder-subtracter by the local clock, an intermediate step of
addition or subtraction is performed, and the result is returned
to the accumulator. The upper byte is subjected to similar

treatment, beginning with the release of data that now in-
cludes the carry generated by the lower byte, and terminating
with the acceptance of the result by the accumulator.

The scaler takes up a large part of the chip’s surface and a
sizable fraction of the cycle time. This is both understandable
and acceptable considering its function, namely, the two’s
complement multiplication of every 8i and every X. a i by 2-i.
The scaler is indeed the centerpiece of CORDIC hardware;
the present implementation is distinctly faster than its shift-
register counterparts. The circuitry is really quite simple,
owing to the highly efficacious transmission gates of the

CMOS technology [12]. A matrix of such gates, arranged as
shown in Fig. 3, propagates the sign bit while it shifts the data
by “i” bits. The signal flow matrix of the scaler is square
(Fig. 4) with 24 columns for bit locations and as many rows
for cycle numbers. However, since there is some redundance
in Fig. 4, the physical matrix need only be half as large as is
its model, and that is why we have in Fig. 3 a matrix of 12
rows for 12 exponents and 24 columns for as many bits.

The transmission gates are driven by a sequencer with out-
puts .4, B, and C (Fig. 5). Output A enables either the upper
or the lower byte and output C picks the first or the second
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Fig. 5. The sequencer.

quadrant, while outputs B select one out of the 12 pertinent
columns. Only regular COF@IC cycles are counted by the se-
quencer. Clock signals which pace the “double cycle” and the
“scale factor” operations are inhibited by status bits outputted
by the instruction ROM (Fig. 10).

The adder has a configuration which resembles conventional
look ahead logic, but its circuitry is unique. Selected frag-
ments of our, “dynamic CMOS” circuits are shown in Fig. 6(a)
and (b). Whereas there are 2rr transistors in a conventional
n-irtput CMOS gate, the complementary CMOS configuration
of Fig. 6(a) has only n + 1. The resultant savings in surface

A1+f31 +
+ C1=AIB1+r

k
AO+BO --H p +AOBO(A1+B1) +

c., + p +C_l (A1+B1) (AO+BO)
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Fig. 6. (a) Dynamic CMOS,carry 1. (b) Fragment of the adder.

area are most welcome in the CARRY module which has a total
of 98 ports in the Clz gate. The precharge clocks @l and $2
are, of course, synchronized with the clock which controls the
timing of the lower and upper byte add-subtract operations.

The adder gate logic utilizes a combination of a XOR-AND-
OR element and a HALF-ADDER. Various gate configurations,
including the conventional CMOS NOR and the Floating XOR
[13] , are employed, but the whole thing adds up to only 26
transistors. The chip layout for this section of logic is shown
in Fig, 6(b). 10000 W2of surface area are consumed if metal-
gate bulk-CMOS with 8pm spacing is employed.
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GENERAL CORDIC EQUATIONS

Written in conventional format, the CORDIC equations look
as follows:

Xi+~ ‘Xi+ 6i2-iyi (9a)

yi+~ ‘yi - 6i2-iXi (9b)

and

Zi+~=Zi - 6iOj. (9C)

The CAP chip executes the above and two supplementary
sets of equations:

‘(i+l), z ‘X(i+l), l ‘8i2-zY(i+l), l (lOa)

Y(i+l),2 ‘Y(i+l),l - 6i2-iX(i+~), ~ (lOb)

‘(i+ l),2 ‘Z(i+l), l - 8i0i (1OC)

and

(ha)X(i+l),2 = (1 +’)’z-z)x(i+l),l

Y(i+l),2 ‘(l ‘72-’) Y(i+l),l (llb)

‘(i+ l),2 ‘Z(i+l), l + o. (llC)

The flow diagram of the generalized instruction cycle is given
in Fig. 7. Equations (10) and (11) represent the “double
cycle” and the “scaling factor K” operations, respectively.
The raison d’etre of these operations is explained below.

Let us focus our attention on the variable “i” in (9). We
have already come across the relationship

6i= 2-i (12a)

and will yet tackle the functions

6i = arctan (2-i) (12b)

and

Oi = arctanh (2-i). (12C)

Implied in (6), as well as in the concept of feedback itself, is
the convergence relationship:



HAVILAND AND TUSZYNSKI: CORDIC ARITHMETIC PROCESSOR CHIP

TABLE I
THE K SCALING FACTOR FOR TRIGONOMETRIC FUNCTIONS

9

,, ,,
3.

