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Optimum and Suboptimum  Detector Performance - 

for Signals in Cyclostationary Noise 

(Invited Paper) 

Abstract-The detection of known and partially  known signals in 
additive white Gaussian  nonstationary noise is considered, with primary 
attention to the case where the time-varying noise intensity parameter 
No(t) is a periodic function.  Optimum receiver structures are derived for 
three detection cases, namely completely known signals, sinusoids with 
random phase, and sinusoids with both random  amplitude and phase. It 
is demonstrated that optimum receiver performance  can be achieved only 
if proper  synchronization to the noise intensity No@) is accomplished. 
Large performance penalties can be demonstrated when an improperly 
synchronized receiver is used. Consequently, suboptimum receivers that 
ignore the noise intensity time  variations and therefore  require no 
synchronization, have been considered, and their performance  compared 
to their optimum counterparts. Depending on  the type of time-varying 
noise intensity being considered, results show that performance  differ- 
ences between optimum and Suboptimum receivers can be negligible in 
some cases, and yet can be substantial in other cases. Several examples 
have been worked out using two  different  forms for &(t) and corres- 
ponding  performance  evaluations have been carried out  and presented 
graphically in terms of receiver error probability as a  function of signal- 
to-noise ratio. 

I. INTRODUCTION 
A .  Purpose 

T HE well-known  theory  of  detection  of  known  and  partially 
known signals  in  additive  stationary  white  Gaussian  noise 

[ 11 is  easily  extended  to  detection  problems  for  which  the  noise 
is  additive,  white, and Gaussian,  but  nonstationary  with 
known time-varying  intensity  parameter  (denoted by No(t)). If 
the  time  variation  is  periodic,  the  noise  is  termed  cyclosta- 
tionary [2], [3]. This  type  of  noise  can  arise  acoustically  and 
electrically  from  rotating  machinery  such as electrical  motors 
and  generators,  reciprocating  and  turbine  engines,  and  from 
noise  fields  containing  periodically  time-varying  inhomoge- 
neities  such as rotating or revolving  reflectors and refractors. 
Cyclostationary  noise  can  also  arise  from  intentional  electrical 
interference  and  from  unintentional  electrical  interference 
from  an  information-bearing  signal  consisting  of  a  modulated 
periodic carrier. In  general,  cyclostationary  white  noise is an 
idealized  model  for  broad-band  noise  with  periodically  vary- 
ing  instantaneous  power  (intensity).  Although  some  such 
processes are best  modeled  as  white  Poisson  impulse  noise, 
only  the  white  Gaussian  noise  is  considered  in  this  paper. 

The  applicability  of  a  cyclostationary  noise  model to 
underwater  signal  detection  problems  is  due  primarily  to  the 
following:  a)  an  important  source of noise  in  ships  and 
submarines  is  self-interference  caused by rotating  machinery; 
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and  b)  the  ocean  medium  is  most  accurately  modeled as a  time- 
variant  space-variant  random  filter [4] where  the  time  varia- 
tion  properties may behave  in  periodic or quasi-periodic 
fashion. 

Optimum  detectors  for  signals  in  additive  white  Gaussian 
cyclostationary  noise  (denoted by n( t ) )  contain  periodically 
time-varying  parameters  that must  be  synchronized to the 
periodic  variation  of  the  noise  intensity. This presents two 
significant  practical  problems: 1) implementation  of  appropri- 
ately  time-varying  parameters  requires  knowledge  of  the  exact 
waveform  of  time  variation  of  the  noise  intensity;  and 2) 
synchronization  can  be  particularly  difficult if the  observation 
time  is  not  sufficiently long. A common  way to  account  for the 
lack of timing  information needed for  noise  synchronization  is 
to  model  the  phase  (time  reference)  of  the  noise by a  random 
variable  that  is  uniformly  distributed  over  one  period  (denoted 
by T )  of  the  time-varying  noise  intensity.  Although  this  phase 
randomization  stationarizes  the  noise [5 ] ,  [6] ,  the  optimum 
detector  for  the  resultant  composite  detection  problem  can  be 
too  complex  for  implementation,  because  phase-randomiza- 
tion  does  not  preserve  the  Gaussianness  of  the  noise,  and 
optimum  detectors for non-Gaussian  (particularly  continuous- 
time)  noise  can  be  unduly  complex. In fact,  the  nonlinearity 
that  must  be  implemented  (e.g..  for  the  more  tractable 
discrete-time  non-Gaussian  white  noise  model [7] cannot  be 
specified  without  specification  of  the  exact  form  of  time- 
variation of the  noise  intensity  (before  stationarization), 
because  this  determines  the  probability  distribution  of  the 
stationarized  noise. 

The  preceding  difficulties  motivate  the  alternative  of  model- 
ing  the  noise  by  a  stationary  white  Gaussian  process  (denoted 
by n"(t)) having  the  same  time-invariant  intensity  as  the  phase 
randomized  (non-Gaussian)  white  process.  This  is  equivalent 
to replacing  the  periodically  time-varying  intensity  parameter 
in the  original  cyclostationary  white  Gaussian model n( t ) ,  
with  its  time-averaged  value  defined by 

1 7  
( N o )  L 7 1, No(t) dt. (1) 

Thus  the  time-varying  impulsive  autocorrelation  of n ( t )  

E ( n ( t +  ~ ) n ( t ) }  =N0(t)6(7)  (2) 

is  in  effect,  replaced  with  the  time-invariant  impulsive 
autocorrelation 

E{  n"(t+ .r)n"(t)} = (No)6(7). (3) 
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Since the probability  distribution of a([ )  is  assumed  to  be 
Gaussian, the simplicity of the optimum  detector for Gaussian 
noise is retained, but the periodically  time-varying  parameters 
and  the  synchronizer are circumvented. 

The  purpose of this paper  is to evaluate this approach to 
detector design, by evaluating and comparing  the  probabilities 
of detection error for the  potentially  impractical  optimum 
noise-synchronized  periodically  time-varying detector, and  the 
practical  suboptimum  time-invariant  detector  (that  is  optimum 
for  the  modified  model fi, of the  actual  noise n). This is 
carried out for three types of signals: arbitrary sure signals, 
sinusoidal  signals  with  random  phase,  and  sinusoidal  signals 
with  random  amplitude  and  random  phase. 

Although  only  cyclostationary  noise  is  considered in this 
paper, the  general  approach to suboptimum  detector  design, 
and the methods  of  analysis of performance are applicable to 
nonstationary  white  Gaussian  noise  that  is  not  necessarily 
cyclostationary. 

