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Target Acquisition Performance Modeling of Infrared
Imaging Systems: Past, Present, and Future

James A. Ratches, Richard H. Vollmerhausen, and Ronald G. Driggers

Abstract—This paper provides a 40-year review of the infrared
imaging system modeling activities at the U.S. Army Night Vision
and Electronic Sensors Directorate (NVESD). The result of these
modeling activities is a system model that describes the target ac-
quisition performance of a human observer and an infrared im-
ager. The model has been adopted by the military infrared imaging
community as an assessment of how well an ensemble of observers
perform the tasks of target detection, recognition, and identifica-
tion. The model is used in infrared imager design and assessment,
where military users understand how the metrics predicted by the
model relates to system performance on the battlefield. This review
begins with early work in the late 1950s and proceeds to present
day modeling successes. Finally, the infrared imaging system mod-
eling activities for the future are discussed.

Index Terms—Infrared imaging, modeling.

I. INTRODUCTION

T HIS paper is a review of a scientific effort that has been on-
going for more than 40 years at a U.S. Army Research &

Development laboratory. The effort has resulted in a set of em-
pirical analytic models that predict the target acquisition per-
formance of a system composed of a human observer and an
electro-optical imaging sensor. The emphasis of this paper is
on the subset of electro-optics known as thermal imaging. The
resultant models have been adopted by the military infrared
imaging community as quantitative assessments of how well an
ensemble of observers, using infrared imagers, will perform the
tasks of detecting, recognizing and identifying tactical targets
on a battlefield. Although this development has been extensively
documented in the classified and defense unique literature, the
complete technical story does not appear in the open literature.
The scientific investigation and engineering processes have pro-
duced models which are routinely used by Department of De-
fense (DoD) agencies and their contractors to design and opti-
mize military thermal imagers, frequently referred to as forward
looking infrared (FLIRs). Most importantly, the military users
of these models understand how the metrics predicted by the
models relate to how the systems will perform on a battlefield.

The effort was started approximately 40 years ago at the
then U.S. Army Night Vision Laboratory (NVL). Today NVL
is known as the U.S. Army Communications & Electronics
Command (CECOM) Night Vision & Electronic Sensors
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Directorate (NVESD) but it is still referred to as NVL in
the community and that acronym will be used in this paper.
The models were a response to the Army’s need to develop
and field a whole family of night vision systems in order
to fight under nighttime conditions. The modeling concepts
that were investigated were driven by the outstanding FLIR
system considerations at the various times during this 40-year
span. Also, the thermal imaging sensor models are really
only one model that has undergone a series of modifications
or improvements that address more sophisticated aspects of
thermal imaging systems. The initial model addressed simple
detector arrays which scanned across the scene, but grew
in complexity as detector arrays became focal plane arrays,
resolution became nearly isotropic, system level noise grew
more complex, sample data effects became more important,
observer perception characteristics grew in importance, and
other complexities that will be described in the paper. A similar
story can be told for models of other military electro-optical
systems, such as image intensifiers, albeit with their unique
technical issues, but that is left for another paper.

II. JOHNSONMODEL FUNDAMENTALS

The seminal hypothesis for the NVL performance models
was proposed by Johnson of NVL in 1958 [1]. Johnson’s orig-
inal concept was based upon work originally done by Schade
[2], [29]–[31] with television (the first man made electro-optical
system). Johnson proposed that the ability of an observer to ac-
quire military targets in scenes (detect, determine orientation,
recognize and identify) when viewing through an electro-op-
tical device is dependent on how well he can resolve bar pat-
terns of varying frequencies through the device at the same con-
trast as the scene target-to-background contrast. Since thermal
imagers did not exist when Johnson conducted his initial ex-
periments, contrast was defined as target brightness () minus
background brightness ( ) divided by background brightness
( ) for image intensifiers and television,

CONTRAST (1)

When FLIRs became available, the concept was extended and
contrast was replaced with target to background temperature dif-
ference ( ) which represented the signal input to thermal im-
agers

SIGNAL (2)

where and are the temperatures of the local (to the target)
background and target, respectively.
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A series of experiments were conducted with an ensemble
of observers viewing through image intensifiers to determine
how well they could resolve bar patterns and also perform the
discrimination tasks of detection, target orientation, recognition
and identification of military targets. Detection is defined as
discriminating the presence of an object of potential military
interest from the background, orientation is the determination
of the target aspect, recognition is determining the class of the
target, e.g., truck, personnel carrier, tank, etc., and identifica-
tion is the determination of the member of the class, e.g., M60,
M48, Stalin tanks. Johnson hypothesized that the ability of the
observer-sensor ensemble to discriminate the targets was a func-
tion on how well a critical dimension on the target could be re-
solved. The critical dimension for the various targets used was
defined based on intuition but was usually chosen to be the min-
imum dimension. For combat vehicles this became the height of
the vehicle. For a human target it was the width of the man. The
discrimination level (e.g., detection, orientation, recognition, or
identification) was then related to how many line pairs could be
resolved across the defined critical dimension on the target for
the limiting resolution measured with the device-observer com-
bination. The number of line pairs resolvable () across a target
critical dimension was calculated by multiplying the highest bar
pattern frequency ( ) that could be resolved at that contrast or

