
  

  

Abstract—This paper develops and evaluates a trust-based 
sensor management game-theoretical control approach for 
orbital pursuit-evasion for satellite interception and collision 
avoidance. Using a coupled zero-sum differential pursuit-
evasion (PE) game, the pursuer minimizes the satellite 
interception time and evader tries to maximize interception 
time for collision avoidance. A trust-based decentralized sensor 
manager performs sensor-to-target assignment and nonlinear 
tracking. The interception-avoidance (IA) game approach 
provides a worst-case solution, which is the robust lower-bound 
performance case. We divide our IA algorithm into two parts: 
first, the pursuer will rotate its orbit to the same plane of the 
evader, and second, the two spacecrafts will play a zero-sum PE 
game. A two-step setup saves energy during the PE game 
because rotating a pursuer orbit requires more energy than 
maneuvering within the orbit plane. For the PE orbital game, 
an optimum open loop feedback saddle-point equilibrium 
solution is calculated between the pursuer and evader control 
structures. Using the open-loop feedback rule, each player 
calculates their distributed control track state. Numerical 
simulations demonstrate the performance using the NASA 
General Mission Analysis Tool (GMAT) simulator. 

I. INTRODUCTION 
HE main issue of satellite interception and collision 
avoidance is to optimally determine a flight path for a 

satellite. Generally, the problem can be modeled as a one-
sided optimization (optimal control) setup or a two-sided 
optimization (game) problem. In the optimal control setup, 
trajectories for spacecrafts are computed based on the 
observed states of space objects. However, it doesn't 
consider the intelligence of the space objects who may 
change their orbits intentionally to make it difficult for the 
spacecraft to capture or avoid the objects.  In such situations, 
the problem is best modeled using two competing players 
and it becomes a differential game, which was first 
researched by Isaacs [1]. 

In our research, we have looked at game-theoretic 
solutions for threat prediction and situation awareness [2, 3] 
in a multiplayer scenario. We utilized the methods for space 
threat detection [4], attack avoidance [5], and orbital evasive 
maneuvering through sensor management [6]. Using multi-
agent modeling, we developed a framework for space 
situation awareness (SSA) [7].  To further the analysis, we 
compared several tracking methods [8] including delayed 
measurements [9]. Coupled with tracking, efforts of 
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information metrics [10], search allocation game strategies 
[11], and service oriented architectures [12], improved the 
fidelity of the SSA modeling developed a system-level 
analysis. Our companion paper [13] provides a collision alert 
detection to provide operators with decision support for 
satellite protection.  

The state-of-the art in SSA, based on the available 
literature, does not directly address the method of game 
theory. The reasons could be many of which data 
availability, data security, or limits to publication.  However, 
by using the NASA General Mission Analysis Tool 
(GMAT) tool, we are able to explore game-theoretical SSA 
methods using available information for a space scenario.  
Our companion papers referenced above [2-12] list some of 
the mathematical modeling theory of orbital mechanics, 
simulation parameters, and other results. In this paper, we 
focus on the PE model used to implement the solution.  
Along with the implementation, our research is presented to 
the GMAT working group for further exploration. Much of 
the development from orbital mechanics is available in the 
GMAT tools, so the rest of the paper utilizes these 
definitions in the development of the PE game-theoretic 
model applied to the SSA domain.      

This paper develops and evaluates a three-dimensional 
pursuit-evasion orbital game approach for satellite 
interception and collision avoidance. We apply 1) a 
decentralized sensor management (sensor-target assignment) 
for nonlinear tracking and then 2) the pursuit-evader game 
for each pair. Using a coupled zero-sum differential pursuit-
evasion game, the pursuer minimizes the satellite 
interception time and evader tries to maximize interception 
time for collision avoidance. For the satellite interception 
problem we design an algorithm for pursuer and one for 
collision avoidance, where the game solution controls the 
evader satellite. Using the detection of collision analysis, we 
investigate a distributed control track state using an open-
loop feedback control rule with analysis in the NASA 
GMAT simulator [14]. 