0
1
2
3
4
5
6
-1
8

COSINE

.7071067811865

.8944271909999

.9701425001453

.9922778767137

.9980525784829

.9995120760871

.9998779520347

.9999694838188

.9999923706928
9 .9999980926568

10 .9999995231632
11 .9999998807907
12 9999999701977
13 :9999999925494
14 9999999981374
15 :9999999995343
16 .9999999998836
17 .9999999999709
18 .9999999999927
19 .9999999999982
20 9999999999995
21 :9999999999999
22 1.0000000000000
23 1.0000000000000
24 1.0000000000000

PRODUCT

.7071067811865

.6324555320337

.6135719910779

.6088339125177

.6076482562562

.6073517701413

.6072776440935

.6072591122989

.6072544793325
6072533210899
:6072530315291
.6072529591389
.6072529410414
.6072529365170
.6072529353859
.6072529351031
.6072529350324
.6072529350147
.60?2529350103
.6072529350092
.6072529350089
.6072529350089
.6072529350088
.6072529350088
.6072529350088

!, ,,1 K CYCLE

1 0
2 2
3 3
4 4
5 0
6 0
7 7
8 8
9 0

CORRECTION

.5000000000000

.7500000000000

.8750000000000
9375000000000
:9687500000000
.9843750000000
9921875000000
:996093’7500000
.9980468750000

10 10 .9990234375000
11 0 .999511”7187500
12 12 .9997558593750
13 0 .9998779296875
14 14 .9999389648438
15 ‘o .9999694824219
16 16 .999984’7412109
17 0 .9999923706055
18 0 .9999961853027
19 19 .9999980926514
20 20 .9999990463257
21 21 .9999995231628

Required Product of Cosines

K Multiplier for Cosines

Error at 24 cycles of 40 bits

MULTIPLIER

1.0000000000000
.7500000000000
.6562500000000
.6152343750000
.6152343750000
.6152343750000
6104278564453
:6080433726311
.6080433726311
.6074495802750
.6074495802750
.6073012771548
.6073012771548
.6072642104265
.6072642104265
.6072549443100
.6072549443100
.6072549443100
.6072537860631
.6072532069407
.6072529173798

——.6072529350088

.6072529173798

.0000000176290

DIFFERENCE

.3927470649912

.1427470649912

.0489970649912

.0079814399912

.0079814399912

.0079814399912

.0031749214365

.0007904376222

.0007904376222

.0001966452662

.0001966452662

.0000483421460

.0000483421460

.0000112754176

.0000112754176

.0000020093011

.0000020093011

.0000020093011

.0000008510542

.0000002719319
-.0000000176290

(13)

This inequality is fulfilled by (12a) and (12b) but not (12c),
for the simple reason that

2-(i+l) = (*) (2-t), i.e., term i + 1 = (*) of term i (14a)

and

arctan [2-(i+ 1)] > (~) arctan(2-i),

i.e., term i + > ~ of term i, (14b)

but

arctanh [2-(i+ l)] < (~) archtanh(2-i),

i.e., term i + 1< * of term i. (14C)

This is why we need the “double pass” operation when hyper-

bolic functions are being processed. Tables I-III illustrate the
point at issue for the specific case of n = 24, showing that

[ 1arctanh (2-1) - ~ arctanh (2-i) >> arctanh (2-24 ), (15a)
izz

but

{ [
arctanh (2-1) - ~ arctanh (2-i)

i=z

1}
+ ~ arctanh (2-k) < arctanh (2-24 ),

k

(15b)

if

k=3,4,7, 12,13, 18,19, and21. (15C)

So much for the double pass capability. Simply put, some
CORDIC operations are run twice, in order to comply with
inequality (13).

The supplementary operations called out in (11) force the
scale factor K to converge toward unity. While the regular
iterations cross-link x and y, the scale factor K is adjusted by
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TABLE 11
COMPUTATION AND LISTING OF DOUBLE PASS CYCLES FOR HYPERBOLIC FUNCTIONS

,! i ,,

24
Arctanh(2-i) z (Ok) Difference

k=i+l

24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
-1
6
5
4
3
2
1

.0000000596046

.0000001192093

.0000002384186

.0000004768372

.0000009536743

.0000019073486

.0000038146973

.0000076293945

.0000152587891

.0000305175781

.0000610351563

.0001220703131

.0002441406299

.0004882812888

. 0009765628104

. 0019531274835

.0039062698684

.0078126589515

.0156262717521

.0312601784907

.0625815714770

.1256572141405

. 2554128118830

. 5493061443341

0000000596046
:0000001788139
.0000004172325
.0000008940697
. 0000018477440
. 0000037550926
. 0000075697899
.0000151991844
.0000304579735
.0000609755516