B. Optimum and Suboptimum  Detectors 
The  signal  detection  problems  addressed in  this  paper are 

modeled  in the  conventional way  as hypothesis  testing 
problems.  Under  each of two hypotheses  (denoted by H ,  and 
Ho), the  received  waveform  (denoted by r(t))  consists of a 
signal (sl(t) under HI and so@) under Ho) in additive  white 
Gaussian  noise  (denoted by n(t)): 

HI : r ( t ) = q ( t ) + n ( t )  
u, : r( t )  =so@) + n(t)  t E To (4) 

where To is the time  interval of observation of r( t ) .  To 
determine the optimum detector, the cyclostationary  white 
Gaussian  noise  with  time-varying  intensity No(t) is  converted 
to stationary  white  Gaussian  noise with time-invariant  inten- 
sity (No) by multiplying  the  observed  waveform r ( t )  by the 
known  time-varying  factor [(N0)/N0(t)]1/2. (It is assumed  that 
N,(t) # 0.) This yields the equivalent  hypothesis  testing 
problem: 

HI : ?(t)=S1(t)+A(t) E To 
No : P ( t )  =So@) + n"(t) (5 )  

where P( t )  is  defined by 

F(t) = [ (NO)/NO(t)]   1 /2r( t )  (6) 

and S l ( t ) ,  SO@), n"(t) are similarly  defined.  Problems (4) and 
(5 )  are equivalent  because  (6)  is an invertible  transformation. 
Therefore, conventional  methods [ 11 for  determining  optimum 
detectors for known  signals  in  white  Gaussian  stationary  noise 
can  be  applied to problem (5) to solve  problem (4). 

To  determine  the  suboptimum  detector  (that is, not  time- 
varying or noise-synchronized),  the  hypothesis  testing  prob- 
lem (4) is modified to 

' r(t)=sl(t)+n"(t)  t E To. 
Ho : r( t )  =so(t) + A@) (7) 

Since  the  only difference between (4) and (7) is  that the 
time-varying  parameter No(t) in (4) is replaced  with  the  time- 
invariant  parameter (No) (cf. (1)-(3)), then  the  optimum 

detector  obtained  from (5) for (4) yields the optimum  detector 
for (7) (which is the suboptimum  detector for (4)) simply  by 
replacement  of No(t) with (No) in the formulas that specify the 
optimum  detector for (4). 

In this paper, the Bayes'  optimization criterion of minimum 
risk is adopted. Therefore, the  optimum  detector  will be 
(equivalent  to) a likelihood ratio test. For each  of  the  specific 
detection  problems  considered in  Sections II-IV, the  log 
likelihood ratio takes the form 

Z [ ( r ( t )  : f E Toll Y (8) 
Hl 

HO 

where Z [ {  r(t):t  E TO}] is a sufficient statistic, which  depends 
on N,(t), and the threshold  level y which consists of two 
additive terms, one of  which is determined by decision costs 
and prior probabilities of Ho and H I ,  and  the other of which 
depends  on  signal  energies  and  noise  intensity No(t). Thus 
both the  sufficient statistic Z [ (  r(t): t E TO}] and the threshold 
level y are modified by replacement  of NJt )  with (No) to 
obtain  the  suboptimum detector from the  optimum. 

For  notational  convenience, we introduce the abbreviated 
notation 

4(t) [No(W(No)l ll2 

for the  noise  stationarizing  factor (6). 

II. DETECTION OF KNOWN SIGNALS 
For  the  problem of detection of known signals, sl(t) and 

so(t) (i.e., discrimination  between sl(t) and so@)), the opti- 
mum detector for (4) is given by (8) with 

Y (No) In (X)+  1 ([s:(t)-s;(t)llq(t)l dt (10) 
TO 

where h is  determined  solely by decision  costs  and prior 
probabilities [l, (12), p. 261. Equation  (9)  describes the 
conventional correlator (or matched filter) detector  preceded 
by the periodically  time-varying scale factor llq(t), which is 
synchronized to the  cyclostationary  noise  with  intensity q2(t) 
- (No). A diagram of the detector structure is shown  in Fig. 1. 
The  probability of detection error is [1, (69a), p. 371 

where p1 is the prior probability, p 1  = PIHl] ,  and 

I n  
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s,(t) 

Fig. 1 .  Optimum receiver for known signals. 

P, = erfc { [( 1 - R,)E,/2(N0)] 112) ( 1  5 )  

where erfc { - ] is the complementary error function [l , (66), 
p. 371 defined by 

erfc {a}  =- p 2 / 2  &. 

Letting pq = 2(1 - Rg)Eg/{No), (15) takes  on  the  form 

Pe = erfc { [ p4/4] ”*}. 

The suboptimum  detector for (4) (optimum  detector for (7)) 
is given  by @)-(lo) with No(t) replaced  with {No), which is 
equivalent to replacing q(t)  with 1. The structure of this 
detector  is  identical to that  shown  in Fig. 1 except for 
replacement  of q(t)  by 1 .  The probability of error (which is 
denoted  by pe) that  results from using this suboptimum 
detector  with  the  cyclostationary  noise can be  shown to be 
given  by ( 1 1 )  with a, replaced by 

- A  
(No) In (h)+E( l  - R )  

a, = 
[2  J(No)E(l - R ) ]  ‘ I 2  

( 1  6 )  

where E and R are defined  by (13)  and (14) with q(t)  replaced 
by 1 ,  and 

J 4 { [ s l ( t ) - s ~ ( t ) ] ~ q ( t )   d t /  j [ s I ( T ) - s o ( T ) ] ~  dr. 
TO TO 

(17) 
For  the  special  case of equal priors and costs, X = 1 and 

p,=erfc { [ ( l   -R)E/2(NO)J]’”} .  ( 1  8 )  

Observe  that if the  noise  were stationary, then J = 1 ; 
therefore, J is a factor related  to  the  amount by  which the 
signal-to-noise ratio (SNR), which is defined  by 

p 4 2(1-R)E/{N0) 

is effectively  reduced or increased  when  cyclostationary  noise 

enters a detector  intended for stationary  noise.  However, J is 
not  the  amount by which  the SNR must be boosted to make the 
suboptimum  receiver  perform  as  well  as the optimum  receiver 
for cyclostationary  noise. Rather, comparison of (15) and (18) 
reveals  that P, = pe if and  only  if the S N R  is boosted  by the 
factor 

D 4 J(l   -Rq)Eq/(l   -R)E=  Jp9/p.   (19) 

This factor D can  be  interpreted as an effective SNR 
degradation factor. In terms of the S N R  p,  (18) becomes 

pe = erfc { [ p / 4  J ]  l 1 2 ] .  

The  performance  parameters p, J, D can be  reinterpreted in 
terms of distances  between  signals as follows. We  let d9 
denote  the  weighted  distance  between sl(t)  and so@): 

with  weight  function q(t). Then  we  obtain 

p = df/2(N0) 

J =  d:/df 

D=didf , , /d ; .  