We divide our IA algorithm into two parts: first, the 
pursuer will rotate its orbit to the same plane of the evader, 
and second, the two spacecrafts will play a zero-sum pursuit-
evasion (PE) game. A two-step setup saves energy during 
the PE game because rotating a pursuer orbit requires more 
energy than maneuvering within the orbit plane. To rotate 
the pursuer orbit plane, we utilize a series of small velocity 
changes Δv < Δvmax. For the PE orbital game, an optimum 
open loop feedback saddle-point equilibrium solution is 
calculated between the pursuer and evader control structures. 
Using the open-loop feedback control rule, each player will 
calculate their distributed control track state.  
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To provide a representative scenario, we use the GMAT 
simulator to leverage existing satellite models. The GMAT 
simulator provides the geometric details of the Earth, 
satellite orbits, and can be enhanced with other operating 
conditions that are available in the simulator to test the 
effects of the game-theoretic solution to varying conditions. 
With the initial analysis, we can explore higher fidelity 
environmental effects (e.g.. Earth occlusions and weather) in 
future tracking analysis.  

The rest of the paper is organized as follows. In section 2, 
we overview decentralized sensor management. Section 3 
presents the three dimensional motion and system orbital 
states. Section 4 describes orbital PE game model and 
Section 5 the trust-based sensor manager. Numerical 
examples are simulated for the trust-based sensor allocation 
algorithm in cooperative space situation awareness (SSA) 
search problems using the GMAT interface in Section 6 and 
PE in section 7. Finally we draw conclusions in Section 8.  

II. SENSOR MANAGEMENT AND CONTROL 
Sensor allocation is a challenging problem within the field of 
multi-agent systems. The sensor allocation problem involves 
deciding how to assign a number of targets or cells to a set 
of agents according to some allocation protocol. Generally, 
in order to make efficient allocations, we need to design 
mechanisms that consider both the task performers’ costs for 
the service and the associated probability of success (POS). 
In our problem, the costs are the used sensor resource, and 
the POS is the target tracking performance. Usually, POS 
may be perceived differently by different agents because 
they typically have different means of evaluating the 
performance of their counterparts (other sensors in the 
search and tracking problem). Given this, we turn to the 
notion of trust to capture such subjective perceptions. In our 
approach, we develop a trust model to construct a control 
mechanism that motivates sensor agents to limit their 
greediness. Then we model the sensor allocation 
optimization problem with trust-in-loop negotiation game 
and solve it using a sub-game perfect equilibrium.  

There are two major classes of sensor management 
algorithms: centralized and decentralized. In centralized 
sensor management (CSMgt) [15, 16], a central processing 
node(s) collects information from all other sensors, targets, 
and/or environments, and then assigns sensors to different 
targets based on the available exploited information. The 
advantages of a CSMgt strategy include a simple system 
design and less computational load in a small scale network. 
However, centralized approaches are not always suitable for 
modern sensing/signal processing systems which includes 
large networks of sensors and often require higher 
robustness (i.e. failure of the central node would cause the 
failure of the whole system) and are not appropriate for  
sensors with critically low signal-to-noise ratios or sensors 
operating in dangerous areas.  CSMgt sensor network system 
designs, some communication links might be broken at 
unexpected times. Also, the information quality/correctness, 
(i.e. dependability, sustainability, and reliability of received 
information), would create network survivability issues and 
communication delays.. 

 To overcome shortcomings of the centralized approach, 
we need to develop a decentralized sensor network 
management (DSMgt) approach for robust real-world 
applications. In DSMgt approaches [17, 18], coordination 
occurs locally (not globally) and there is no central node that 
determines globally optimal decisions. No sensor node can 
“broadcast” information (e.g. availability, coordination 
proposal, negotiation results, etc.) to all other sensor nodes. 
In addition, no sensor node is supposed to have global 
knowledge of all sensors. The advantages of decentralized 
approaches include a scalable, modular, and survivable 
(robust) sensor network system. 
 Sensor-to-target assignment aims to control the data 
acquisition process in a multi-sensor system to enhance the 
performance of target tracking. The problem of sensor 
assignment can be understood from the point of view of an 
economic supply and demand analysis. By treating targets as 
“customers,” each target with explicit or implicit demand 
requirements is satisfied by supplying their needs with least 
amount of resources. In this paper, we propose a negotiable 
game-theoretic based sensor management (NG-SMgt) 
approach to deal with the requirements of a dynamic sensor 
management and assignment. 