by the observer-device ensemble times the target angular
dimension ( ). The angle in milliradians was obtained by di-
viding the target critical dimension in meters by the target range
in kilometers. The calculation of resolvable cycles is shown in
(3). Table I shows the results of Johnson’s experiments:

cycles cycles/mrad mrad (3)

The original Johnson experiments were run with relatively
high contrast targets and bar patterns. The performance mea-
sured corresponded to resolution-limited performance. The ex-
trapolation to noise limited conditions or performance under any
contrast or temperature difference came with the definition min-
imum resolvable temperature (MRT) difference. In 1969, Lloyd
and Sendall [3] defined limiting resolution of bar patterns as the
MRT and the measurement was standardized at NVL. MRT is
the measurement of an observer’s threshold in bar temperature
difference above ambient for recognizing a four bar pattern as a
function of the bar frequency. That is, at a given bar frequency
determined by the bar spacing (equal to 1/[2bar width]), the
temperature difference of the bars above ambient was reduced
until the observers could no longer distinguish four bars; the
temperature difference was then increased until the bars are just
visible. The methodology for getting from MRT to target acqui-
sition performance is the subject of Section IV. Much of the fol-
lowing modeling development has been published in the classi-
fied literature for infrared, the infrared information symposium
(IRIS). The original articles were largely classified due to the
validation data sets which indicated performance of new devel-
opmental infrared imagers. Most of the referenced articles are
today declassified.

TABLE I
JOHNSON’SDATA RELATING RESOLUTION IN LINES RESOLVED ACROSS

THE TARGET CRITICAL DIMENSION TO DISCRIMINATING TARGETS TO

VARIOUS LEVELS

III. MRT M ODEL

The classical MRT model was first published by Ratches
[4]–[6]. A recent historical perspective on the early model
development appears in reference [7]. MRT is defined as the
minimum temperature difference above 300K required by an
observer viewing through the device to resolve a vertical four
bar pattern of 7 : 1 aspect ratio. The MRT is a monotonically
increasing function of spatial bar target frequencyin cycles
per milliradian. The expression for MRT is derived from the
threshold signal-to-noise ratio required by an observer to
resolve the pattern and is given by

MRT
NET

(4)

where is the threshold signal to noise ratio required to rec-
ognize one bar [unitless]. is also known as and
found to be equal to 2.25 based on empirical results. NET is the
noise equivalent temperature difference [Kelvin] and is calcu-
lated

NET (5)

where
-number of the optics [unitless];

noise bandwidth [Hz];
detector area [cm];
average optical transmission [unitless];
number of detectors scanned and summed in se-
ries;
specific detectivity [cm- Hz/Watt or Jones];
partial of radiance (Planck’s equation) with re-
spect to temperature [Watts/cm-sr-um-K].

The noise bandwidth is defined as

(6)

where
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normalized noise power spectrum [unitless];
; electronic modulation transfer function (MTF)

[unitless];
measurement device MTF [unitless].

At the time of the Ratches model, first generation FLIR (serial
scanned) was the primary sensor for modeling and testing, so the
measurement device was well-defined with a particular MTF

(7)

and was set to and was the dwell time of the detector
that was defined as

(8)

where
horizontal field of view (FOV) [milliradians];
vertical FOV [milliradians];
overscan ratio (ratio of the vertical instantaneous
field of view, IFOV, to the vertical sample spacing)
[unitless];
frame rate [seconds ];
horizontal instantaneous field-of-view (IFOV) [mil-
liradians] found by dividing the detector horizontal
dimension in by the focal length in ;
vertical instantaneous IFOV [milliradians];
number of detectors in parallel [unitless];
scan efficiency [unitless].

Returning to (4)
scan velocity of the scan mirror [mrad/s];
integration time of the eye [approximately 0.2 s];
spatial integration of the eye over a bar;

(9)

The MTF terms in the eye integral are
MTF of all the system components after the de-
tector including the display;
eye MTF;
Fourier transform of the bar width.

Since the bar is arect function in space, then

(10)

where is the bar width and is given by .
The MRT equation can be simplified with substitution of the

NET, (5), into (4)

MRT

(11)

A final reduction can occur since the scan velocity is the hori-
zontal FOV times the frame rate

[mrad/s] (12)

so that

MRT

(13)

Note that the performance is driven by the eye integration time.
A low frame rate is accompanied by a small noise bandwidth,
a high dwell time, and the eye integrates only a small number
of frames. A high frame rate is accompanied by a large noise
bandwidth, a small dwell time, and the eye integrates a large
number of frames. These conditions are equivalent in the human
detection of bar targets.

