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Use of the  Kurtosis  Statistic  in  the  Frequency Domain as an 
Aid in Detecting Random Signals 

Absmact-Power  spectral  density  estimation is often  employed  as  a 
method  for  signal  ,detection. For signals  which  occur  randomly,  a 
frequency  domain  kurtosis  estimate  supplements  the  power  spectral 
density  estimate  and, in some  cases,  can  be.employed  to  detect  their 
presence. This has  been  verified  from  experiments  vith  real  data of 
randomly  occurring  signals.  In  order  to  better  understand  the  detec- 
tion of randomly  occurring  signals,  sinusoidal  and  narrow-band 
Gaussian  signals  are  considered,  which  when  modeled  to  represent  a 
fading or multipath  environment,  are  received as nowGaussian in 
terms of a  frequency  domain  kurtosis  estimate.  Several  fading  and 
multipath  propagation  probability  density  distributions of practical 
interest  are  considered,  including  Rayleigh  and  log-normal.  The 
model  is  generalized  to  handle  transient  and  frequency  modulated 
signals by taking  into  account  the  probability of the  signal being in a 
specific  frequency  range  over  the  total  data  interval.  It is shown  that 
this  model  produces  kurtosis  values  consistent  with  real  data  meas- 
urements. 

The  ability of the  power  spectral  density  estimate  and  the  frequency 
domain  kurtosis  estimate  to  detect  randomly occurring signals,  gen- 
erated  from  the  model, is compared  using  the  deflection  criterion.  It is 
shown,  for  the  cases  considered,  that  over  a  large  range of conditions, 
the  power  spectral  density  estimate is a  better  statistic  based on the 
deflection  criterion.  However,  there is a  small  range of conditions 
over  which  it  appears  that  the  frequency  domain  kurtosis  estimate  has 
an  advantage.  The  real  data  that  initiated  this  analytical  investigation 
are  also  presented. 

I 
I. INTRODUCTION 

N MAYY IMPORTANT  signal  processing  applications, 
including  underwater  acoustics: an estimate  of  the  power 

spectral  density  (PSD)  of  the  received  data is often  employed 
for signal detection.  The  data are  first  transformed  into  the 
freguency  domain by utilizing the discrete Fourier  transform 
(DFT),  which can be efficiently  executed by an  algorithm 
called the  fast  Fourier  transform  (FFT).  At  this  point,  the 
data are  considered to be in  the  frequency  domain  and  an 
estimate of the PSD  can be easily obtairied.  Often,  this  esti- 
mate  consists of  averaging  together a  sufficient  number  of 
individual FFT  spectrums or periodogams  to  ensure  con- 
sistent  results [ I ] . 

The PSD is essentially  a  sum  of  the  estimates of the  second- 
order  moments  for  both  the real and  imaginary parts of each 
frequency  component in the  frequency  domain. If the  fre- 
quency  domain signals  are randomly  occurring  and  not  Gaussian 
distributed,  then higher  order moments of the  complex  fre- 
quency  components  may  contain  additional  information  that 
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could  be  utilized in signal processing. The objective of  this 
paper is to compare  the PSD technique  for signal processing 
with  a new method  which  computes  the  frequency  domain 
kurtosis (FDK) [2] for  the real and imaginary parts of the 
complex  frequency  components.  Kurtosis is defined  as  a  ratio 
of a  fourth-order  central  moment  to  the  square  of  a  second- 
order  central  moment. 

Using the  Neyman-Pearson theory in the  time  domain, 
Ferguson [3] , has  shown  that  kurtosis is a locally optimum 
detection  statistic  under  certain  conditions.  The  reader is 
referred to  Ferguson's  work for  the  details;  however,  it can 
be simply said that  it is concerned  with  detecting  outliers 
from an otherwise  Gaussian  sample.  The  outliers  are  equivalent 
to  the  randomly  occurring signal that is to be detected. By 
extending this idea to  the  frequency  domain  and  based on 
analyses of real underwater  acoustics  data, we have found 
conditions  under  which  the  FDK  indicates  the  presence  of 
randomly  occurring  signals [2] , [4].  Both  time  and  frequency 
domain  analyses  of the real data have  been performed. By 
setting  the  frequency  parameter  equal  to  zero  in  a  DFT,  it 
can be shown  that  the  time  domain is a special  case  of the 
frequency  domain. Analogous results should  also  hold  in the 
spatial  domain;  however, we  will only  consider  the  frequency 
domain  here.  In  addition,  the  results  are  applicable to  both 
active and passive sonar,  although we  will concentrate  on  the 
latter  application  rather  than  the  former.  The  objective  of  this 
paper is to  analytically  determine  the  potential  for  exploiting 
kurtosis  estimation in the  frequency  domain  to  indicate  the 
presence of randomly  occurring signals. To accomplish  this, 
we introduce  a  model  for  the received  data  which contains 
the  effects  of  amplitude  and  phase  fluctuation  of  the signal. 
In  addition,  to be more  realistic,  transient  and  frequency 
modulation  effects of the  signal  are  also incorporated  into  the 
model.  References  which  support  this  model will be  cited  in 
the  text. To justify  the  results  presented  here,  the PSD and 
FDK  estimates will  be compared in the  last  section using the 
real underwater  acoustic  data that  initiated  this  work. How- 
ever,  subsequent  data have also supported  the  analytical  work 
presented  here. 