0001220107079
:0002440810210
.0004882216509
.0009765029397
. 0019530657501

0039061932337
:0078124631021
.0156251220536
. 0312513938057
.0625115722963
. 1250931437733

2507503579138
:5061631697968

.0000000596046

.0000000596046
0000000596046

:0000000596046
.0000000596046
.0000000596046
. 0000000596046
. 0000000596046
.0000000596046
.0000000596047
.0000000596047
.0000000596052
.0000000596088
.0000000596379
. 0000000598707
. 0000000617334
.0000000766347
.0000001958495
.00000114969B4
.0000087846850
.0000699991807
.0005640703671
. 0046624539692
. 0431429745373

DOUBLE
,,i ,, PASS THETA RSMAINDER

CYCLES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0
0
0
0
1
0
1
1
0
0
0
0
1
0
1
0
1
0
1
1
1
1
0
1

.5493061443341

.2554128118830

.1256572141405

.0625815714770

.0312601784907

.0156262717521

. 0078126589515

.0039062698684

.0019531274835

.0009765628104

.0004882812888

.0002441406299

.0001220703131

.0000610351563

. 0000305175781

. 0000152587891
0000076293945

:0000038146973
.0000019073486

0000009536743
:0000004768372
.00000023 B4186

0000001192093
:0000000596046

.0431429745373

.0431429745373

.043i429745373

.0431429745373

.0118827960466

.0118827960466

.0040701370951

. 0001638672267

.0001638672267

.0001638672267
,0001638672267
.0001638672267
.0000417969136
.0000417969136
.0000112793354
.0000 IT.2793354
.0000036499409
.0000036499409
.0000017425923
.0000007889180
.0000003120808
.0000000736622
.0000000736622
.0000000140576

TABLE III
SUM OF ARCTANH (2-’)INCLUDING DOUBLE PASS CYCLES

“1 “

24
24
23
22
22
21
21
20
20
19
19
18
17
17
16
15
15
14
13
13
12
11
10
9
8
8
7
7
6
5
5
4
3
2
1

Double

Pass

Cycles

o
1
0
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0

Arctanh(2-i)

.0000000596046

.0000000596046

.0000001192093

.0000002384186
0000002384186
:0000004768372
0000004768372
:0000009536743
. 0000009536743

.0000019073486
0000019073486

:0000938146973
0000076293945

:0000076293945
0000152587891
:0000305175781
.0000305175781
.0000610351563
0001220703131
:0001220703131
.0002441406299
00048828128S8
:0009765628104
0019531274835
:0039062698684
.0039062698684
.0078126589515
.0078126589515
0156262717521
:0312601784907
.0312601764907
.0625815714770
.1256572141405
2554128118830
:5493061443341

24
z (ek)

k=i+l

.0000000596046

.0000001192093

.0000002384186

.0000004768372
0000007152557
:0000011920929
.0000016689301
.0000026226044
.0000035762787
.0000054836273
.0000073909760
.0000112056732
.0000188350677
.0000264644623
.0000417232513
.0000722408295
.0001027584076
0001637935639
:0002858638770
.0004679341902
.0006520748200
.0011403561088
.0021169189192
.0040700464028
.0079763162712
.0118825861396
.0196952450911
.0275079040426
.0431341757947
0743943542854
:1056545327760
1682361042530
:2938933183935
.5493061302765

24
Eli- z (e’~)

k=i+l

.0000000596046

-.0000000000000
-.0000000000000
-.0000002384186
-.0000002384186
-.0000007152557
-.0000007152557
-.0000016689301
-.0000016689301
-.0000035762787
-.0000035762787
-.0000035762787
-.0000112056732
-.0000112056732
-.0000112056732
-.0000417232513
-.0000417232513
-.0000417232508
-.0001637935639
-.0001537935603
-.0001637935312
-.0001637932984
-.0001637914357
-.0001637765344
-.0040700454028
-.0040699271880
-.0118825861396
-.0118 B16322906
-.0118739973040
-.0431341757947
-.0430729612990
-.0425788901126
-.0384805065105
.0000000140576

separate, though identical, manipulations of x and y. For ex-
ample, Betting the gammaB in (1 1) to plus 1 for i = 2, 4, one
multiplies both output variables by 1.32812:

X*=(1 +2-’)(1 +2-4)x

= 1.32812x (16a)

and

y*=(l +2-2)(1 +2-4)y

= 1.32812y. (16b)

The role of the scale factors in the realization of circular and
hyperbolic functions will be discussed in a later section.