IV. FIRST FLIRs AND MODELS

The MRT related system design parameters, such as, op-
tics diameter, detector size, etc., to subjective observer recogni-
tion of four bar patterns. The Johnson model could then be ap-
plied to MRT for a given target signature, atmospheric condition
and discrimination level to predict field performance. This be-
came critically important during the late 1960s and 1970s when
the U.S. Army was ready to design, engineer, produce, and field
a whole family of thermal night sights across all weapons sys-
tems.

A performance model was needed that could relate FLIR de-
sign parameters to field performance by the soldier using the
device. In order to optimize the design and choose the best con-
tractor candidate, a method was needed to relate, quantitatively,
system parameters such as detector sensitivity, detector MTF,
optical F/#, optical MTF, electronics MTF, display MTF, etc. to
how well a soldier could acquire targets.

At this time, a team of modelers at NVL led by Lawson was
attempting to build on the work of Johnson to come up with a
performance model for FLIR systems. The objective was to gen-
erate an engineering model that predicted probability of an en-
semble of observers to detect, classify (tracked versus wheeled
vehicle), recognize and identify tactical targets as a function of
range, environment and system parameters. With the derivation
of the MRT expression [equations (4) and (13)], it was straight-
forward to apply the Johnson concept and relate system parame-
ters to performance in the field. The MRT provided the connec-
tion between Johnson’s concept of resolvable bars across the
target critical dimension and a system level measurement and
it was a measurement that could be routinely carried out in the
laboratory. The MRT measurement also included the subjective
performance of the observer. (A minimum detectable tempera-
ture (MDT) difference was also defined which would be the con-
nection between signal-to-noise ratio of a “blob” and the ability
to detect hot spots without any higher level discrimination. A
measurement was performed in which the threshold of an ob-
server was measured for detecting the hot target as a function of
target size [8].)

The target acquisition performance model [9] that used the
Johnson concept and MRT is shown in Fig. 1. An inherent target
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signature in terms of a temperature difference () of the target
above the local background is attenuated by the atmospheric
propagation to give an apparent temperature difference ()
at the sensor. This corresponds to a bar pattern frequency

which the sensor-observer system can resolve through the
MRT curve. The number of resolvable bar pattern cycles from
(3) which can be resolved across the target critical dimension
(meters) at range (kilometers) is then given by

(14)

This number of resolvable cycles across the target critical
dimension could then be related to probability of any level of
discrimination through a set of empirically generated curves.
These target transfer probability functions (TTPFs) were gen-
erated from an extensive set of field exercises given in refer-
ence [7]. The TTPFs represent the per cent of the ensemble of
observers who could correctly perform the discrimination task,
e.g., detection, classification, recognition, and identification.1

The number was a function of target signature ( and ),
atmospheric propagation, and system parameters through the
MRT.

The target was calculated from a measured or predicted
signature by calculating the absolute area weightedfor the
whole target from the absolute s and areas of each com-
ponent of a target signature when broken up into sub-areas of
constant temperature. The critical dimension of the target was
usually the height, however, not always as is the case for a man
target where the width is used. The choice of critical target di-
mension for new targets is usually left to a panel of experts with
a great deal of experience in the performance of FLIRs. Tables
of critical dimensions have been published in the literature on
the NVL model. Atmospheric propagation is routinely calcu-
lated using some standard model, such as LOWTRAN [10] (or
the newer version MODTRAN). The TTPF curves were gener-
ated from field performance data and one standard free-hand fit
was used to match all the levels of discrimination. The one curve
was translated horizontally over resolvable cycles and the posi-
tion of the curve was specified by the for 50% probability.
The then specified the entire curve. For example, the
for detection, aiming (a missile gunner could put a cross-hairs
on the target with sufficient accuracy to fire the missile), recog-
nition and identification were determined to be 1.0, 2.5, 4.0, and
8.0, respectively, during this time frame. Later as more field data
was acquired, the values evolved.

The entirely new model that had to be developed in order to
implement this modeling approach described in Fig. 1 which
related MRT to field performance was called the ACQUIRE
(reference [9]) model. The ACQUIRE model related FLIR
system design parameters through the MRT to observer-sensor
performance in the field. These included detector noise, optical
transfer functions, detector transfer functions, electronics

1The question of false alarm rate is frequently brought up with respect to
this performance. However, these experiments were designed such that the false
alarm rate was extremely low. The observers were instructed to respond only
when they were very confident of their response.