In [19], a game-theoretic approach to DSMgt for target 
tracking via sensor-based negotiation has been developed.  If 
every agent or sensor is rational and cooperative (i.e. follow 
the negotiation result), the tracking performance is optimal. 
However, sometimes a sensor may choose a greedy tracking 
strategy to maximize its own performance which might 
degrade the team performance. So, we revised the 
negotiation game model by integrating a trust model to limit 
the greediness of each sensor.   

Using the detection of collision analysis, we investigate a 
distributed control track state using an open-loop feedback 
control rule with analysis in the NASA GMAT simulator. 

III. SPACECRAFT SYSTEM STATES 
In the analysis of the game-theoretic satellite control 
analysis, we use the following states to describe the 
kinematics and dynamics of the spacecrafts.  
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The set of variables (r, v, γ, ζ, ξ, φ) defines the 3-D motions 
of spacecrafts. As shown in Fig. 1, r is the instantaneous 
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no player has anything to gain by changing only his or her 
own strategy (i.e., by changing unilaterally). If a player has 
chosen a strategy and no other player can benefit by 
changing his strategy while the other players keep their 
strategies unchanged, then the current set of strategy choices 
and the corresponding payoffs constitute a NE. Each strategy 
in a NE is a best response to all other strategies in that 
equilibrium. The NE may sometimes appear non-rational as 
a NE is not Pareto optimal. The NE may also have non-
rational consequences in sequential games because players 
may "threaten" each other with non-rational moves.  
 However, in many cases all the players might improve 
their payoffs if they could somehow agree on strategies 
different from the NE, which leads the concept of Subgame 
Equilibrium (SE) [23]. SE is an attempt to choose a result 
from the set of Nash Equilibria and a NE structure will be 
maintained in each subgame. NE is a normal-form concept, 
which ignores the sequential structure of play in extensive-
form games. As a result NE predicts some equilibria which 
appear problematic in the extensive form. But, SE can avoid 
these problems by reaching a local optimal. In a SE-based 
negotiation, the negotiation bargain will be finished with 
agreement within two time steps. Using the bargaining 
strategy in negotiation, we develop a negotiable game-
theoretic based sensor management (NG-SMgt) for sensor-
to-target assignments that increase target tracking efficiency. 
 

B. Negotiation Game Model with Trust 

For each sensor (represented by an agent Ai), we create a 
negotiation game played by the sensor and its neighboring 
sensors Ni = {Neighboring sensors of sensor Ai}. Negotiation 
is defined as the determined sensor-to-target assignments. 
We assume that there are communication links among the 
negotiation agent set {Ai, Ni} so that each agent in the set 
knows the current targets of other sensors. The sensor-based 
negotiation game is represented by a 5-tuple Gi = < Agents, 
Targets, H, P, C >, where 
 

• Agents = {Ai, Ni}; are the set of players in the game.  
• Targets are the set of targets currently assigned to Agents. To 

enable sensors be in quiescence mode, we add 0 to Targets;   
• H is the history sequence of the negotiation process 

including the offers and responses; 
• P is the function to obtain to allow an agent to make an 

offer. P is defined on H; 
• C is the utility function set. C = {Ci, ∈i Agents}.  

The utility function is based on the following equation 
(The gain contributed by sensor i to target j at time k). 
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where Mj,  k-1 is the information matrix (the inverse of the P 
matrix) of target j at the previous time. Min eig is the 
operator to calculate the minimal eigenvalue of a matrix.  
 For sensor i, its performance to the assigned targets Di(k) 
at time k is  