CIRCULAR FUNCTIONS

Prominent among the functions used in servo control is the
resolver operation defined by (17) [10]. The search for
“solid-state” resolver hardware is lively and likely to continue
for some time to come. Mathematically, however, one deals
with the old and commonplace rotation of axes depicted in
Fig. 8. When a pair of rectangular axes is rotated anticlock-
wise by an angle 6, then the coordinates of a point P transform
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(a)

(b)
Fig. 8. (a) “RotationJ’ given X., yo, and f30find x’ and y’.

toring,” givenX. and y. find R and 0‘.

from X., y. to x, y in accordance with the equations:

x=x. cos O +yo sin O

Y=-xo sin O+yo cos O.

(b) “Vec-

(17a)

(17b)

Interesting, from the viewpoint of implementation, is the

fragmentation property of 6: Theta can be split up into an

arbitrary number of other angles. For example, if

O=el+ez, (18a)

then

xl =x. cos O1 +yo sin O1 (18b)

yl =-xO sindl +yo COS61 (18c)

and consequently,

(19a)X=X1 COS62 +yl sin@2

=x. (cos Ol cos62 - sintll sin 62)

+yo (sin61 COS192 +sin6z cos Ol) (19b)

=x. Cos(fll +02)+yo sin(el +02). (19C)

Interpretation of this result in terms of multiple fragmen-
tations leads to a set of recursive formulas, which read as
follows:

Xj+~ ‘Xi COS6i6i+~j Sin6i6i (20a)

yi+~ = ‘XiSin618i+yi COS6i0i (20b)

and

Zi+~ = Zi - 8i0i. (20C)

There are no restrictions on the various 0’s, other than those
considered in (10)-(14), in connection with the double cycle
operation. For that matter, (20c) is exactly the same as (9c),
though there are significant discrepancies between the other

members of sets (9) and (20). These discrepancies will now

be eliminated as much as possible, for the sake of hardware
simplicity.

First off, one can factorize cos ~i Oi in (20a) and (20b):

Xl+~ = COS8101(Xl+~ltan 61di) (21a)

= COSOi(Xi + aiyl tan 01) (21b)

and

Yi+l = cos ei(~l- 8iXi tan Oi). (21C)

Next, one can make the arbitrary, but highly convenient, sub-

stitution

61= arctan (2-i) (22)

in order to arrive at

Xi+~ = COS61(Xi + 8i2-iYl) (23a)

Yi+l = Cos ‘i(.Yi - 812-iXi) (23b)

Zl+~ ‘Z1- 61 arctan (2-i). (23c)

Finally, one can compare the end results (x*, y*, z*) of itera-
tions (23) with the end results (x’, y’, z’) of iterations (9) and
conclude that

[
x*= x’ fi cos (arctan 2-i) 1 (24a)

l=o

[
=x’ fi (1+ z-2j-l/21 (24b)

i=o

=Knx’. (24c)

That spells out the overall dependence between the two sets
of numbers as

X* = Kn X’ (24d)

and

y* =Kn y’ (24e)

but

z*=zf
(24f)

Since it depends on “n” only, the scale factor Kn is a ma-

chine constant. Consequently, given x’ and y’, one can realize
x* and y* by many simple methods, including ROM look-up
tables and regular combinatorial logic, but the scaling factor K
technique, spelled out in (24) and Fig. 7, is particularly attrac-

tive because it offers a host of advantages such as speed, real
estate economy, and conceptual simplicity.

INITIALIZATION

While the inverse tangent of 2 ‘1 is only 26°, the processor
must accommodate angles as large as t 180°. This does not
present any great difficulty, but for the sake of compatibility
with other functions, it is convenient to implement the range
extension in two special “initialization” cycles (Fig. 9). The
first shifts 19by 90°:
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I

Img.

(a)

. (b)

Fig. 9. (a) Initialization with @o = 150°. (b) Initialization with
00=–150.