From  the Cauchy-Bunyakovski-Schwartz (CBS) inequality 

so that 

d f s d : d f ,  

thus  confirming  that the suboptimum  detector requires a 
higher SNR than the optimum  detector if the former is to 
perform as well  as the latter (Le., D 2 1). 
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Example I: causing 4Mc to  be  an  integer, D becomes 
Consider  the  on-off  signaling  scheme for which 

so@) = 0 
D= 

(a-l)2c(1-c)+a 
a 

(f) = A  sin ( 2 ~ M t /  T )  (20)  If we compare this expression for D with  (26)  (for  which c = 
1/2), we  see  that 

and To = [0, NT], where M and N are positive  integers. 
Consider  also  a  square-wave  periodic  noise  intensity  that  is 
defined over one  period by 

(a- 1)2c(l - c ) + a  (1 +a)2 
4- 

a 4a 

whenever c < 1. This  implies  that P, (given  by  (27))  is 
O s t s c T  (21)  considerably  larger  for  small  values of c (with 4Mc an  integer) 

in comparison to P, for  the  symmetric  wave case ( c  = 1 /2). 
No ( 0  = [ i z ; t b   c T < t s  T 

where Example 2: 
b P (c+a-ac)-' Consider  again  the  on-off  signaling  scheme (20), but  with  a 

which  insures  that (21) is  self-consistent,  and 
sinusoidal  periodic  noise  intensity  that is defined by 

O<a, c s l .  
No(t)=b(No)[l  +a-(1 - a )  cos (27rt/T)] (30) 

where 
Then R, = R = 0, and 

b A ( l+a ) - '  
E = NTA 2/4 = To A 2/4 (22) 

which insures  that  (30)  is  self-consistent, and 
E,=(E/b){c+(l  -c)/a+[(l -a)/47rMc] sin (47rMc)) 

O < a s l .  
(23) 

J =  1 - [b(c - ac)/47rMc] sin (47rMc). (24) 
Then R, = R = 0 and 

E= NA2/2(1 +a)  

J =  1 Therefore,  (19)  yields 

D=(l /a){ac+ 1 -c+[c(l  -a)/4nMc] sin (47rMc)) 

- [c(l  -a)/47rMc] sin  (47rMc)).  (25) 

For a time-symmetric  square  wave, c = 1/2 and D 

and  use of the  identity  (for 0 e 1)  [8] 

(1 + u2) 
dt=(-V)" - 

(1 - u2) 

simplifies  to 
where 

which  can  be  very  large if a is small. This is to be  expected yields 
since  the  optimum  noise-synchronized  detector can exploit 
low-noise  (small a) intervals  of  time,  but  the  suboptimum E,=E(l +d) ( l  -dM)/(l - d )  
time-invariant  detector  cannot. In contrast,  if c = 1, (1 - c -e 
a) ,  then D = 1,  as expected  since  the  cyclostationary  noise is for which 
nearly  stationary  in this case  in  the  sense  that  the  periodic 
noise  intensity of  (2 1)  is  very  nearly equal to  the  constant  level d 4 (1 -a)2/(1+a+2&)2<1. 
(No) for  almost  its  entire  period. The same  result  holds  true  for 
small  values  of c, (c 4 11M). Therefore,  (19)  yields 

It  follows  from (15), (18), (19), (22)-(24),  and R = R, = 0 
that 

D=(l+d)( l -d") / ( l -d) .  

127) 
For  high-frequency  signals (M % l) ,  (34)  reduces  to 

D=(1+6)/(1 - d )  

(3 3) 

(34) 

which can be very  large  if a is small .  However, D in  (35)  does 
where D is  given  by (25). Graphs  of P, and p, as functions  of  not  grow as fast  with  decreasing a as D in  (26)  because  the 
SNR, p,  for  several  values of the  parameters a and c (which  low-noise  time  intervals of the sinusoidd noise  intensity (30) 
control the degree  of  nonstationarity of the  noise)  are  shown  in  are  of  shorter  duration  than  those  of  the  square  wave  noise 
Figs. 2 and 3. Note that  for  values of c (such as 114 or 314) intensity. 



BUKOFZER: SIGNALS IN CYCLOSTATIONARY NOISE 

-10 0 10 90 a0 40 W 80 
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Fig. 2. Receiver  performance  for  Example 1 with  nonsymmetric noise 
intensity  factor. 

101 

S/N IN d B  
Fig. 3. Receiver  performance  for  Example 1 with  symmetric  noise  intensity 

factor. 

It  follows  from (19, (18),  (19), (31)-(33), and R = R, = 0, probability of error (denoted  by p,) that results from using an 
that P, and P, are given by (28) and (29), where D is given  by incorrect periodic scale factor (denoted  by Q(t)) instead of the 
(34). Graphs of P, and pe are shown in Fig. 4. correct factor q(t) in the detector (9) is  given by (1 1) with a+ 

Penalty Due to Misynchronization .- 

the  suboptimum  time-invariant  d&ctor  should  be  weighed [2&VO)EG(1 -Ra)]''2 (3 6) 
against  effective SNR degradation due  to  missynchronization 
of the optimum  time-varying detector. It can  be  shown  that the where EG and RQ are defined by (13) and (14) with q( t )  

replaced by 

In practice, the SNR degradation incurred through  use  of ~ (NO) In (X) f E ~ ( 1 -  Ra) a, 2 
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I I 

-10 i io 0'0 40 60 60 

Fig. 4. Receiver performance for Example 2. 

replaced by cj(t), and assumption  that the optimum receiver is &synchronized. w e  

=d$d2/di/g. (37) and for analytical  simplicity,  we  set c = 1/2, so that 
2 

For the special case of equal priors and costs, h = 1  and , O s t s   T / 2  

(43) 

Observe  that if the correct scaling  waveform q(t)  were  used  After Some algebraic  manipulation,  we obtain 
in  the detector, then J^ = 1 ; therefore, J^ is  the  factor by  which 
SNR is effectively  reduced or increased  when  one  cyclosta- ToA2(1 +a)2 
tionary  noise  (with  intensity q(t))  enters a detector  intended 
for another  cyclostationary  noise  (with  intensity d( t ) ) .  How- 
ever, J^ is not the amount by  which S N R  must  be  boosted to 

correctly synchronized detector. Rather, comparison of (15) 
and (38) reveals  that P, = pe if and  only  if S N R  is boosted  by 1 1 

the  factor a2  a 

diI4 = 
8a 

make  the  missynchronized  detector  perform as well as the d$,2 = T o A 2 ( 1 + a )   [ ( l - € ) + €  sin CME 8 

+- { E - €  sin " } + -  ((1 - E )  