 ⎪⎩

⎪
⎨
⎧

= ∑
∈

otherwiseVkjig
emptyiskDQ

kkDiG
iDj

j

ii

i ,);,(
)(,

));(,(    (26) 

where Vj is the target value. The Qi is the reward assigned to 
sensor i when it is in quiescence mode. This virtual reward 
will motivate the sensor to save sensing resources (e.g. 
power) for possible future usage.  For a fixed k, the history 
(0 to k) are further indexed by t for negotiations. 
 For a negotiation starting at time t0, if an agreement has 
been reached at time t1, then the utility Ci(t0, t1) for agent i is 
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where Tri(t0) is the trust of sensor i at time t0. Here we 
assume that the assigned target set {Di} for each sensor (or 
agent) does not change during the negotiation process until 
the termination of the negotiation. We will prove later that 
the negotiation will be finished within one time step. The 
one-step approach is myopic, but the method can be 
extended to non-myopic approaches for larger time horizons 
to afford system-level threat and survivability analysis, to 
overcome large network communication challenges, and to 
sustain operation over scenarios with various mobile sensor 
types, hazardous environments, and intelligent targets.  
 Although the concept of trust has been widely used in 
social science literature [24, 25, 26], there is no clear 
consensus on the definition of trust in sensor management 
research area. Trust, by definition, implies interaction 
between two or more parties in either adversarial or 
cooperative relationships. Trust represents the reputation of 
an agent (sensor) and evaluates the performance as well as 
the cooperation (whether follow the negotiation results) of 
an agent in the past. We define the notion of trust to be large 
when it a sensor node (player in a game) stays near the 
negotiation choice and to be small when it goes away from it 
as defined below:   
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where *( )iD t is the sensor i’s assigned target set from the 
team negotiation agreement of time t.  From Eq (28), we can 
obtain the following trust in recursive form: 
 
Tri(k) = Tri(k−1) + 

     
max{GA(t) − |GA(t) − GR(t)|;0}−Tri(k−1) G(i, Di

* (k); k)

 
k
Σ

t = 0
  GA(t) 

  (29) 

 
where GA(t) = G(i, Di

* (t); t) is the negotiated sensor goal, 
and GR(t)  = G(i, Di 

real (t); t) is the real negotiated goal. 
 
In the NG model, we make the following assumptions: 
 

• Rationality. All agents in the system are self-interested and 
rational. Each agent tries to maximize its own benefits in 
negotiations. 

• Initial Quiescence. After the negotiation begins, agents will 
not make any measurements until the end of the negotiation 
agreement process (which will be obtained after a few time 
steps). Therefore the effects of initial quiescence are 
relatively small and repeated negations can be made for an 
entire game scenario 
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• Sensor Capacity = 1. Generally, the set Di of sensor i can 
contain multiple targets. Here we first assume that the 
capacity of each sensor is 1, so that |Di| = 1.  Therefore each 
sensor will select one target from Targets. Di = {di ∈
Targets}. However, it is possible that one target is selected 
by more than one sensor. This assumption can be relaxed 
through utility functions.  

• Agent Negotiation Capability = 1. It means at any time, each 
agent only involve one negotiation game.  

• Negotiation Game (NG) Enable Control. A NG can be 
launched only after the host agent (who maintains the 
negotiation game) receives all acknowledge (ACK) signals 
from its neighboring sensors Ni. The neighboring agent will 
send reschedule signal if it is involved in another negotiation 
or some of its status information is updated to request it to 
participate in the NG. Then the host agent has to updates the 
game and resends the signal to enable a negotiation. 

VI. SENSOR MANAGEMENT SIMULATIONS 
We used the Low Earth Orbit (LEO) and Geosynchronous 
(GEO) satellite scenario (Fig. 3) to evaluate our negotiation 
game based sensor assignment algorithm. There are 4 LEO 
satellites, namely ARIANE 44L, OPS 0856, VANGUARD 1 
an ECHO 1, as observers, and 2 GEO satellites, namely 
EchoStar 10 and COSMOS 2350, as space objects. The 
orbits are generated by the GMAT with the two-line 
elements (TLEs) from space-track.org.  
 

 
Figure 3: A space object tracking scenario with 4 LEO 

observers and 2 GEO targets. 
 