Fig. 1. Model to predict performance based upon Johnson and using system
MRT.

parameters, display characteristics and observer eye inte-
gration time.2 ACQUIRE could be used as a sensor design
and contractor sensor selection tool. It was accepted by the
community because it was validated with real field data, was
well understood and was promulgated throughout the national
and international infrared community. Most importantly, as the
data from laboratory measured MRT and field measurement
validation grew, the Army decision makers could rely on the
fact that a given thermal imager set of design parameters
resulted in a required level of target acquisition performance on
the battlefield. Costly field test verification of military required
performance was, thus, avoided and replaced with a relatively
simple test that could be done on the production line.

The selection of the appropriate to a specific situation
was not always straight forward. Often times an “expert” was
required to select the for a particular task and the target crit-
ical dimension. In addition, all imagers at this time were linearly
scanned in the horizontal direction and a vertical MRT was not
defined due to the sampling effects. Hence, the model ignored
resolution in the vertical direction. Notwithstanding, the MRT
model was used as the basis for field performance predictions
with useful fidelity. The MRT model was shown to give predic-
tions that were, generally, representative of what was measured
in the laboratory for linearly scanned thermal imagers. Typi-
cally, the predicted MRT curve crossed the measured system
curve at some intermediate bar frequency and was optimistic
at low frequency and pessimistic at high frequency. Field per-
formance was shown to be within20% in range for a given
probability. In order to extend the MRT model to staring sys-
tems, an arbitrary cutoff of the MRT at one half the theoretical
limiting frequency (one over the detector instantaneous field of
view) was imposed. This was done in order to account for the
fact that a staring imager could not resolve four bars beyond that
frequency, although there was modulation in that region of fre-
quencies. This shortcoming of the MRT model will be addressed
in Sections VI–VIII of this paper.

2There are other observer factors that influence target acquisition perfor-
mance, such as training, motivation, reward, etc. These factors have never been
incorporated into the model.
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V. MODEL IMPROVEMENTS FORRESOLUTION AND NOISE

By the mid 1980s, a new generation of thermal imaging
was being developed. Linearly scanned two-dimensional (2-D)
arrays of detectors and staring arrays were becoming available.
Material and growth improvements coupled with the increases
in sensitivity to be realized from time-delay-and-integrate
(TDI) and staring provided the opportunity for a quantum leap
forward in performance for thermal imaging. With the advent
of second generation scanning systems and staring sensors,
shortcomings in the FLIR performance models became critical.
System level noise became as important as the detector noise.
Noise introduced by detector-to-detector nonuniformity, the
scanning/framing processing, multiplexing, fixed pattern, and
electronic processing had to be considered in performance
models for second generation if the performance was to be
accurately assessed. The 2-D scanned and staring arrays were
sampled in two directions with electronic multiplexing and
vertical resolution approached horizontal.

The other major improvement in second generation systems
over first generation was in digitization. The detector array be-
came a focal plane array of IR sensitive detectors with read out
circuits bonded to the detector array and which multiplexed the
signal out of the dewar. This signal could now be digitized with
A/D conversion and processed using state-of-the-art digital pro-
cessing. The major military interest in digital processing was
to implement aided/automatic target recognition (ATR) in the
sensor package. Second generation scanned focal plane arrays
that are going into the Army’s Horizontal Technology Integra-
tion FLIR B-Kit were designed to facilitate ATR on weapons
platforms. The B-Kit was a set of infrared system components
that was intended to replace first generation infrared systems in a
vehicle-independent manner. FLIR B-Kits have nearly isotropic
resolution in both dimensions, no interlace, improved signal-to-
noise through TDI, and can be sampled at greater than once
per detector dwell time in order to provide processors the most
computer friendly image possible in order to perform automated
functions.

The NVL modeling group was led at this time first by L.
Obert and then by D’Agostino and addressed the noise and in-
creased resolution issues directly [11], [12] and implemented
improvements in MRT modeling with the model FLIR90 and
subsequently FLIR923[13]. D’Agostino hypothesized that the
total system noise could be reduced to eight components de-
pending on whether the displayed noise had temporal variation

or spatial horizontal or vertical variation in the plane of the
display. The standard deviation of each noise componentrep-
resented a real displayed and measurable noise. Table II shows
the eight components and their description and potential source
for that noise component. The development of digital processing
permitted the measurement of each of these components in a
system in a laboratory. The new noise concept was implemented
mathematically in the FLIR92 MRT equation. The validity of
the 3-D noise model for temporally coherent, spatially random
noise was recently demonstrated [14].