D = f ( l  -Rq)Eq/(I -R,)E,=J^~,/p^=df,,d~,,z/d:/, 2 1 +sin cMe)+a{E-E sin CME} 

(39) 
where  From (23) we have  (with c = 1/2)  

b=2(1-Rq)E,/(No).   dfIq= T0A2(1 + a)2/8a. (45) 

Thus Equations (43)-(45) can now be used in (38) and (39) in 
pe=erfc { [b/4J^I ' I 2 )  = erfc { [p4/4B] 1'2}. (40) order to express pe d d  l? as functions of E ,  the  measure of 

Exampie I Continued: 

having characteristics given  by (2 1) is analyzed  here  under  the 32a29(E)(No) 

missynchronization. Thus 

The on-off signaling scheme  given by (20) with  noise $,=erfc I[ T d 2 ( 1  + Q ) ~ ]  1 / 2 1  
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where 

S/N IN dB 
Fig. 5. Receiver  performance for Example 1 with 50- and 100-percent 

missynchronization. 

g(E) = (1 - E )  + E sin CME + - E sin CME] 

+ a - ’ [ ( l - ~ ) + ~  sin C M E ] + ~ [ E - E  sin cME]. 

Also 

The  complicated  form  of  these  expressions  does  not  allow  a 
qualitative  analysis  of  performance  for  arbitrary  values  of E .  

For a = 1 ,  however, pe = P, = fj, and lj = 1 as must  be  the 
case. A worst-case  analysis  is  undertaken  where E is  set to the 
value 1 ,  representing  the  greatest  amount of missynchroniza- 
tion  in  the  receiver.  Then g(E) = a + a-2  and 

(46) 

Comparison  of (46) with (28) reveals  that  the  completely 
missynchronized  receiver ( E  = 1) has larger  probability  of 
error than  the  suboptimum  (unsynchronized)  detector,  since 
d(1 + a)3/4( 1 + a3) I 1 for 0 < a I 1 .  Also from (47) it 
can be  seen  that for small  values  of a, the  missynchronized 
detector  requires  a  larger SNR boost  than  that  required  by  the 
suboptimum  detector  in  order  for  it  to  perform as well as the 
properly  synchronized  detector. For 50-percent  missynchroni- 

zation ( E  = 1/2) 

3 

and  since d(1 + 0)~ /2 (1  + a2) 5 1 for 0 < a 5 1 , it  is 
clear  that this detector  has  inferior  performance in com- 
parison to the  suboptimum  (unsynchronized)  detector,  yet 
since d(1 + a)2/2(1 + a2) 2 41 + a)3/4(1 + a3) for 0 < 
a 5 1 , the  performance  of  the  50-percent  missynchronized 
detector is, of  course,  better  than  that  of  the  completely 
missynchronized  detector,  with  the  greatest  difference  occur- 
ring as a + 0. (In the  limit,  this  is  equivalent to a  1.5 dB S N R  
difference  between  the  two  missynchronized  detectors.) 

Graphs of pe for 50- and  100-percent  missynchronization 
are  shown  in  Fig. 5. This example  demonstrates  that  achieve- 
ment  of synchronization is important  for  the  proper  perform- 
ance  of  the  optimum  detector. If synchronization  is  difficult  to 
achieve,  it  may  be  more  appropriate to implement  the  simpler 
suboptimum  detector for which  synchronization  is  not  re- 
quired.  The  graphs  of  the  ratios pe/Pe,  pe/P,,  and pe/fje 
shown  in  Fig. 6 for  100-percent  missynchronization  serve to 
further  highlight  this  point. 

III. DETECTION OF A SINUSOID WITH RANDOM PHASE 

The  signal  detection  problem  addressed  in this section  is 
modeled  in  the  conventional way as a  hypothesis  testing 
problem  (see (4)), with 

s&) E 0 



. .  

104 

. .  . 

EEE JOURNAL OF OCEANIC ENGINEERING, VOL. OE-12, NO. 1, JANUARY 1987 

( C = O S . S = i )  a 

0, 
0 

-10 -6 0 6 10 15 30 36 SO 56 
S/N IN dB 

Fig. 6.  Performance  comparisons of optimum, suboptimuum, and 100- 
percent missynchronized  reviewers  for  Example 1 .  

and 8 is a random variable with  pdf Pe(8) that is uniform  over 
[0 ,2n] .  The optimum  detector for (4) and (48), is given  by (8) 
with  (see [9]) 

Derivation of (49) and (50) is based on the  assumption  that 
To T so that  the  integral 

is approximately  independent  of 8. If TO = NT, Nan integer, 
then k(8) is independent of 8, regardless of size of N, provided 
that 

Q w =  Q - 2 M =  0 (52) 

where ( q i }  is the  set of Fourier coefficients  resulting  from an 
exponential Fourier series expansion of the periodic  factor 
l / q ( t ) .  This is due to the  fact  that 

where  the  second integral is directly  proportional  to the sum 

D 

q 2 M  + o-ZM. For  instance, when q( t )  is given  by (21) in 
Example 1 (after  division by (No)) we  have 

c(c+ a)(a - 1) sin nic . . 
- - e-Jh'C 

a n ic 
- 

Clearly q Z M  = Q - 2 M  = 0 whenever 2Mc is a nonzero 
integer.  For q(t) given by (30) in Example 2 (after  division by 
(No)),  we  obtain 

Since the term  in  brackets  never  exceeds 1 or 0 < a I 1 ,  
then q z M  = ~ 7 - 2 ~  becomes  negligibly small for M large 
enough.  Note,  however,  that  when a Q 1, increasingly large 
values  of M are required to make  the  terms Q M  and 4 - 2 ~  
insignificant. 

Equation (49) describes  the  conventional  quadrature corre- 
lator receiver  preceded by the  periodically  time-varying factor 
l / q ( t ) ,  which is synchronized to the cyclostationary  noise 
with intensity q2(t) .  (No). The structure of this detector is 
shown in Fig. 7. This result follows the fact  that (49) can be 
reexpressed in terms of IO(-), the modified  Bessel function. 
That  is: 
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sin 
T 

I 

cos 2a#t 
T 

Fig. 7. Optimum receiver for sinusoidal signals having random phase. 

where 

1 27rMt 
r(t)   dt  

T I’ 
Note  that  the  receiver  need  not  evaluate lo(Ap/(N,)) and 

compare it to y. Since IO( .) is  a  monotonic  function,  the 
receiver need  only  evaluate p 2  and compare it with  a  new 
threshold q2, where q is  the  value of p for  which lo(Ap/(N,)) 
= y. 