These  results  should also apply in other fields where  the 
detection of a  randomly  occurring  signal is important.  For 
example,  the  detection of  variable  stars in astronomy  may 
benefit  from  this  approach. 

11. FREQUENCY DOMAIN KURTOSIS 
tistics  Program). 
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interval  between  successive  observations  of the process. We 
will use the same  definition  for  the DFT, as  given  in [5] . 
The  DFT is defined as 

1M- 1 

x(q, F ~ )  = Tqix(i, 4 )  exp (-jFpi) (1) 
i= 0 

where  the  symbols  are  identified as 

j = a .  

Fp  = 27rfph is the  pth radian frequency  component, p = 
0, 1, . * a ,  M - 1 ,  and f p  = p/Mh Hz.  For  simplicity, we shall 
resume  the  window  weights  equal one, Le., W i  = 1 ,  for all i, 
a n d h = l .  

The power spectrum  estimate is defined  as 

n 

V p )  = (1/n> X ( q ,  Fp)x*(q, Fp) (2 )  
q=1  

where  the  asterisk  represents  complex  conjugate.  The variance 
of the  periodogram  does  not go to zero as A4 + -, and  there- 
fore  the  periodogram is not  a  consistent  estimate of the PSD 
151. In  the PSD  estimate  considered  here, n nonoverlapped 
DFT segments  are  averaged to  ensure  that  each  frequency 
component  represents  a  consistent PSD estimate [5] . Thus 
( 2 )  is an  asymptotically  unbiased  estimate  of  the  power 
spectral  density [5] . 

The  FDK  estimate was  discussed in terms of a  detection 
problem  in [6] . The  main  concern  here is to  determine  the 
sensitivity  of the PSD and  FDK  estimates to  randomly  occur- 
ring signals, assuming a  sufficient  number  of DFT segments 
is available. The  FDK  represents  a  measure  for  the  probability 
distribution over a time  interval  consisting  of  many DFT seg- 
ments. Many of  the  arctic segments,  which  will  be  discussed  in 
the last  section,  showed  highly  dynamic  frequency  components. 
This was due  to  the highly  dynamic  nature  of ice sounds. 
These  dynamic  components  were easily descerned  using a 
spectrogram.  The  advantages of the  DFK  for  estimating  the 
statistical  beha\lor  of ice sounds over the  spectro, Gram are 
that an operator is not needed  and that  it  produces a quantita- 
tive measure of  the probabiIity  distribution.  This measure  can 
also  be  used to distinguish stationary  sinusoids and  Gaussian 
signals from ice sounds. 

It should also  be pointed  out  that  overlapped  segments 
have  also  been studied  to  reduce  the variance  in the PSD 
estimate  for  another  application [ 7 ] ,  but t h s  technique 
will not be treated  here. 

The  FDK is defined  separately  for  the real and imaginary 
parts of (1). Only  the results for  the real part will be  discussed 
here.  The imaginary part derivation i s  identical,  In  practice, 
both  parts  are  computed, since  each  can contribute  informa- 
tion,  and  they can be combined  into  one  algorithm, if desired. 

References [ 2 ]  and [4] discuss an analysis  using the FDK 
method  for  arctic  under-ice  ambient noise data.  For  a Gaussian 
distribution,  kurtosis will have a value around 3 within  some 
confidence  bound  determined  by  the  number of samples  used 

in the  estimate [ 8 ] .  For randomly  occurring  signals that 
produce  noncaussian  distributions,  the  kurtosis  estimate 
can be less than 3 or  it can  have a value much  greater.  Several 
cases are  examined in the paper to  demonstrate  the range  of 
kurtosis values for various situations. 

Techniques  for  optimally processing  signals contaminated 
by under-ice  ambient  noise as  well  as other noise  environ- 
ments  are  presented in [9] and [IO] . 

The  FDK is defined  by  taking the  expected value  of the 
fourth-order  central  moment  and  the  square  of  the  expected 
value of the  second-order  central  moment  separately,  and 
then  forming  the  ratio.  The  result of this  operation  is 

K(Fp)=E{[X(q,F,)14}/IE[(X(q,F,))21)2. (3) 

Before  proceeding  further, we need to define  a  model 
for  the received data. Our goal is to  compare  the  FDK  and 
PSD estimates  under  some  conditions  which  are  known to 
occur in underwater  acoustic  detection  problems,  but  have 
not  been  explicitly  evaluated in this  way  before.  The  model 
we employ assumes that  the  transmitted  or  radiated signal is 
acted  upon  multiplicatively  by  the  medium  which  causes 
amplitude  modulation  and  frequency spreading to  occur. 
This is obviously not  the  most general model  possible,  but 
it is adequate  to answer  some important  sonar design ques- 
tions. 

The  input, x(i ,  q),  will be a  zero-mean  process  which is 
composed  of an additive mixture of signal  and  noise of  the 
form 

x( i ,  4 )  = w ,  4)  + m(i, qMi, 4 )  (4) 

where m(i, q )  modulates  the signal and will either  represent 
the  effects of the propagation  medium  or  reflect  a  physical 
characteristic of the  transmitted  or  radiated signal s(i, q) .  
The  components N(i,  qj and s(i, q )  are  zero-mean  stationary 
processes and N(i ,  q ) ,  m(i, q )  and s(i, q) ,  will be  assumed to  
be  mutually  independent  from  each  other.  For  the  particular 
choices  of m(i, q )  and s(i, q )  given  in the  text, x( i ,  q )  will 
be stationary  in  the wide  sense. 