(25a)x =x. cos (90°) + yO sin 8(90°)

= tiyo (25b)

(25c)y = -x. sin 8(90°) + -yOcos (90°)

= -tixo (25d)

and

z = Zo - 6(900). (25e)

The second cycle executes the 45° shift,

x=x cos (45°) +y sin 5(45°) (26a)

~ (x+ ay)‘m-

— (y - 6X)J’=&

(26b)

(26c)

and

z = z - 8(450). (26d)

The 1/~ multiplier in (26) had been actually anticipated and
incorporated into the geometric Kn, when (24c) was written as

Kn = ~ (1 + 2-2i)-1/2.
[Co

(27)

Equation (26) can be normalized, therefore, to read

X=x+(a)y (28a)

y=y - @)x (28b)

and

z = z - @) (450). (28c)

HYPERBOLIC FUNCTIONS

When they are written in vector format,(17) read as follows:

x* cos e sin 0 Xo
.

Y* – sin 0 cos 0 y(J “
(29)

The coefficient matrix is orthogonal, and so are the three
germane matrices shown below:

COSe - sin 0
Al =

sin e Cose

Cos e
A2 =

-j sin 0

-j sin 0 Cos e

Cos 6’
As =

-j sin 0

-j sin 0 Cos e “

(30)

(31)

(32)

Any one of these matrices can be used in expressions equiv-
alent to (29) but, naturally enough, a unique geometrical in-
terpretation must be associated with any particular matrix.
For example, taking A ~ and relating it to the imaginary angle

e = j@, (33)

one gets the hyperbolic relationship:

x* cos jfj -j sin jqi Xo
.

Y* -j sin jfp cos j~ yo

cosh I#J sinh @ Xo
.

sinh @ cosh rp yo

1 tanh @ X()
= cosh @

tanh @ 1 yo “

(34a)

(34b)

(34C)

The last of these equations leads directly to the iterative
formulas

X~+~ ‘Xi + (8i2-i)Yi (35a)

yi+~ ‘yi + (6i2-i)Xi (35b)

Zi+~ ‘Zi - &i tanh (2-i) (35C)

and to the scale factor

Kn = fi cosh (2-i) (36a)
i=l

The hyperbolic routine does not require initialization, but
it does call for the “double cycle” operations of ( 10). Tables
II and III, drawn for n = 24, show 9 double cycles and 11 scale
factor operations; the former produce an overall shift in 6 of

O(max) = zo(max) = 1.09 (37)

while the latter generate the scale factor
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K24 = 1.205. (38)

Operations which reduce z to zero (rotations) implement the
transformation

x* =X. cosh a +yo sinh a (39a)

and

y*=xo sinha+yo cosha (39b)

where

a=eo (39C)

or alternatively, generate the functions sinh a., cosh a, ea, e-a,
etc., when appropriate values are assigned to the input vari-

ables X. and y. [2]. Vector operations, on the other hand,
produce

z*= z. + arctanh (xo/yo) (40a)

and

x*= (x; - y:)-’i’ (40b)

as well as perspicuous mutations of these functions.

OVERVIEW

Figs. 10 and 11 show a complete set-up for the execution
of rotation and vectoring operations in the linear, circular,
and hyperbolic modes. There are six modules, namelly, three
CAP chips, a 16X 512 ROM, an ROM ADDRESS counter, a

clock, and an 1/0 box. The 1/0 box loads the data into the
processor and returns the results to the bus; it also sets the
two most significant bits of the ROM address. These two bits

(A9 and A8) select one of the three sectors of the ROM begin-
ning at address zero for linear operations, address 128 for

circular functions, and 256 for hyperbolic. The counter,
which generates the other 7 address bits, is first reset and then

allowed to advance one bit per block cycle. The operation of
the CAP chips is under the control of the instruction section
of the ROM: Status bits from the ROM cause the execution
of either a regular CORDIC cycle, or a “double” cycle, or a
scaling factor K operation; they also signal arrival at the “last”

cycle, that is, completion of the computation. The sign bit of
either y or z controls’ the add/subtract options of all three

chips.
The externrd instruction which activates the processor must

include three function selection bits: one for either rotation or

vectoring and two for either linear or trigonometric clr hyper-
bolic functions. These three bits take care of the two deci-
sions which start- off the signrd flow diagram of Fig. 11. Once
the function to be executed has been identified, the operation
of the calculator is paced along by the local clock. Linear
processing is purely “CORDIC,” but the trigonometric rou-
tines add scaling factor K cycles to the menu, while hyperbolic
algorithms use both the double cycle and scrding factor K sup-
plements. The execution time of circular functions is slightly
longer than that of linear functions, and the execution time
of hyperbolic functions is longer still, but the implementation

--+1Local Clock

P !