The  probability  of  detection error is  given  by [9, p. 2041 

where 

where X and Yare defined in (54). Any q ( f )  for  which q2M = 
(f-2M = 0 will  satisfy  these  conditions. Thus the  factor q ( f )  of 
Example 1 (under  the  symmetric  conditions c = 1/2) satisfies 
the  above  requirements.  The  factor q( t )  of  Example 2 was 
shown to have q k Z M  # 0. However, it can  be  demonstrated 
that  for this case  var { X / e ,  HI 1 and var { Y/B, HI  ) differ  at 
most by a  factor  that  is  proportional to qfZM. Thus,  when M is 
large  enough so that  is  small,  the  above  conditions  will 
hold,  and in fact E{ [ X  - E { X ) ] [  Y - E{  Y}]/e, H I ]  can  be 
shown  to be identically  zero. 

Observe  that  the  integral in (55) is  related to Q(-,  .), the 
tabulated  Marcum Q function: 

Note  that Q(0, b) = e-$/,. 

t h i s  subsection  because so(t) = 0), by defining 
Equation (55) can be expressed  in terms of p q  (Rq = 0 in 

where 1; l( e )  denotes  the  inverse  modified  Bessel  function  (not 
This expression  for P, is  derived  assuming  that P(H1) = the l / ~ o ( . ) ) ,  and pq is given  by 
1/2 ,  and  that 

=var { w e ,  H ~ }  

with  the  additional  constraint  that 

Then 

E{[X-E{WI[Y-E{ Y ) I / ~ ,  H , )  
where Q2 = p q .  

dt = 0 (57) The  suboptimum  detector  for (4) and (48) is  given  by (49) 
and (50) with No(t) replaced by (No) or equivalently q( t )  

sin 4rMt/T 



. .  . .  . 

106 

. ,  . .  / .  . . .  . .  

EEE JOURNAL OF OCEANIC ENGINEERING, VOL. OE-12, NO. 1, JANUARY 1987 

replaced  by 1. Its structure  is  identical to that  shown  in  Fig. 7 
except for replacement  of q( t )  by 1. Thus the  suboptimum 
detector  is  a  quadrature  correlator  receiver  that  generates  the 
statistic ji where 

[ j sin r ( t )  dt] 2 +  [ COS - 2nMt 
r( t )  dt] 

TO TO T 

The  receiver  compares p 2  to the  threshold t2 where ;i is the 
value  of fi  for  which lo(AP/(No)) = y. (Note  that y is  given 
by (50) with h = 1 due to the  assumption P {  HI } = 1/2  and 
q( t )  = 1 .) The  probability  of  detection error is  given by (55) 
with b replaced by 6 and Q2 replaced by a2, where 

Thus 

1 p -_  [ e - 6 2 / 2  +l -Q(Q,  6)]=: 1 [ Q ( O ,  b)-Q(f i ,  @ + I ]  
e -2  

(63) 

where as before, Q( .  , . ) is  the  tabulated  Marcum Q function. 
In order  to  derive (63), it has  been  assumed  that P{ H I }  = 
112, and  var {2/e,  H ~ }  = var { SVe, H ] }  2 a;, and  that 

E { [ 8 - E ( x / f l ,  H , } ] [ p - E {  Y/B, HI}]/O, H I }  

4nMt 
T 

dt E 0.  ( 6 4 )  

If M is  large  enough  that  the  sinusoidal  term in (64) varies 
much  more  rapidly  than q( t ) ,  then  not  only is the  latter 
assumption  very  nearly  satisfied,  but also since 

var {X/& H ~ ]  =- (?) JTo q ( t )  [ 1 +cos  4rMt] dl 

and 

it is clear  that  the  former  assumption  used in the  derivation of 
(63) is  very  nearly  satisfied. In the specific case  when q( t )  is 
given by (21) (after  division  by (No)), then 

and 

47rMt sin 47rMc 
T  4nM 

q( t )  cos - dt=IToIb(l-a) 

Clearly,  whenever c is such  that 2Mc is an integer,  then  the 
above  assumptions  hold  exactly.  (Note  that this does  not 
confine c to the  value 1/2. For instance  if M = 1000, then c 
can be as small as 1/2000.) For the  case  when q( t )  is  given  by 
(30) (after  division by (No)), it is  easily  demonstrated  that 

4nMt 47" 
q(t) sin - d t=  1 q(t)  cos - T TO T 

dt --= 0 

hence,  the  assumptions  leading to (63) are valid  in this 
particular case. 

Equation (63) can be  expressed  in  terms  of p (R = 0 in this 
subsection  because so(t) 3 0) and  the  weighted  distance 
between  signals,  which  with so(t) = 0 becomes 

d4= [ 1 si(t)q(t) dt] 'I2 . 
TO 

Thus, defining 

we  obtain 

where 

In order to be  able to compare  detector  performances, it is 
necessary  to  express (60) in  terms  of p rather  than pq. Since 

( 1  - Rq)Eq 
Pq = (1-R)E 

and in this subsection 

then (59) becomes 

Since Q2 = pq, where pq is given by (66) in  terms  of p, P, 
given by (60) can  now  be  expressed in terms of p. The 
mathematically  complex  form of the  foregoing  equations  in 
which Marcum Q functions  and  inverses  of  a  Bessel  function 
appear,  make it difficult to arrive  at  a  closed  form  expression 
for  the S N R  boost  that the suboptimum  detector needs in  order 
to achieve  a  performance  level  equal  to  that  of  the  optimum 
detector.  Consequently, two examples are worked  out  where 
performance  comparisons are investigated  for  specific  mathe- 
matical  forms  of q(t) .  If approximations  to  a  Bessel  function 
for  both  small  and  large  arguments are used, it is  possible  to 
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obtain  approximations to P, and p,. This is discussed  in 
Appendix  A. In Appendix By bounds on P, and p, are 
presented;  however, their usefulness is diminished by the fact 
that  the  bounds  cannot be used to compare F, to P,. 

Example 3: 
The on-off signaling  scheme of  Example 1 is reconsidered 

here  assuming  that  the  signals to be  detected are given  by (48) 
and  the  noise  obeys the assumptions  stated in  Example 1 with c 
= 1/2. f l ( p )  and Q 2  can  be  easily  expressed  in  terms of the 
parameter a (see (67)): 

(1 + a)2 
4a 

f p = p  -. 
Thus,  from (60): 

+ l - Q ( J * ,  

It is simple  to  demonstrate  that for this symmetric  periodic 
noise  intensity factor No(t) (i.e., c = 1/2), the  assumptions 
made  in  the  derivation of (55) (i.e., (57)) hold. Furthermore, 
these  assumptions hold for other  values of cy 0 < c I 1, as 
long as 2Mc is an integer. 