Our  model  for  the  fading received  signal m(i, q)s(i, q)  
assumes that  the  total  effects of the  amplitude  fluctuations 
due to  multipath  interference or to  nonstationarities of the 
source, receiver, or of the  medium can  be  simply  included 
in the multiplicative  function m(i, q ) .  On  the  other  hand, 
the phase fluctuations of the signal will be  contained in the 
function s(i, q )  itself.  This  approach  applies to sound  propagat- 
ing in the ocean [ l  11 and to electromagnetic  communication 
systems  [12] . Later, we will generalize  this model  to  include 
transient  and  frequency  modulated signals. 

The  temporal  statistical  effects of the  multiplicative  term 
and  the  frequency  modulation  term,  to be introduced.later, 
were  considered  in  a  different  setting  than  here, in [13] , and 
found  to cause the  resultant  data  measured over a  time  interval 
to be non-Gaussian. We have  also found  this  to be the case 
based on  the  FDK. 

Substituting (4) into (1) and (2) and  taking  the  expected 
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value, we obtain  the result for  the PSD as follows: 

i1=0  i2=0 

- exp (-jFp(il - i2)) + (1/M) 

M- 1 fM- 1 

where we have defined the  components 

and 

where we have defined the  operators 

The  FDK  estimate is defined as 

I t  was proven in [8] that  a  kurtosis  estimate as given in 
(7) is an asymptotically (as n + -) unbiased estimate of the 
kurtosis, if the  distribution is Gaussian. In practice,  the  true 

value of the  FDK  estimate can only  be  approached  asymptoti- 
cally. We will onl}’ be  concerned  with examining the  analytical 
properties of the  FDK as defined in (3). 

It was proven in  [6]  that  the variance of  the  FDK  estimate 
does not  depend on the discrete Fourier  transform size M. But, 
the variance does decrease with increasing n [ 6 ]  . Therefore,  the 
real data comparison  of the PSD and  FDK  estimates,  to be 
presented  in  Section  V, will be based on (2) and (7), respec- 
tively, with sufficiently large to ensure consistent results. 
In  addition,  the variance of  both (2) and (7): calculated  assum- 
ing independent  and identically distributed (i.i.d .) Gaussian 
statistics, have been  shown to  approach  zero  proportionally 
with I / n  as n + -; for  example, see [ 5 ]  and [8 ]  ,respectively. 
For  the  theoretical results  of the paper the  FDK  and PSD are 
obtained  from (3) and (5) ,  respectively. 

111. NOISE  CONSIDERATIONS 
Let s(i, q )  = 0 and assume that  the noise samples  are 

identically distributed  and statistically independent.  Then, 
as M approaches -, K(Fp)  approaches 3 for each p and  for 
any  probability  distribution  function of lV(i, 4). The proof 
of this  result can be obtained by defining R x ( i l  - i2) = 
RI\r6ili2, where h i l i 2  is the  Kronecker delta function:  ex- 
panding the  first term of (6a) and letting M become large. 
This  result suggests that as M + - for  independent samples 
at  the  input,  the  output  probability  distribution  function 
of the  DFT will approach  a Gaussian probability  distribution 
independent of the  input  probability  distribution as measured 
by the  FDK. 

Let s(i, 1) = 0, and assume that  the noise samples  are 
temporally  dependent  but Gaussian distributed.  Then, based 
on (3): the  FDK equals 3. The  proof of this result is straight- 
forward. However,  .the result suggests that  the  modulation 
parameter of the signal is important in obtaining non-Gauss- 
ian output  statistics, Le., K(Fp)  # 3. 

Hereafter, we shall assume that  the  input noise is inde- 
pendent  and identically distributed  and Gaussian, with PSD 
Rnr. The real part of the noise PSD is: then, RIv/2.  

IV. SLOWLY FADING SIGNAL 

Signal level fluctuations have been measured in underwater 
acoustic propagation studies  [14]  -[18]. In some cases, the 
received signal level has been measured  to  fluctuate over a 
period of seconds as much as 50 dB  [18] . For  different 
experimental trials, the  actual  amplitude  probability  distribu- 
tion  function  estimate  for a purely  sinusoidal transmitted 
signal, however, was not  exactly  repeated,  although  it was 
close to  Rayleigh in some  trails and Gaussian in others [I51 , 
[16]  , [ 181 . Reference [ 191 presents  data  that  shows  that  the 
amplitude  fluctuations can follow  a Rayleigh or log-normal 
probability  distribution  depending  upon  the propagation path. 
In addition,  there is a  much slower fluctuation, on the  order 
of 10 min or  more, superimposed on those  “faster”  fluctua- 
tions [ 141 , [ 171 . A  summary of detection  problems arising 
from signals propagating in the ocean can be  found in [20] 
Also, the  effects of fluctuation  on  the  sonar  equation was 
discussed in [21] . Many of the references cited above used 
kurtosis  and  other  statistical measures to describe fluctuation. 
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For  the rest  of  the  paper we will only  consider  cases in 
which  the  fluctuations are  slow with respect to  the  data seg- 
ment Mh,  but may  be  considered  changing  according to a 
probability  law  over  the  total  detection  interval nMh. These 
cases  are supported by the  measured  fluctuations  reported 
in the references  cited  above, and  from  practical  limitations 
of  implementing  large  DFT’s. 