TABLE II
TEMPORAL AND SPATIAL NOISE IN SECONDGENERATION THERMAL SYSTEMS

Assuming statistical independence of the noise components,
the total system noise in this three-dimensional (3-D) formula-
tion for noise as a function of frequency is the square root of

(15)

where , , and represent the eye/brain temporal and
spatial integration associated with each noise component and
the subscript indicates vertical or horizontal orientation of
the four bars. The temporal and spatial integrators are approxi-
mately given by

(16a)

(16b)

(16c)

and and are horizontal and vertical sampling rates (sam-
ples/milliradian), and are spatial integration
limits (milliradian ), which are approximately the horizontal
and vertical dimensions of the bar target, and, , and are
the sample correlation factors. , , and are equal to 1 for
staring systems and may be greater than 1 for scanning systems.

is the frame rate and is the eye integration time.
The term is the basic detector noise normally character-

ized by the NET. is related to the actual system bandwidth
and not the artificial standard bandwidth used to measure NET.
It becomes the NET when multiplied by the ratio of the equiva-
lent noise bandwidth divided by the actual noise bandwidth.

A second innovation that D’Agostino introduced into
the NVESD FLIR and target acquisition models was the
use of resolution in both horizontal and vertical directions.
Background experiments were performed at NVESD using
simulated imagery which showed that more accurate perfor-
mance predictions were made when resolution in both image
directions was included. In order to preserve the existing well
understood Johnson concept for imaging and to have as little as
possible impact on the well established approach to predicting
field performance from MRT, a 2-D MRT was defined which
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does not correspond to a physical measurement that could be
performed on a FLIR. A fictitious MRT function was defined
whose temperature difference value was defined as that value
at a frequency equal to the square root of the product of the
horizontal and vertical MRT frequencies for the value
measured on the horizontal and vertical MRTs. The prediction
of field performance was then identical as that shown in Fig. 1,
however the critical dimension of the target now became the
square root of the target area in order to have a consistent 2-D
approach.3 Fig. 2 shows this 2-D model diagrammatically.
Although, conceptually, one might envision this approach as
using “resolvable pixels” on the target, the fundamental metrics
are still linear one-dimensional (1-D) frequencies (square root
of horizontal and vertical frequencies) and length (square root
of area).

It is important to note that at this time when 2-D resolution
was being introduced into the model, more system component
transfer options were introduced into the model also. Transfer
functions for digital filters, CCD charge transfer, display sample
and hold, and other electronic filters were added to the poten-
tial possible characteristics of model descriptions for candidate
thermal imagers.

The FLIR MRT model with 3-D noise and 2-D MRT has been
released to the community under the name of FLIR92. The cal-
culation of target signature, atmospheric propagation and field
performance has been released under the name ACQUIRE [9].
FLIR92 also includes the calculation of MDT and ACQUIRE
uses the MDT to compute “hot spot” detection ranges. AC-
QUIRE contains tables for the area, critical dimension for tac-
tical targets and an analytic curve fit to the TTPFs. The TTPF

values had to be changed somewhat in order to validate the
model for second generation systems and to re-validate the 2-D
model to the old database of performance with first generation
FLIRs. The original NVESD model values for are shown
in Table III compared to the new values used in ACQUIRE.
Also, the “aim” discrimination level is dropped and a classifica-
tion level is introduced. The new values for brought closer
agreement with the values used in image intensifier modeling.
This was aesthetically pleasing since it brought the modeling of
different EO technologies into closer agreement. Image intensi-
fiers have isotropic resolution in all directions and the recogni-
tion criterion for them has been equal to 3 for many years,
and now FLIR models had the same criterion as their resolution
became isotropic in two dimensions.

It is important to note that FLIR92 does not account for
sample data effects any differently than the original model. An
arbitrary asymptote is imposed on a staring system MRT at the
Nyquist frequency. This is important in the future modeling
activity to be discussed in Section VII of this paper.

Two complementary developments to the modeling helped
enable the significant improvements in the capability of the
FLIR 92 and ACQUIRE models. These were the development
of an Advanced Sensor Evaluation Facility [15] and the expan-

3The target area is the projected area of the target on the display. This means
that the area can be different in different spectral regions due to the fact that dif-
ferent components of a target show up differently in the various spectral regions.
The canvas of a 2.5 ton truck may be at the ambient temperature and have no
temperature difference in the infrared. It would show up in the visible region.

Fig. 2. Two-dimensional approach to performance prediction.

TABLE III
CHANGES IN JOHNSON CRITERIA FROM ORIGINAL NVESD MODEL TO

ACQUIRE [18]

sion of the applicability and use of perception testing [16], [17].
Laboratory testing of thermal imaging systems was upgraded
in order to make use of digital processing. Signal trains in an
imaging system could by digitized and processed in order to
help characterize the system. Use of such equipment as frame
grabbers enabled the isolation of the various noise components
which permitted the validation of the noise modeling concepts.
In addition, the ability to generate large amounts of simulated
targets which could be used as input stimuli to automated
perceptual testing enabled the generation of large amounts
of target acquisition data. Many independent and dependent
variables to observer-in-the-loop performance under controlled
conditions could be studied that provided new in-depth under-
standing and new concepts for advanced models. The results
from the perception testing had high statistical significance due
to the large number of replications that could be performed
under the controlled environments.