The  performance of the suboptimum  detector  is  obtained by 
evaluating f&) and 0, that  is 

so that (see (65)) 

The  discussion  following (64) indicates  that  the  assumptions 
made  in the derivation of p, are satisfied  in this particular 
example, hence, (69) and (68) can now be  compared.  Fig. 8 
illustrates the differences in performance  between  the  opti- 
mum  and the  suboptimum  detectors in terms of the SNR p for 
specific  values  of  the parameter a. 

Example 4: 

The on-off signaling  scheme of Example 1 is  reconsidered 
here  assuming  that  the  signals  to  be  detected are given  by (48) 

and  the  noise  obeys the assumptions  stated  in  Example 2. Prior 
to  developing  the  expressions for P, and I?,, it  is  worthwhile 
checking  whether or not the  assumptions  made  in  deriving P, 
and p, hold. First, the  assumption  made  in (51) is analyzed  by 
evaluating the following  integral: 

where 

U =  
a -  1 

1+a+2& ' 

Observe  that u2 decreases monotonically  from 1 to 0 as a 
increases from 0 to 1. Thus for 0 < a I 1, 0 I u2 < 1 ,  
implying  that ( u Z ) ~  Q 1 for Mlarge enough. Thus, for A4 such 
that u~~ 4 1, the second  term  in (70) can be ignored.  Second, 
the  requirement  var { N e ,  HI } = var { Y/0, Hl } is also 
satisfied  for large values of M since 

var { Y/0, HI} = (No)'To'  [ ""1 [ 1 + ( - ~ ) ~ ~ ] .  (71) 
2 1 - v 2  

The  requirement  that E { [ X  - E ( X } ] [  Y - E( Y } ] / 0 ,  Hl} 
= 0 can be easily  shown to be  satisfied  exactly. Thus, 
assuming  that M is large enough so that  the  equations in (71) 
can  be  considered to be  nearly equal, use  of (66) and (67) in 
(60) yields 

The  assumptions  made in the  derivation of (63) hold  here  as 
demonstrated  in  the  discussion  following (64). Furthermore, 
since 

and f i 2  = p, it is clear (see equations  preceding (69)) that the 
expression for p, in this particular  example is identical to that 
derived for Example 3 (see (69)). In Fig. 9 graphs of P, and p, 
are presented  in  terms of the SNR p for  specific  values of the 
parameter a, thus  illustrating  differences  in  performance 
between  the  optimum  and  suboptimum detectors for  the signal 
specified in (48). 
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Fig. 8.  Receiver  performance  for  Example 3.  

Fig. 9. Receiver  performance  for  Example 4. 

IV. DETECTION OF A SINUSOID WITH RANDOM A M P L ~ E  AND The  optimum  detector for (4) (with  modifications  given  by 
PHASE (73) and (74)) is given  by (8) with [9, p. 2061 

The  signal  detection  problem  addressed  in this section  is 
modeled  in  the  conventional  way as a  hypothesis  testing 

~ [ { ~ ( t ) ) ]  = - 1 1 problem  (see (4)) with 2~ o -- 

1 2.x m 1 

where 8 is  a  uniformly  distributed  random  variable  over [0, 1 
24 ,  and @ is a Rayleigh  random  variable  (independent of e), 2(&) -m To 4(f) dfPQ(A) d4) 
with 

y = x  exp I- J~ s As2(t, a)  

A 
&(A)=-  e-A2/2Aou(A). 

4 
(76) 

(74) The  structure of this receiver is shown  in  Fig. 10. 
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Fig. 10. Optimum receiver  for  sinusoidal signals having  random  amplitude 
and  random phase. 

(77) 

is not a  function  of 8. This  type of assumption  was  stated  in 
(51), and  investigated  for  two  different  functional  forms  for 
q(t). Observe  that  if  the  conditions  stated  in  (52)  are  satisfied, 
then  (77)  is  independent of 0 regardless of the  length To. A 
more  compact  notation  for  (73) is possible  using  the  quantity p 
defined  by  (54).  Observing  that  (75)  is just (49) integrated 
over  the pdf  of (2, it  is  simple to show  that 

(79) 

where K is  given by (77).  Performance  evaluation  for this 
detector  is  based on identical  assumptions  made  in  the 
derivation  of P, in  the  previous  section  (with A fixed). In 
order  to  express P, as a  function of S N R ,  we  must realize  that 
since  the  amplitude  of  the  sinusoid  is  random,  the SNR is 
random.  We  define  an  average SNR, using  the  definition of 
SNR and (74). We  obtain 

and  assuming  again P{ H I }  = 1/2 

Defining 

we can  express  (81) as 

and for  large  values  of p (i.e.,  large SNR) 

This  shows  that  the  performance  of  this  quadrature  correla- 
tor  receiver  essentially  depends on the  inverse  of  the  average 
SNR, whereas  in  the two previous  sections,  the  detector 
performance  depends  on SNR exponentially.  The  suboptimum 
detector  for  (4)  (with  modification  given by  (73)  and  (74))  is 
also  a  quadrature  correlator  receiver  given by (75)  and  (76), 
with 4( t )  replaced by 1. The  structure  of  this  receiver  is 
identical  to  that  shown  in  Fig.  10  except  for  replacement of 
q(t) by 1. An expression  similar  to  (78)  can  be  derived  for  this 
receiver and is  identical  to  (78) in form  except  that in place  of 
p ,  we  have p” given by (61) and K is  replaced  with i? where i? 
is  given  by (77)  with q(t) = 1. Performance  evaluation  for 
this  suboptimum  detector  is  based  on  identical  assumptions 
made  in  the  derivation  of Be in  the  previous  section  (with A 
fixed).  We  obtain as a  function of p 

p+ 1 

where 
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Evaluation of P, and p, requires specific  assumptions  about 
the  noise  periodic  factor No@). 

Example 5: 

The on-off signaling  scheme of Example 1 is reconsidered 
here  assuming  that the signals to be  detected are given  by (73) 
(with  added  constraint  given by (74)), and  the  noise  obeys  the 
assumptions  stated  in  Example  1  with c = 1/2. It  is  simple to 
demonstrate  here  that K (see (77)) is not a function  of 8.  
Furthermore, (81)  becomes 

Also, using  (82)  and (83), the performance of the  subopti- 
mum detector  becomes 

When the same  on-off  signaling  scheme is used  in  the 
presence  of  noise  with characteristics given  in  Example 2, the 
performance of the  suboptimum  detector  is  identical  to  that 
when the noise  obeys the assumptions  stated in  Example 1. 
Hence, (84) specifies  the  performance of this suboptimum 
detector.  The  optimum  detector has performance  given by 

. -  . .  . .  . . . ,  
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Performance  comparisons for these detectors are shown  in 
Figs.  11  and 12. 

v. DISCUSSION OF RESULTS 

The  mathematical  results  as  well as the graphs  shown for the 
specific  examples  considered  reveal  several  items of interest 
which are now discussed. 