To summarize, if m(i, q )  is slowly  changing  with  respect 
to  Mh, or  equivalent to  the length  of  the  DFT,  but changing 
according to a  probability  law  over  the  detection  interval, 
then we may  approximate  the  fluctuation  to  occur  after  each 
segment  as m(i, q )  = m(q) and,  therefore, we  can  rewrite 
(3) as  follows: 

K(Fp)= (3 + 6A1 + FA2)/(1 (8) 

where  we  have  defined  the  parameters 

A1 =E(m2>(l/n/r>oP2{R2(i, - i 2 ) } / R ~ / 2  

A2 = (E(m2))2(1 /~u2)o~4  {E[s( i , ,q )~( i2 ,  4 )  

- s(i3, q)S(i4,4)1 } / ( R N / ~ ) ~  

F = E ( ~ z ~ ) / ( E ( ~ ~ ) ) ~ .  

Also, m(q) will be  assumed independent, i.e., 

E[m(q,)m(qz)l 

= I  E[m2(q1)1 7 41 =q2 

E[m(qi)lE[m(q2)l  3 91 + q 2 -  

A .  Sinusoidal Signal 

Let  the signal  be given by s(i, q )  = cos (Fki + Q), where 
we  have  neglected the  index q for  convenience,  and Q repre- 
sents  a slowly  changing random  phase  distributed  uniformly 
between 0 - 277. 

After  substituting  the  sinusoidal signal into (8), we find, 
after  some  simplification,  that 

K(Fp)= (3 + 3A1 + 3/8FA12}/{1 + 1/2A1I2 (9) 

where 

1/2 COS (Fk(i1 - i2)) 
replaces 

RAil - i 2 )  

in (8). If M is sufficiently  large,  then 

(1/M)oP2 {cos (Fk(i1 -i2))1 
approaches M / 2 ,  if Fp equals F k ,  and is zero  otherwise. 

From (5), it can  be  shown that 

E [ W p ) I  = R N U +  A 1). 

The  Appendix provides  a proof  showing that  the  parameter 
A ,  for  the PSD and  the  FDK  are  equal.  The  parameter A ,  
has  units  of  a signal-to-noise ratio  (SNR) as defined  in (8). 

If the signal-to-noise ratio A ,  approaches 00, then K(Fp) 
approaches  1 SF.  This result could  possibly  be  used to  advan- 
tage to determine  the  propagation  conditions.  But,  additional 
data  are  required to verify  this  result. For  example,  suppose 
the PSD  shows  a  large frequency  component  but  the  FDK 
is 1.5. This  would  indicate that F equals 1 and  no  fading  or 
fluctuation  exists in the  propagation  path of the signal. In 
sonar,  this  result  could be indicative  of  a  short-range  signal 
propagating  without  multipath  1221. On the  other  hand, if 
K(F,) is,  say,  greater  than 3, and at  the same time  the  PSD 
indicates  a  large  frequency  component,  then thls would 
suggest that F is greater  than  1  and  fading  or  multipath  propa- 
gation  existed.  For  a Rayleigh  fading environment, F equals 2, 
and  for  a  log-normal  environment, F can  be very large depend- 
ing on  the variance of the  distribution.  However,  the  measured 
data  currently available [19] suggest that F is between 2 and 
3 depending  upon  frequency. We included  a  larger  spread in 
F,  which is theoretically  justified, to  show  its  effect  on  the 
FDK. Nevertheless, there  may be  cases  of  practical interest 
where F is larger  than the  current  data suggest. For  example, 
the  effect on F of  receiver  and source  motion  and  of high 
sea states  needs  to  be  experimentally  measured. 

Table I lists  various  values of F for  some specific distribu- 
tion  functions  which have  been  associated with  fading  and 
fluctuating signals in underwater  acoustics,  communication, 
and  radar  applications. 

B, Narrow-Band  Gaussian  Signal 

In many  applications,  the  radiated  or  transmitted  signal 
is not a  pure  sinusoid  but  rather,  a  periodic  random signal. 
For  example,  radiated  ship noise is composed  of  random  nar- 
row-band  noise [22], [ 2 3 ] .  We shall now  examine  the FDIC 
for  a  narrow-band  Gaussian signal. The  results  of the  follow- 
ing discussion  are  limited to  the multiplicative  model given in 

Let  the signal  be  zero-mean  Gaussian so that  the following 
(4). 

relationship  can be utilized  in (3) 

E[s(i, J SMi2 J qMi3 > M i 4 3  411 

= E[s(il> qMi2 q)IE[S(ig q)S(i4,4)I 

+ E[s(i, Y 4Mi3 3 d l E [ S ( i 2  Y q)s(i4 > SI1 

+ ECs(i1 ?4)S(i434)1E[s(i2, q W 3 3  411 (10) 

After  substituting (10) into (3) and  employing the slow 
fading  condition as well as  assuming that  the  noise i.i.d. and 
Gaussian,  as we  will throughout, we obtain  for  the  FDK 
the  expression 

K(Fp)=3(1  + 2 A 1  +FA12)/(1  AI)^ (1 1) 
where A ,  , as  defined in (8), represents  a  signal-to-noise ratio 
(SNR). 