VI. I NCORPORATINGEYE CONTRAST LIMITATIONS

The FLIR92 model provides accurate performance predic-
tions for “first and second” generation thermal imagers. How-
ever, this past decade has seen significant advances in the de-
velopment of sensitive staring detector arrays, and these arrays
are being incorporated into a wide variety of sensor systems.
Staring arrays have characteristics which can lead to errors in
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FLIR92 performance predictions. Due to the sensitivity of the
new staring arrays, the contrast limitations of the eye can be im-
portant in establishing performance limitations, and these are
not modeled in FLIR92. The addition of eye contrast limitations
to the model is described below. Also, the performance loss due
to sampling artifacts was typically not as severe as modeled by
FLIR92. The change in the sampling theory is described in Sec-
tion VII.

A recent upgrade to the thermal model, called NVTherm, in-
corporates two changes in the eye model. The theory behind
these changes is described in [19] and [20], and the two changes
are briefly described here.

The first change involves replacing the fixed signal to noise
threshold at which a bar-pattern is assumed to be detected with a
variable threshold which varies with display luminance and the
spatial frequency presented to the eye. In the theory described
by (13), the signal to noise ratio threshold (SNRT2.25) at
which a bar pattern is detected is assumed to be constant re-
gardless of display luminance or spatial frequency. The experi-
ments of Rosell and Wilson in the early 1970s, and experience
with image intensifier sensors at NVL during the same period,
demonstrated that SNRT is not fixed [21]. NVTherm incorpo-
rates a variable SNRT which is based on the measured contrast
threshold function (CTF) of the eye and visual system.

The CTF is one of the most common ways of characterizing
human vision. The following procedure is used to measure CTF.
The observer views a bar chart or sine-wave pattern. While
holding average luminance to the eye constant, the contrast of
the bar pattern is lowered until no longer visible to the observer.
That is, the dark bars are lightened and the light bars darkened,
holding the average constant, until the bar-space-bar pattern
disappears. The contrast is then increased until the bars are
once again visible. The average contrast between where the
bars disappear and reappear is defined as threshold contrast for
that bar pattern at that adapting luminance. The procedure is
repeated for various bar spacings—that is, for various spatial
frequencies. The function of threshold contrast versus spatial
frequency at each light level is called the CTF at that light level.

When modeling a system, the display luminance and display
size are specified. For the specified display luminance, the CTF
measured for that luminance is an indicator of the eye’s ability to
integrate signal and discriminate noise at each spatial frequency.

The fixed SNRT in (13) has been replaced with a variable
SNRT shown in (17)

SNRT CTF (17)

where is a constant. Eye MTF and variations in eye in-
tegration time due to light level variations are included in the
CTF, and these factors no longer explicitly appear in the modi-
fied MRT formula shown in (18).

Eye contrast limitations affect the MRT equation in a second
way. FLIR92 and previous models predict MRT based on the
sensor noise and modulation transfer function (MTF) charac-
teristics. Kornfeld and Lawson recognized that, in the limit as
sensor noise decreases, the eye’s noise or contrast threshold
limitations would be the actual limit on performance [22]. In
NVTherm, a second term has been added to the MRT equation

such that performance is limited by the eye as sensor noise be-
comes small.

With both of these changes incorporated, (13) for sensor
system MRT becomes

MRT

CTF
CTF

(18)

where

is the MRT given in (13) without the 2.25 (SNRT)
or .

CTF the CTF of the eye based on measured data;
eye threshold calibration constant which re-
places SNRT;
1050, which seems large, but the CTF of the eye
is about 0.002 at peak sensitivity;
scene thermal contrast which results in the
average display luminance. Typically, is
equal to half of the sensor dynamic range.

The MRT equation now consists of two terms. The first term
represents the contribution of sensor noise; the second term rep-
resents the contribution of “eye noise” or contrast threshold lim-
itations. The relationship between these two terms depends on
the amount of noise generated by the infrared detectors and on
the setting of the sensor gain control. As the average scene tem-
perature heats up, the sensor gain is reduced and the eye con-
trast term begins to dominate. As the scene cools off and gain
is increased, or for intrinsically noisy detector arrays, the sensor
noise dominates. In the limit of low detector noise or high scene
thermal contrast, the MRT is dominated by the sensor optical
blur and eye contrast limitations. In the limit of high sensor noise
or very low thermal contrast, the sensor noise dominates MRT.