The  behavior of detector  probability of error as a function  of 
S N R  is similar to that  encountered  when the additive  noise  is 
stationary  white  Gaussian.  That is, the  decay  in  probability of 
error for the detector of sure signals and  of a sinusoid  with 
random  phase,  as a function  of SNR is exponential.  For  the 
detection of a sinusoid  having  random  amplitude  and  phase, 
probability of error decays  only  as the inverse of SNR. These 
observations are not surprising for the  optimum  detectors 
presented  because  these structures stationarize  the  noise  as 

part of the  processing of the received  signal. It is somewhat 
surprising, however, that the  above  observations are valid for 
the  suboptimum detectors under  consideration.  Closer  scrutiny 
of (for  example)  (18), reveals, however,  that the observed 
behavior of suboptimum detectors as a function of SNR does 
not  always occur. In (18), p, depends on S N R  and on the 
parameter J. If J = 1  (as is the case in all examples  presented) 
we have  the  typical  exponential drop of error probability as a 
function of SNR. If, however, J %- 1 (which  could  occur for 
instance if [sl(t) - so(t)12 and q(t) are highly “correlated”), 
then  the  decay of p, as a function of S N R  becomes  much 
slower. 

It  is  well known that detectors for sure signals and detectors 
for sinusoidal  signals  with  random  phase can be  made to 
operate  equally by increasing the input SNR to the latter by an 
appropriate  amount.  When P, is large (0.05 s P, s 0.5), the 
latter  detector requires approximately 3 dJ3 higher  input S N R  
than the former detector. For small  values of P, (P, < 10 -4), 

the two detectors operate equally with about the same  input 
SNR. Put differently, at  high  input SNR’s, the lack of  phase 
knowledge  affects  the  optimum  detector  performance  negligi- 
bly.  Figs.  1  and 7 show that the same  statement  holds true for 
detection in additive cyclostationary  white  noise. This is not 
surprising  given the facts highlighted  in  the  previous  para- 
graph.  For instance, looking at Figs. 3 and 9, we  see  about a 
2.5-dB-input S N R  difference between  the  optimum  detectors 
at P, = lo-’ and  about 0.5-dB input S N R  difference at P, = 
10 -6. 

The  performance of the suboptimum  detector can some- 
times  be  comparable to that  of its optimum  counterpart. 
Depending  upon the problem  under  consideration, the differ- 
ence in performance  between the two detectors can  be 
negligible. For such cases, nothing is to be  gained  by  building 
an  optimum  synchronized detector. However, before  deciding 
whether  an  optimum  (synchronized) or a suboptimum  (unsyn- 
chronized)  detector  is  to be built, full knowledge of the q(t) 
function is required  because, as the results  demonstrate, 
detector  performance is not  only  dependent on noise strength, 
but also noise “shape” (i.e., q(t)). As demonstrated by (19), 
the  parameter D can be used to determine, for sure si& 
detection  problems,  the  level of suboptimality of the unsyn- 
chronized  detector in terms of input SNR. Furthermore, if an 
optimum detector is to be  built,  ability to properly  synchronize 
it  must  be fully accounted for. As Example  1 -(continued) 
demonstrates,  an  optimum  detector  that  is  improperly syn- 
chronized can exhibit a performance  (in  terms of P, as a 
function of  input S N R )  that is comparable or worse  than  the 
suboptimum  detector  that  requires  no  synchronization. ( S e e  
also Fig. 6) .  It is therefore apparent  that the added  complexity 
of  building an  optimum  detector  might  yield  very little in 
return (in terms of performance) if synchronization  cannot be 
adequately  maintained. 

It is apparent  from  Figs. 4, 9, and  12  that  the  level of 
suboptimality  exhibited by the suboptimum  detector  decreases 
as the “randomness” in the signal to be detected  increases. 
That is, as  the  number of random  parameters  in  the  signal 
increases,  the difference in performance  between  the  optimum 
and its corresponding  suboptimum  detector at fixed S N R  
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Fig. 11.  Receiver  performance  for  Example 5 with a symmetric  noise 
intensity factor given in Example I ,  
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Fig. 12. Receiver performance for  Example 5 with noise intensity factor 
given in  Example 2. 
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decreases. This result is  to be expected  since  the  optimum 
detector is synchronized to the  noise  only. As the  signal 
randomness  increases (i.e., as phase or amplitude  and  phase 
become  random),  the  optimum  detector  is  Iess  able to exploit 
low-noise  intervals  because  it  does  not  have as much  informa- 
tion  about  the signal in  those  low-noise  intervals.  Note  also 
that  the  rate at which the  optimum  detection  problem  becomes 
singular (as the  parameter a in  the  examples  approaches zero, 
meaning  that  the  noise  intensity  approaches  zero  over  specific 
time  spans)  decreases as the  signal  randomness  increases.  This 

is  to  be  expected  in  light of the  aforementioned  situation of the 
optimum  detector’s  being  less  able to exploit  low-noise 
intervals as the  signal  randomness  increases. A similar 
observation  involving  optimum and  suboptimum  detector 
analyses and comparisons  has  been  reported  in [IO]. The 
authors  study  the  problem  of  detecting  a  Gaussian  process 
(propagating  underwater) by a  sensor  array  that is steered on 
target.  Assuming long observation  times,  low SNR conditions, 
and equal SNR at each  sensor,  they  show  that the optimum 
detector  must add all signals  collected by the  sensors  and 
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process  them  with  a filter-squarer-integrator (FSI)  receiver. 
The  performance  of this receiver  is  not  specified  in  terms of 
probability  of error, but  rather  in  terms of SNR at  the  output of 
the  detector.  When  the S N R  is not  the  same  at  each  sensor,  the 
FSI  receiver  is  proposed  and  studied as a  suboptimum 
detector.  The  optimum  detector  for  the case in  which  the SNR 
is  not  the  same  at  each  sensor is still a  summer  followed by  an 
FSI receiver,  but prior to  summing,  channel  noise  equalization 
(which  requires  noise  synchronization  in  the  spatial  dimen- 
sion)  is  necessary  by  attenuating  noisy  channels  and  amplify- 
ing  quiet  ones.  That is, a  synchronized  detector  can  vastly 
outperform  an  unsynchronized  detector,  when  the  noise 
intensity  shows strong variations  that  bring  the  noise  intensity 
to very  low  levels  over  nonnegligible  intervals  of  time.  The 
authors  of [lo] analyze  other  suboptimum  detection  schemes 
in  which  they  show  that  small  performance  loss can be 
achieved  with  substantial  system  simplification  when  filtering 
operations  in  the  FSI  receiver are simplified or eliminated. 