For F equal to 1 ,  K(Fp) equals 3. However,  for all other 
values of F greater  than  1 ~ the  FDK is greater  than 3. 

Fig.  1  represents  a  plot  of  the  FDK as a  function o f F  and 
SNR. The estim?ted  signal spectrum  at  the  frequency Fp will 
be denoted  by S,(F,) in  Figs. 1 and 2 .  From  Fig. 1, the  FDK 
may  have  significantly  high  values  even if  the SNR which 
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TABLE I 
AMPLITUDE  PROBABILITY  DENSITIES  AND  THEIR 

CORRESPONDING FVALUES 

incorporates  the  fluctuation is small.  This  means that  for 
fluctuating signals, the PSD estimate, since it is averaged  over 
'many DFT's,  may not be the best  method  for  detection. 
The  FDK,  on  the  other  hand, is sensitive to  the  probability 
distribution  of  the  signal  and,  consequently,  may  lead to  a 
solution  of  this  problem. 

Therefore,  for  long  integration  times,  this  theory suggests 
the  possibility of detecting  randomly  occurring signals at 
lower  SNR  using  the  FDK  instead  of  the PSD method.  The 
data  presently  available to  support  this  theory are the  arctic 
under-ice  ambient-noise  data [2] , [4] which  show that in some 
cases the  FDK can detect  randomly  occurring signals  whereas 
the  PSD  method  cannot. As we mentioned  above,  this result is 
not surprising for  the  PSD,  but  it is unexpected  for  the  FDK. 
The  randomly  occurring signals in the  under-ice  data  were  due 
to  ice movement which  suggests a different  statistical  model 
for m(i, q) .  Namely, ice dynamics  produce  frequency  modulated 
signals. Therefore, in order  to  include  the  under-ice  data in the 
FDK  formula, we will assume that  the  modulating  function 
can be written as m(q) = aml(q),  where  a is a  random  variable, 
for  a  particular  frequency,  which  takes  on  two  values, a = 0, 
and a = 1, with  the  probabilities P(a = 0) = 1 - L and P(a = 
1) = L.  Thus  the  parameter a modulates  the signal  in the 
frequency  domain by turning  it on and  off.  This  produces 
a  mixture  probability  density  function  for  the signal in the 
frequency domain for  a  particular  frequency.  The  other 
component m l ( i ,  q )  will represent  the  propagation  conditions 
as  discussed  above. Therefore,  taking  the  random variable 
a  into  account, we obtain  the  relationship  for  the  FDK  as 

K(Fp)=3(1  +L(2Al  +FAI2))/(1 +LA1)' (12) 

where A ,  is defmed above. If L equals 1, then (12) reduces 
to  the  results given in  Fig. 1. The  parameters L and F are 
actually  functions of frequency.  However, we  have not explic- 
itly  shown  this  dependence  for  notational  simplicity. 

Fig. 2 represents  a  plot of  specific  values for K(Fp) under 
different  combinations  of  parameters L ,  A ,  and F .  In order 
to emphasize the  influence of L on  the  total  SNR we have  also 
defined  the  effective  SNR, as measured  by  the  PSD,  over the 
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Fig. 1. FDK versus SNR for  a  narrowband Gaussian  signal in a  fluc- 
tuating  environment  indicated  by  the values of F. 
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Fig. 2. FDK versus  effective SNR for  a  randomly  occurring  narrow- 
band  Gaussian  signal  in  a fluctuating  environment  indicated  by  the 
values of L and F,  respectively. 

total  data  length  and is equal to L A 1 .  For  moderate  effective 
SNR  (LA 1 ) ,  when L is quite  small the  momentary  SNR A l  
may be quite  high.  This  high  momentary  SNR  has  a  strong 
influence  on  high-order  statistical  moments (e.g., kurtosis) 
and  consequently  on  the usefulness  of the  detection  method 
presented. These  results  suggests that  for signals that occur 
randomly: as would  a  transient or a  frequency  modulated 
signal over  long  integration  times, the  FDK  estimate  may be 
a  better  detection  statistic  than  the PSD  estimate  method. 
If  the  medium is also a .fading  environment,  which  occurs 
often in underwater  acoustics,  then  the  FDK is significantly 
enhanced  as  shown in the figure. These  analytical  results for 
the  FDK agree  with the  experimentally  measured values  of 
the real data  which  are  presented  later. 

The  detection  performance of the  FDK  and PSD  was 
considered in [6] for  long  integration  times.  The  technique 
employed was based on Cramer's proof [24] which  shows 
that  both  statistics converge to  a Gaussian probability dis- 
tribution  for  sufficiently large 17. To  emphasize this, we have 
called the result  in [6] the  asymptotic  probability  of  detec- 
[ion (APD). The  results show that  the APD for  the PSD is gen- 
erally larger than  the  corresponding APD for  the  FDK evalu- 
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ated over the  parameters L and F. However, there is a region 
for small L which expands  with increasing F that gives a larger 
APD for  the FDK. 