 After obtaining the sensor-to-target assignment (STA) 
based on the negotiation game, we used various trackers, 
such as extended Kalman filter (EKF), unscented Kalman 
filter (UKF), and linear minimum mean square error 
(LMMSE) filter to track GEO targets. We set Qi =0 (no 
rewards for quiescence mode) and Vi = 1 (both GEOs have 
same importance). We simulated the system for 1000 time 
steps and each time step is 50s.  The sensor assignment is 
shown in Fig. 4 (from the point view of targets). The results 
show that negotiation vary based on the capability of the 
sensors to track the targets.   
 The sensor management also includes a utility analysis 
and for each target, the minimal eigenvalue of the 
information matrix. The tracking results for object 1 are 
shown in Fig. 5 (which is similar to object 2). We can see 
that LMMSE and UKF are better than EKF in terms of 

reducing the satellite tracking position errors. Since the 
system is nonlinear, the linearization used in EKF will 
produce large errors. More specifically, an ellipse orbit 
model is not very accurate to describe the GMAT orbital 
propagators from the target location error (TLEs). However, 
in the UKF and LMMSE tracker, sigma points based 
sampling methods are used to approximate the nonlinear 
system mean and covariance. 

 
Figure 4: Sensor assignment for a space object.  

(Sensor i = 0 means the sensor is not assigned to a target) 

 
Figure 5: Tracking errors in X, Y and Z (DeltaX, DeltaY and 

DeltaZ) for space object 1 (Echo Star 10).  
 

The proposed negotiation game approach for distributed 
sensor management has several features. First, it is a 
Distributed agent system. Each agent represents a physical 
sensor. Each agent hosts and maintains a negotiation game. 
By playing the game with its neighboring agents, the host 
agent generated a self-enforced target assignment among the 
players of the game. All the decisions are made locally. 
Second, target tracking performance metrics and trust 
values are integrated in the utility (or objective) functions of 
agents. We build the utilities based on the sensor gains and 
target values, which can be straightforwardly replaced with 
different metrics. Third, there is no requirement on the 
number of targets and sensors. No pseudo sensors are 
needed to handle the cases with more targets than sensors.  

VII. PURSUIT-EVASION SIMULATIONS 
To demonstrate the performance of the proposed trust-based 
approach, we simulate a scenario (Fig. 3) with 4 LEO 
observers and two GEO satellites: ECHO 1 (as Pursuer) and 
VANGUARD1 (as Evader).  The problem is partitioned into 
two parts. At first, a potential pursuer (ECHO 1) satellite 
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will rotate its orbit to place itself "behind" a high‐value GEO 
(VANGUARD1) asset's orbital plane with a small 
inclination difference (e.g., 5 or 6 degrees differences). To 
perform rotation, we apply the minimum energy approach 
[27] to rotate the orbit. From the TLEs, we can calculate the 
initial inclination ∆i = 13.04(deg).  Then a zero-sum game 
will be played between the pursuer and the evader satellites.  
 After the orbit rotation, we apply the PE game 
interception approach and the results include the (a) position 
related states r, ξ (longitude) and φ(latitude) and (b) the 
velocity related states v, γ, ζ, the of the pursuer and the 
evader (not shown). From Fig. 6, we notice that the control 
angles of both satellites are approximately same, which does 
confirm the conclusion [28, 29] that the optimal control 
angles of pursuer and the evader are the same. The 
differences in the beginning are due to the bigger tracking 
errors when there are large distances. After about 160 time 
steps, the purser is able to intercept the evader.  Given the 
analysis, we can effectively design control methods for 
collision avoidance based on the pursuer strategies. 

 
Figure 6: Pusurer and evader distance and control angles. 

VIII. CONCLUSIONS 
We proposed a pursuit-evasion (PE) orbital game approach 
for satellite interception and collision avoidance using a 
decentralized sensor management sensor-to-target 
assignment for nonlinear tracking. In the three dimensional 
game model, the purser minimized the satellite interception 
time while the evader tried to maximize it. The interception-
avoidance game approach provided a worst-case solution, 
which is the robust lower-bound performance case. Since 
rotating a pursuer orbit requires more energy than 
maneuvering within the orbit plane, we presented a two-step 
setup to save energy during the PE game. First, the pursuer 
will rotate its orbit to the same plane of the evader, and 
second, the two spacecrafts will play a zero-sum PE game. 
We implemented the negotiation with trust orbital game 
approach and simulated a spacecraft interception scenario 
using the NASA General Mission Analysis Tool (GMAT) 
simulator and future efforts include multiple evaders for a 
[30, 31], advanced metrics, and enhanced situation 
awareness visualization tools.  
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