VI. CONCLUSIONS 
In this paper,  optimum  and  suboptimum  receivers  for 

detecting sure signals,  sinusoids  with  random  phase, and 
sinusoids  with  random  amplitude  and  phase  in  additive  white 
Gaussian  nonstationary  noise are analyzed.  Suboptimum 
detectors are designed  according  to  a  specific  methodology, as 
described in Section  I.  The  performance  of  these  suboptimum 
detectors  is  compared  to  their  optimum  counterparts,  which, as 
shown  in  Sections 11, 111, and IV, are very  similar  in  structure 
to conventional  detectors  for  signals  in  additive  stationary 
WGN,  except  that  a  noise  stationarization  operation  precedes 
the  optimum  detectors.  It  is  demonstrated  that  performance 
differences  between  optimum  and  suboptimum  detectors  can 
be  negligible  but  also  can  be  substantial.  These  differences  in 
performance are a function  of  the  signal  being  detected  and 
the  intensity  time-variations  exhibited by the  nonstationary 
noise. In cases  of  negligible  performance  difference,  nothing 
is  gained by implementing  the  (more  complex)  optimum 
detector  that  must  be  synchronized  to  the  noise  intensity 
variations. In fact, it is  demonstrated  in  Section 11 that  an 
improperly  synchronized  (otherwise  optimum)  detector,  can 
exhibit  inferior  performance  compared  with  the  corresponding 
suboptimum  detector  that  does  not  require  synchronization. 
The  methodology  developed for analyzing  detection  problems 
for known or partially known signals,  is  applicable  not just to 
cyclostationary  noise,  but also to  other  nonstationary  white 
Gaussian  noises. 

h P E N D I X  A 

APPROXIMATIONS TO P, DERIVED IN SECTION 111 

From  Section III (equation (60)) we  have  the  closed-form 
expression  for P,, namely 

where (see (67)) 

Since  for x % 1 

we  see  that 

if dQ/2di is  large.  (Observe  that  if  we  are  attempting to 
obtam Zi l (ey)  where y is large, then, we  must  solve  the 
nonlinear equation 

ex 1 eY= - * x - -  In 27rx=y. 
& 2 

If for  instance y = 20, then x = 22.5 and we see that x = y 
(i.e., we  commit  a  12-percent error here by approximating x 
by y) .  

Thus  for d & 3 / 2 d i  large 

Observe  furthermore  that 

so that  the  argument of the  Bessel  function  appearing in (Al) is 
always  large so that  use  of  (A4)  can now  be  made.  We  obtain 

For fib) large,  the  dominant  term  in  the  integrand  is  the 
exponential so that  the  behavior  of  the  “tails”  of  the  integrand 
is  very  much  like  that  of  a  Gaussian  density  of  unit  variance. 
Thus 

and  using  (A3) as well as (A6), we  obtain 
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It must be  pointed  out  that  the  ratio d:,,p/df can  be  large is  the  amount  by  which  the SNR for  the  suboptimum  receiver 
even  though p is  not  large. For instance,  if  one  uses  the  results must  be  increased  for  it to have  the Same performance as the 
of Example 3, it  is  found  that optimum  receiver.  Clearly, from (A14), 

so that  for small values  of a, the  ratio  can  be  very  large.  (For p 
= 0.1 and a = 0.003, this ratio  equals 8.38.) 

Similar  analysis  can  be  applied to pe, where pe is  given by 
(Al) withfl(p) replaced by h ( p )  ahd il replaced by fl, where 

and using the  CBS  inequality,  it is simple to show  that D 2 1 .  
Furthermore (A15) is  identical to the  SNR  boost  result  for  the 
problem  discussed in Section II. 

The  results of Example 3 yield 

d 2  so that  large S N R  boosts are required  when  the  parameter II is 
Q2='p. 

d: 
(A1O) small. This result  however  is  valid  only  for  large SNR. 

Another type of approximation is possible  using 
If p is  very large, then 1; l(ep'z) 2: p/2 and 

&(x) = 1 + (x/2)2 ( A W  

(A1 which is valid for small  values of x (typically 0 5 x < 1.4). 
Returning to (A2) and  assuming  that 

Furthermore 
d: , ,pgl  

h ( P ) O = -  ( A W  2df  4di 
then 

so that  if p is  large  enough  to  guarantee  that 

then  the  argument of the Bessel  function  appearing  in the 
equation  for Pe is  always  large sothat use  of (A4) yields = 2  d*=2 @. (A18) 

+ ~ l ( ~ )  l/;e -(u-o)2/2 - In (A18) we  have  further used the  approximation eY = 1 + y 
Pe=- [ exp [ - 
Using  similar  arguments  to  those'used in the  development  of 

- 1  fi(P) 
2 fory + 1 .  Thus 

(A8), we  have (A191 

Fez- 2 ' [exp [-$] +(2)1/4 and  furthermore 

Using  the  approximations (AS) and (A13), it  appears  that Pe is  small  also  due to the  assumption  of  equation (A17). Since 
= pe provided  that (Al) can  be  expressed  in the form 

where  the S N R  boost D, that  is 

D = -  PSO 

P O  we  can  instead  work  with  an  approximation of this  expression, 
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namely Thus 

Using (A18), we obtain  the  approximation 

where  from  (A3) 

It  can thus  be  concluded  that for Q2/2 6 1 

c 
Similar analysis  applied to Fey assuming p 6 1, yields  (from 

049)) 

If we  assume d:/dZ, = 1 (this would allow one to only 
require small S N R  p in the foregoing  analysis), so that 

(A221 

Observe  from the results of  Example 3 that d f / d i  = 1. This 
latest  assumption is therefore not  unreasonable, and, further- 
more, it shows  that pe = P, if Q2 = f i 2  or equivalently,  if 

From (A23)  we  once again obtain  the S N R  boost  factor D, 
namely 

Using  once  again the results of Example  3,  we  obtain 

(a + 1)2 D = -  - 
4a 

as before, and  it is valid for small  values  of S N R  as well. 

Furthermore APPENDIX B 
BOUNDS ON P, AND p, DERIVED IN SECTION III 

(A211  From Section III, both P, and pe take  on the general form 

so that  if p is small enough for the ratio in (A21) to be small, Pierror) =- uexp -- 
then 2 [ j: u2i R') Io(8u) du] . 

Io(&) dv 1 
Since lo@) is a monotonic  increasing  function,  we  have 
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and  because lo(0) = 1 ,  we have 

Thus 

Observe  that  this  last  upper  bound  becomes  useless  for 

It turns out  that  the  above  lower  bound on P{error} takes on 
a  particularly  simple  form  when  applied to P,. From (A2) and 
(A31 

so that 

and 
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