We can summarize the results in [6] by saying that  for a 
randomly occurring signal characterized by the  parameter 
L ,  the  asymptotic  probability of detection value based on the 
FDK  estimate was larger than  the  corresponding  asymptotic 
probability of detection value based on the PSD estimate over 
a region where L was small. Therefore, only for small L was 
the FDK a better  detection  statistic based on  the APD. 

Another way of comparing the relative merits of the  FDK 
and PSD is based on  the deflection criterion. 

According to Lawson and  Uhlenbeck [ X ] ,  a  detectability 
criterion can be defined in terms of a  function of the  deflection. 
The  detectability  criterion is  defined as a  ratio of the difference 
between the averaged value of a  function when signal and 
noise are  present and  the averaged value of the  function  when 
noise only is present,  to  the  standard deviation  of the  function 
under noise only  conditions. The function is either  the  FDK 
or the PSD. Therefore,  the  detectability criteria for  the  FDK 
and PSD estimates can be stated as 

D ( K ) = 3 L ( F - L ) A 1 2 f i / [ ~ ( 1  +LA1)2] 

D(PSD) = LA 1 fila, 
and 

respectively. Where consistent  with this subsection,  the  param- 
eter K is greater than  or equal to 3 and n, the  number  ofDFT's 
used in each estimate, is assumed  sufficiently large. The mean 
and variance of the  FDK were obtained  from [8].  In both 
criteria,  the underlying  noise is composed of  i.i.d. Gaussian 
samples. 

As L approaches  zero,  the  detectability criteria D(K)  and 
D(PSD) also approach  zero. However, if L equals 1  and F 
equals 1 then D(K)  equals 0: since both noise and signal 
are Gaussian. 

The  ratio of the  two criteria  defines a relative efficiency 
for  the  two  methods.  Therefore,  we define the relative effi- 
ciency (E) of the FDK and PSD estimates for L f 0 as 

E[K,PSD] = D ( ~ ) / D ( P S D ) = 3 ( F - L L ) A , / [ ~ ( l  + L L I ~ ) ~ ] .  

In  Fig. 3 ,  the relative efficiency is plotted as a  function  of 
L for  a few values of A ,  and F.  This figure shows,  that  only 
for small values of L ,  will the relative efficiency be greater 
than  one.  Therefore, based on  the  deflection  criterion,  the 
FDK will be a better  statistic  than  the PSD for  detecting 
randomly  occurring signals only over a  limited range of L .  
These  results agree with  the results based on the APD obtained 
in [6].  But even  in those cases where  the PSD is a  better 
detection  statistic  the  FDK can still be useful. For  example, 
the physical evidence to be discussed in the  next  section, 
suggests the  existence of  measurable  randomly  occurring 
signals, and  therefore.  the  FDK  estimate may  provide addi- 
tional information  for  detecting  and classifying those signals. 

V. REAL DATA EXAMPLES 

It has been observed that  Arctic under-ice noise is at  times 
composed  of highly dynamic  narrow-band  components [26] . 
The data were collected  during the 1980 Arctic Ocean experi- 
ment [ 2 7 ] .  

Fig. 3. 
PROBABlLlTY OF OCCURRENCE (L) OF THE SIGNAL 

Relative  efficiency of FDK  relative to PSD versus 
of  occurrence (L )  of the signal. 

probability 

The  specific data  that were  analyzed were recorded  on 
April 23-24, 1980 from  a  pack ice camp in the Arctic  Ocean: 
located  at 86"N latitude, 2SoW longitude.  At this location, 
the  bottom  depth was approximately  4000  m.  The  measure- 
ment system  consisted  of a  broad-band,  omnidirectional, 
hydrophone  suspended  to  a  depth of 91 m from  a  sonobuoy 
located in a  lead. Under the  influence of arctic  currents,  the 
pack  ice was slowly moving. This movement caused  rifting 
and cracking  of ice, which occurred  at times throughout  the 
experiments  and  represented  a  structured  acoustic noise 
source.  Both impulsive and  burst noise were identified in the 
data and were probably  created  by tensile  cracks and  rubbing 
ice masses. 

In order  to verify the results  of  this paper, we have in- 
cluded real data  examples, shown in Figs. 4 and 5, which 
represent signals generated  from ice movement.  A  complete 
decription of these data is not  needed  here since it can be 
found in [2] ,   [4] .  Essentially, ice movement  produces  tran- 
sient and  frequency  modulated signals. In the analysis  of the 
real data  the mean,  variance, skew,  and kurtosis were estimated 
for  the real and imaginary parts of each  frequency  component. 
The  kurtosis estimate  appeared  to  be  more significant and  a 
theoretical analysis was, therefore:  undertaken. The  following 
figures pertain only  to  the  kurtosis  estimates. 

The  data were  processed  utilizing a  1024-point  fast  Fourier 
transform  (FFT). In Figs. 4 and 5, the  top curve represents 
the PSD estimate in decibels versus frequency.  The  data in Fig. 
4 were first filtered  through  a low-pass  filter with  a  band- 
width of 2500 Hz and  then sampled at  a  10-kHz  rate, giving 
a resolution  of 10 Hz. The PSD estimate was obtained  by 
appropriately averaging the  output of 1000 consecutive 
FFT's which gave an overall time interval  of 1.7 min. 