The addition of eye contrast limitations to the MRT equation
results in more realistic performance predictions from Acquire.
For example, in order to maintain dark adaptation, display lu-
minance is normally kept low during night operations. The new
model correctly predicts performance under these realistic con-
ditions. Further, the performance of new, sensitive staring arrays
is now modeled correctly, because the contrast limitations be-
come more important as the detector noise decreases.

VII. M ODEL IMPROVEMENT TOADD SAMPLING

The mathematical characterization of image artifacts that re-
sult from sampling, and the target acquisition performance loss
that results from those artifacts, is described in several recently
published books and papers [23]–[28]. This most recent and sig-
nificant change to the thermal model is summarized here.
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Mathematically, the sensor and display are characterized by
a sampled imager response function. The response function for
a sampled imager is derived by examining the image formed
on the display by a point source of light in the scene. The re-
sponse function provides a quantitative way to characterize both
the quality of the sampled imager’s transfer response and its ten-
dency to generate sampling artifacts.

The sampled imager response function depends on the sensor
pre-sample MTF, the sample spacing, and the post-sample and
display MTF. These sensor characteristics are known to the de-
sign engineer or system’s analyst. The sampled imager response
function does not depend on the image samples, but rather on the
process by which the samples are taken and displayed.

Since the sampling artifacts produced by an imager depend
on the scene being imaged, one might question a mathematical
process which quantifies sampling artifacts without including
an explicit description of the scene. In that regard, we rely on
assumptions identical to those used for nonsampled imagers.

MTF is widely used to characterize a nonsampled imager.
MTF is the Fourier transform of the displayed point spread func-
tion. It describes the blur produced in the image by a point in the
scene. In actual usage, the importance of a good MTF response
at high frequency cannot be established until the high frequency
content of the scene is established. The real impact or impor-
tance of the sensor blur is not known until the scene content and
task are known. Nonetheless, MTF has proven to be a good indi-
cator of the overall utility of the sensor. High frequency response
in a nonsampled imager is a prized characteristic because of the
possibilities it provides, not because good MTF is always im-
portant in accomplishing every task when looking at any scene.
Experience has shown that MTF is a good way to characterize
the quality of an imaging system. An image cannot be defined
until the scene is described, but the characterization of the im-
ager’s response to a point source provides a good indication of
the quality of images which can be expected under a variety of
environments.

A similar logic applies to sampled imagers. We cannot know
how each detail in the scene will be corrupted by the sampling
process until the exact scene and its angular relationship to the
sensor are specified. However, thetendencyof the imager to
produce visible display raster or corrupt scene details can be
characterized.

For most practical, sampled imagers, the response function
can be approximated by [23], [24]

(19)

where
pre-sample MTF; that is, the product of optics MTF,
detector MTF, and any MTF losses due to the at-
mosphere or line-of-sight jitter;
post-sample MTF; that is, the product of the elec-
tronics MTF, display MTF, and eye MTF;
spatial frequency in cycles per milliradian;
sample frequency in cycles per milliradian;
sample phase.

Note that in (13) is the product of .
The response function has two parts, the transfer term and the

spurious response terms. The first term in (19) is the transfer re-
sponse of the imager. This transfer response does not depend on
sample spacing, and it is the only term that remains for small
sample spacing. A sampled imager has the same transfer func-
tion as a nonsampled (that is, a very well-sampled) imager.

However, a sampled imager always has the additional re-
sponse terms, which we refer to as spurious response. These
spurious response terms in (19) are filtered by the electronics,
display, and eye MTFs in the same way that the transfer response
is filtered. However, the position of the spurious response terms
on the frequency axis depends on the sample spacing. If the
sample spacing is large (the sample frequency is small), then the
spurious response terms lie close to the baseband in frequency
space. In this case, the spurious response is difficult to filter out
and might even overlap the baseband. If the sample spacing is
small (the sample frequency is high), then the spurious response
terms lie far from the baseband in frequency space, and the spu-
rious response is filtered out by the display and eyeball MTF.

The transfer and spurious response functions of a sampled
imager can be calculated using (19). These response functions
provide the Fourier transform of the baseband, desirable, spatial
image information and the Fourier transform of the sampling
artifacts, respectively. The sampled imager response function
mathematically describes the imaging behavior of the system.
However, in predicting the effect of sampling on task perfor-
mance, the response function must somehow be condensed into
a sampling-goodness metric for the sensor. Some generaliza-
tions must be made and a goodness factor or factors calculated.

Two aggregate quantities are defined which have proven
useful in predicting how the spurious response of a sampled
imaging system affects task performance. The utility of these
quantities was discovered during experiments looking at the
effect of sampling on target acquisition performance. The
experiments are described in [25]–[27]. The two quantities are:
total integrated spurious response ratio, SR, as defined by (20),
shown at the bottom of the next page, and out-of-band spurious
response ratio, SR - - as defined by (21) and (22), as
shown at the bottom of the next page.