Sequencer
* Scaling Factor
* Double Cycle
>

+ Initialtzatlon

Instruction + Y

.S Strobe + 24-b!ts OP. ~

Data Ready 1f

t

SGN MSB J L

+
+

Handshake 1/0
+

L-

t tf

+

-
Y

Control 4 t

+
+
>
+
+

v - z

Even Only + — Reset + t
J&

Scaling Factor Cycle

Doub!e Cycle

Initmtization @& Instruction ROM

Last CYCte
I

Fig. 10. System organization.

of all three classes of functions is equally simple. Simplicity,
of both architecture and circuitry, may indeed be the most
striking and important feature of the CAP chip implementa-

tion of the CORDIC concept. Where reliability is at a pre-
mium, nothing scores higher than well-founded simplicity.

CONCLUSION

Whereas the performance of a chip depends on its architec-
ture, circuit design, and processing, one may want to separate
processing from the other two factors when attempting to
assess the quality of a device. It is understood that perfor-
mance is always technology limited. A faster technology will
invariably bring about higher speed and, possibly, reduce
power dissipation aj the same time. For a given circuit sche-
matic, conversion from conservatively laid out metal-gate
CMOS to tightly spaced poly-gate SOS will produce spectac-
ular improvement. For that reason, speed alone is hardly a
satisfactory measure of circuit design quality; to compare dif-
ferent embodiments of an idea, one must speak of minimum

cycle’ times, expressed in multiples (n) of “typical” gate de-
lays. The propagation delay of a gate sums up the quality of
the technology, while “n” gives an estimate of the combined
quality of the architecture and the circuit design. Naturally,
one needs a definition of the “typical” gate. Physical dnen-

sions present no difficulty-one simply picks a “minimum
size” device-but the typical configuration may be open to
dispute. We use an inverter with a fan out of three.

SPICE analysis [15] of the CAP chip suggests n = 13 as the
minimum cycle time of a two-byte (24-bit) operation. The
“gate” delay is roughly 100 ns. More than half of the overall
delay is attributable to the 2-i scaler. This is understandable,
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Fig. 11. Flow diagram of the CORDIC system.

considering the size of the structure in Fig. 3. Next in order of
nuisance ratings comes the carry circuit C 12, whose layout is

shown in Fig. 6(b). Taken together, the scaler and the carry
determine, just about, the effective “n” of the system. Fur-

ther improvements in “n” will have to come either from modi-
fications of these elements, or from conversion to single-byte
operation. The former approach must await inventive contri-
butions, but the latter is feasible right now. The entire system

can be implemented in single-byte format by recourse to
three micron layout rules; an “n’,’ of 7.5 can thus be realized
without changes in circuitry. Furthermore, even an early vin-
tage edition of submicron CLOSEDCOSMOS [14] will accom-
modate a complete single-byte system on just one chip. What
we have then, in addition to a system which executes tran-

scendental functions in 40 LU.,is a good candidate for sub-
micron phototyping.
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Abstract-The bjnqy picture processing and recognizing stages of an
opticaJ character recognition (OCR) system have been designed using
both flexibility of available microprocessors and speed of wripherd

custom-designed integrated circuits, A dedicated Iarge-se#e integrated
(LSI) processor performs edge detection and thinning of a 32 X 24 digi-
tied one-piece pattern. The output signal-a set of 3 bit vectors de-
scribing the skeletonized character contour–feeds a microprocessor
which controls the character recognition algorithm inchsdlingpattern
se~entation, filtering, feature extraction, and classification decision.
This low-cost equipment is especirdly suitable for hand-ca@ed OCR
systems where well-formed printed alphanumerics are to be read: How-
ever, continou$ly defoqned patterns like carefully handprinted charac-
ters are recognized as well. A system reading speed of 100 characters/s
@30 cm/s) carsbe achieved,
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croprocessor-Control led
~ OCR System

I. INTRODUCTION

THE steadily growing use of computers in industrial and
business environments involves a huge need for data-

entry devices with document direct-reading capability without
use of tedious high-cost keyboarding operations.

Currently available optical character recognition (OCR)
equipments can roughly be divided into three main classes

according to their complexity level. In the first one arbitrary
controlled source documents, using bar codes or magnetic-ink
supports [1], lead to fairly simple recognition schemes and
related hardwares, but the’ algorithms can generally not be
extended for real-world character reading. At the other end of
the available OCR systems, large machines have been built in
an attempt to recognize handwriting. For example, automatic

mail sorting [2] was successfully achieved with handwritten
postal zip-code classification even though the large variety of
character shapes encountered and @e random background
noise often mixed with the numerals. This generally results in
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