The  bottom curve of Figs. 4 and 5 is the  corresponding 
FDK  estimate  for  the real part  of  the  FFT'  output. This 
method of  displaying the  FDK  estimate was introduced 
in [2].  Like the PSD estimate,  the  FDK  estimate  for Fig. 4 
was obtained by appropriately averaging over the 1000 con- 
secutive FFT  outputs.  For  many of the  frequency  locations, 
over a wide bandwidth in Fig. 4 ,  the  FDK  estimates deviate 
significantly from  the Gaussian assumption  and thereby 
indicate  the  location of nonCaussian signals. This conclu- 
sion cannot be obtained  from  the PSD estimate  alone.  In 
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Fig. 4. Real arctic data at  10-Hz resolution. Top curve: Power spec- 
trum  density  estimate.  Bottom  curve:  Corresponding  frequency  do- 
main  kurtosis estimate. 

+ 

1 

Fig. 5. Real arctic  data  at 2-Hz resolution. Top curve: Power spec- 
trum  density  estimate.  Bottom  curve:  Corresponding  frequency  do- 
main kurtosis estimate. 

fact,  it  would be  difficult to  detect  the ice induced signal 
given the PSD estimate  in Fig. 4, since one  would  also  have 
to know  the  PSD  noise ievel. Therefore,  the'advantage of the 
FDK  estimate is that its  actual  value is significant,  since  we 
are  looking  for  deviations  from  the  Gaussian  value  of 3 ,  
whereas the PSD estimate  represents  a relative value. It will 
also be obvious  from  the  figures that  the  FDK  estimate is 
independent  of  the  slope  of  the  spectrum. 

Fig. 5 represents  a  different  data set than Fig. 4. The  data 
were  first  passed  through  a  100-Hz  bandpass  filter  centered 
at 350 Hz and  then  sampled  at  a 2-kHz rate  which gave a 
resolution  of 2 Hz. The  estimates  were  obtained  by  averaging 
750 consecutive FFT  outputs giving  an overall time  interval 
of 6.25 min.  In  the  top  curve, on the  left in Fig. 5, is a  60-Hz 
tonal  due  to an electrical  ground  loop.  The  corresponding 
FDK estimate,  indicated in the  bottom curve by  a "dip", 
has  a value of 1.8. The  next "dips" at higher  frequencies 
are  due to harmonics  of  the  60-Hz  ground  loop. These  re- 
sults  were  predicted  by (9) in the  text  since, as the SNR 
approaches  infinity, K(F,) approaches 1.5F. For  a  ground 
loop, F equal 1 because the signal is not being  propagated 
through  the  medium.  However,  due to  system  noise, the  FDK 
estimate is prevented  from  reaching 1.5. The  non-Gaussian 

~ nature of the  output in this case, is due to the phase fluctua- 

\ 

tion  of  the  sinusoid  after  each  FFT. This was probably  caused 
by  the  generator  not  producing  exactly  a 60-Hz voltage source. 
In  addition:  the  generator  frequency  had  a  tendency to  drift 
over time. 

Within the  passband of the  filter,  which is clearly  seen in the 
top curve in Fig 5, the  statistics of the signal at  many  frequency 
locations deviate  significantly from  Gaussian,  indicating the 
presence  of nonGaussian signals. We also notice  some small 
indication  of  a signal present in the  corresponding PSD estimate 
at  some  of  the  frequency  locations.  However,  the PSD  estimate 
does not  contain  information  on  the non-Gaussian nature of 
the signals and,  therefore, in order  to  detect  these signals, 
the noise-only  PSD  estimate must  be  known. These  results 
again show  the  advantage  of the  FDK  estimate over the 
PSD in detecting non-Gaussian signals in some  cases of  practi- 
cal importance. 

These  results  have  also  been  verified  by  simulations.  Refer- 
ence [6] compared  the  results of  a limited  simulation  with 
theoretical  predictions.  But  probably  more  significant  than 
simulations,  were  the  corroboration  with  other real data. 
It has  been  found  that  the  rotors of helicopters  generate 
frequency  modulated  components,  due to  changing Doppler, 
that  produced high  FDK  values [28] . Often  these  frequencies 
were  also  measured  by the PSD. So, the frequencies  producing 
the  high  FDK  values  could be identified  by  the PSD estimate. 
These and  other real data  measurements  tend to  support  the 
theoretical  results  of  this  paper. 

In closing,  we shall make  one  additional  observation  con- 
cerning the  bandwidth  of  the signal. If s(i, q)  is a  wide-band 
fluctuating signal, (1 2)  would still be valid. The  FDK  estimate, 
however,  would  be  measured  over  the  bandwidth  of the signal. 
Therefore, non-Caussian broad-band signals  would still register 
kurtosis  estimates, but across their  entire  band.  This  may  be 
an advantage  over the PSD method  for  detecting non-Gaussian 
signals  since the  actual  FDK  estimate  is  significant  and  not  its 
relative value, as is true  for  the PSD method  when  the noise 
level is not  known. 