The results of perception experiments conducted by NVL
show that in-band aliasing (aliasing which occurs at frequencies
less than half the sample rate) did not degrade target identifica-
tion performance, but out-of-band aliasing (such as visible dis-
play raster) degraded identification performance significantly.
Aliasing had less impact on the recognition task than the iden-
tification task, but both in-band and out-of-band aliasing de-
graded recognition performance to some extent.

Based on these experiments and other results reported in
the literature, it appears that in-band aliasing has a strong
affect on low-level discrimination tasks like hot-spot detection;
out-of-band aliasing has only a minor impact on these tasks.
For high-level discrimination tasks like target identification,
however, out-of-band aliasing has a significant impact on
performance, whereas in-band aliasing has a very minor
affect. For intermediate-level discrimination tasks like target or
character recognition, both in-band and out-of-band aliasing
have a moderate impact on performance.
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The performance loss associated with sampling is modeled
as an increased blur on the imagery. The blur increase is char-
acterized as a function of total spurious response for the recog-
nition task and as a function of out-of-band spurious response
for the identification task. Using the Fourier similarity theorem,
an increase in blur is equivalent to a contraction of the modula-
tion transfer function, thusMTF Squeeze. The squeeze for the
recognition task is

SR (23)

where SR is defined by (20). The squeeze factor for the identi-
fication task is

SR - - (24)

where SR - - is defined by (21) and (22). A squeeze for
the detection task would be speculation because experiments are
not complete; a detection squeeze is not currently in the model.

The spurious response is calculated independently in the hori-
zontal and vertical directions, and the squeeze factor calculated.
A new is calculated

for recognition (25)

or

for ID (26)

The MTF Squeeze approach is an empirically-derived method
for imposing a penalty for under-sampling. The penalty is not
as severe as the half-sample rate limit imposed by FLIR92, but
it gives performance below that of a well-sampled imager with
identical pre-sample and post-sample transfer functions.

VIII. F UTURE MODEL IMPROVEMENTS

Johnson’s target discrimination criteria have been widely
used for 25 years for two reasons: the resulting model is
simple, and the model predictions are reasonable. However,
this elegantly simple model does not quantitatively predict all
aspects of target acquisition performance.

Johnson’s original experiments were performed using high
contrast targets. Rosell performed experiments using noisy tar-
gets; he found that the Johnson/NVL model is progressively
more optimistic as noise increases [21]. If Rosell’s data are
correct, then the NVL model predicts optimistically for poor

weather, battlefield obscurants, noisy detectors, and other cases
where noise or contrast limits performance. Rosell, Biberman,
and others have proposed alternatives to the NVL model to cor-
rect this behavior [25], [26]. Field experience has shown that
these alternative models do not predict range performance as
well as the NVL model. Nonetheless, it is still widely believed
that the NVL model loses accuracy under high noise or low
contrast conditions. For example, the current Army “force-on-
force” war game requires (modulation) contrast to be more than
0.02 for target acquisition to occur. Without this limitation, the
NVL model predicts that targets can be detected, recognized, or
identified with a contrast as low as 0.002. Recent experiments
at NVL show that the Johnson criteria is a decent predictor of
the influence of noise and blur on target identification, but that
other image metrics predict ID performance more accurately,
especially when the images are noisy [27].

Another limitation of the current model, discussed more fully
in [26] and [28], is that the model is a robust predictor of sensor
system range performance only forgenericdetection, recogni-
tion, and identification tasks. Targets are represented only by
an average area and average target to background contrast. The
model provides an average or statistical prediction for a group
of observers attempting the task many times with a variety of
target types represented (that is, a variety of target types being
detected, recognized, or identified). The model is useful in com-
paring sensor systems, because it predicts target acquisition per-
formance for an ensemble of target types and aspects. However,
the model does not predict the probability of discriminating a
specific vehicle.

As an example, the various generations of Russian tanks
(T72, T62, T55) have the same general appearance, but look
distinctly different from U.S. tanks (M1, M60). Discriminating
an Iraqi-owned T72 from an Egyptian-owned T62 is much more
difficult than discriminating the T72 from an Egyptian-owned
M60. The target acquisition task always involves a comparison
(target versus background for detection, target versus target
for identification), and the difficulty of making these specific
comparisons cannot be quantified by the current model.

The current model improvement thrust at NVL is to improve
the accuracy of the model when predicting the relative perfor-
mance of diverse sensor technologies with different blur, noise,
contrast, and sampling characteristics. This improvement will
also insure that performance in poor weather or battlefield ob-
scurants is also modeled correctly. Based on recent experiments,

SR (20)

SR - (21)

SR - - SR SR - (22)
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this model improvement is both feasible and near term. The next
step will be to address specific target-to-target and target-to-
background discriminations; that next step is expected to be a
much more difficult, longer term task.
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