SUMMARY 
We have  considered  using  the  frequency  domain  kurtosis 

estimate to  obtain  additional  information  about  the  frequency 
components of  a  received randomly  occurring signal. The  FDK 
measure was defined in the  frequency  domain  for  the real and 
imaginary  parts  of  each  frequency  component as the  ratio of 
the averaged  value  of the  fourth-order  central  moment,  to 
the square  of  the  second-order  central  moment  of  a  DFT 
output.  Both sinusoidal and  narrow-band  Gaussian  signals 
were  investigated  where  each  were  modeled as propagating 
through  a  fading  or  multipath  environment.  In  addition, 
transient  and  frequency  modulated signals were modeled  by 
introducing  a  mixing  parameter L into  the  FDK. A theoretical 
derivation  shows that,  under  some  practical  conditions  which 
are  known to exist in underwater  acoustics as well  as other 
environments,  the  FDK  estimate gives an additional measure 
for  randomly  occurring signals. This  measure  can,  under  cer- 
tain  conditions  outlined  above, be more significant than  the 
PSD estimate. In other cases, the  FDK  estimate  reflects  the 
propagation  condition  and,  therefore,  enhances  the  informa- 
tion gained  by the PSD estimate. 
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APPENDIX [9] Y. Ching  and L. Kurz, “Nonparametric detectors based on m- 

The  parameter A ,  of the PSD and  the  FDK  estimates can 
interval  partitioning,” IEEE Trans.  Inform  Theory, vol. IT-18, pp. 
241-250, 1972. 

be  shown to be equal  by defining the  relationship [ 101 R.  Dwyer,  “Detection of partitioned signals by discrete cross- 
spectrum  analysis,” in IEEE ICASSP-80  Conv.  Rec.. 1980, pp. 

[ 1 I ]  I. Dyer,  “Statistics of sound propagation in the ocean,” J .  Acoust. 
SOC.  Am..  no.  48, pp. 337-345, 1970. 

[ 121 P. A.  Bello and B.  D. Nelin. “The influence of fading spectrum on 

where Ss(j) is the  two-sided  spectrum  of  the real symmetric the binary error  probabilities of incoherent and differentially co- 

correlation  function Rs(il - i2) and w is the radian frequency. CS-10.  pp. 160-168, June  1962. 
herent  matched  filter  receivers,” IRE Trans.  Commun.  Sysr.. vol. 

Substituting  (13)  into  the expression [ 131 W. Brown,  “Time  statistics of noise,” IRE Trans.  Inform.  Theory, 
vol. 1T-4, pp. 137-144, Dec. 1958. 

[I41 R. J. Urick,  “Amplitude  fluctuation of the  sound  from a low- 
frequency  moving  source in the  deep  sea,” Naval Ordinance Labo- 
ratory,  White Oak, Silver  Springs,  MD, NOLTR 74-43, Feb. 26, 
1974. 

[ 151 -, “Models  for  the  amplitude  fluctuation of narrow-band signals 
and  noise in the  sea,” J .  Acoust. SOC. Amer., vol. 62, no. 4, pp. 
878-887,  Oct. 1977. 

ocean,” J .  Acousl. SOC. Amer., vol. 55 ,  no. 5 ,  pp. 968-977,  May, 
1974. 

112 638-64 1 .  

Rs(il - 2-2) = S S ( f )  exp (ju(2-1 -i2))df (13) 

( 1 IWOP, W S ( 4  - i2 1) 
which  represents  the  estimate of Ss(Fp) for  the real part of  the 
PSD, we obtain  for Fp f 0 

It2 

- 1/2 
S d F p )  = 112 SS(f>(wdu -FP)l2 df (’4) [ 161 G. E. Stanford, “Low-frequency fluctuations of a CW signal in the 

where we have Some which ‘Onverge to zero [17] R, H. Nichols  and H, J. young, “Fluctuations in low-frequency 
a s M + = a n d  acoustic  propagation in the ocean,” J .  Acousr.  SOC.  Amer.. vol. 43, 

(w,vz(x))2 = (‘/MI {(sin (M.@)lsin (X/2>>l2 
no. 4 ,  pp.  716-722, 1968. 

[ 181 K. V. MacKenzie,  “Long-range  shallow-water signal-level fluctu- 

is called the  Bartlett  spectrum  window [29]  [30]  . The PSD ations  and  frequency  spreading,” J .  Acousr.  SOC.  Amer.. vol. 34, 
no.  1,  pp. 67-75, 1962. 

estimate of Ss(Fp) is equal to twice the value obtained  in [I91 P.  F.  Worcester,  “Reciprocal  acoustic transmission in a midocean 
(14). However,  since  the real part  of  the noise PSD estimate environment: Fluctuations,’’ J .  Acoust.  SOC.  Amer., vol. 66, no. 4 ,  

the PSD and  the FDK. on  sonar  performances,” in ICASSP-76  Conf.  Rec., Apr. 1976, pp. 

eter A ,  of the  FDK  and PSD are also equal. This can  be  easily [21] -, “Solving  the  sonar  equations with fluctuating  signals in 
noise,” in ICASSP-77  Conf.  Rec., May 1977, pp. 272-275. 

verified  by  comparing ( 5 )  and  (6b). [22] -, Principles of Underwater  Sound for  Engineers. New York: 
McGraw-Hill,  1967,  chs. 6 and IO, pp. 154 and 266-285. 

is reduced by 2, the parameter is *e Same for both [20] R. J. Urick,  “Sonar  design  in  the real ocean: Multipath limitations 
pp. 1173-1181, Oct. 1979. 

If the  frequency  component Fp equals zero,  then  the  param- 652-655. 
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