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ABSTRACT 

 

This work presents a MRI prostate segmentation and surface 

reconstruction model that facilities the validation of multi-

parametric MRI with histopathology slides from radical 

prostatectomy specimens and targeted biopsy specimens.  

Application of this technique combines image processing 

and computer aided design to provide a generalized solution 

to construct a high resolution 3D prostate surface from MRI 

images in three orthogonal views with non-isotropic voxel 

resolution.  The performance of the segmentation is 

evaluated with 45 MR image datasets, yielding an average 

segmentation accuracy of 90%.    
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1. INTRODUCTION 

 

The use of multi-parametric MRI to localize a patient‟s 

prostate cancer has the potential to improve clinical 

diagnosis and staging. To realize this, the segmentation of 

the prostate gland boundary from three-dimensional 

magnetic resonance imaging (MRI) to generate a surface 

model is essential. Shah et al. used patient-specific molds 

(PSM) created from prostate surface models to correlate 

MRI to histopathology and develop a decision support 

system for generating cancer probability maps from multi-

parametric MRI [1]. The PSM is created using prostate 

surface models from MR images of each patient obtained 

prior to surgery. The prostate margin segmentation was 

performed manually. Since the multi-slice MRI scans were 

obtained with thick slices relative to the in-plane resolution 

due to scan time constraints, a surface model generated from 

only one view, such as axial view, gave poor resolution in 

the slice direction.  For the PSM, this was improved by 

segmenting the prostate in three orthogonal MRI scans and 

combining them either as binary masks or as cloud of points 

before reconstructing the surface. The same prostate surface 

model could also be used in another method to validate MRI 

with histopathology where multi-parametric MRI is fused to 

trans-rectal ultrasound (TRUS) in order to target lesions 

during biopsy [2]. A semi-automated segmentation and 

surface reconstruction approach would reduce the amount of 

tedious manual labor needed to process the multiple multi-

slice images. 

       In previous work, few methods were proposed for MRI 

prostate segmentation and surface reconstruction.  Betrouni 

et al. proposed a 3D deformable model [3], which utilizes 

Iterative Closest Point (ICP) algorithm and Principle 

Component Analysis (PCA) to deform 3D prostate contour 

points and to reach the final segmentation result.  A fuzzy 

set algorithm is used to reconstruct the 3D prostate surface 

based on slice profile. Dowling et al. proposed a specific 

deformable model [4] consisting of a patient specific 

initialized triangulated surface and image feature model that 

are trained during initialization.  The image feature model is 

used to deform the initialized surface by template matching 

image features via normalized cross-correlation to the 

features of scan.  The final surface is obtained via well-

established simple surface smoothing algorithms.  Yin et al. 

proposed an automated segmentation model [5] based on 

normalized gradient field cross-correlation for initialization, 

and graph-search based framework for refinement.  The 

method deformed a mean-shape prostate shape mesh to the 

desired prostate shape in segmentation process.  The mean 

shape mesh was generated from ground truth training label 

images using the marching cubes algorithm.              

       As compared to those existing deformation and learning 

based prostate segmentation and surface reconstruction 

algorithms, we propose a novel method that utilizes 1) 

reliable gradient descent B-Spline registration to segment 

prostate MRI, 2) robust Ball-pivoting and Poisson 

algorithms to extract high resolution surface from thick-

sliced MRI.     

 

2. METHODS 

 

      The proposed model is described in three major building 

blocks: 1) Semi-automatic B-Spline registration-guided 
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segmentation model using MRI prostate images, and 2) 

Ball-pivoting and Poisson based 3D surface reconstruction.  

We present each component in the following subsections.  

The schema of the proposed model is shown in Figure 1.    

      The input data are MR images, which are obtained from 

a 3.0 T whole-body MRI system (Achieva, Philips 

Healthcare).  T2-weighted MR images of the entire prostate 

were obtained in three orthogonal planes (sagittal, axial and 

coronal) at the scan resolution of 0.2734x0.2734x3.0 mm
3
; 

field of view 140 mm; image slice dimension 512x512.    

The center of the prostate is the focal point for MRI scan.   

To reduce the scan time, a lower refocusing pulse of 100 

degrees was used for sagittal and coronal images, which 

alters the contrast on these images compared to the axial 

images.  

 

2.1. Multi-threaded B-Spline registration guided semi-

automatic prostate segmentation   

 

During initialization, researchers manually outline three 

volume of interest (VOI) contours on separate slices for 

each axial, sagittal and coronal image to define the middle, 

the apex, and the base of the prostate, as shown in Figure 1.  

A fully automatic registration guided algorithm concurrently 

executes the prostate segmentation to all three orthogonal 

images.  The algorithm proceeds from the midsection slice 

to the adjacent slices and then iteratively propagates toward 

the specified apex and base contours.  Near the two ends, 

apex and base contours start as the initial estimate, 

propagating towards the ending slices.  The procedure that 

leads to a segmentation result is based on registering 

neighboring slices.    

      The proposed model uses 2D registration to register 2D 

slices from the middle slice to the adjacent slice.  It then 

generates a new VOI contour, and takes the VOI as the new 

initial estimate for the next slice in the series.  This process 

is then iteratively propagated in both forward and backward 

directions.  A fully automated segmentation model is 

demonstrated in Figure 2.    The model diagram is a single 

thread processing pipeline that executes on each acquired 

image.   The four major steps are:  1) The original prostate 

MR image is cropped into a smaller image according to the 

specified middle slice VOI; 2) The coherence enhancing 

diffusion (CED) filter is applied to the cropped MRI image 

to reduce the speckle-like noise and enhance the edge 

boundary information; 3) 2D B-Spline registration algorithm 

registers the two adjacent CED slices, and generates the 

segmented VOI on the target image slice; (4) Smooth the 

VOI and translate the VOI back from the cropped slice to 

original image slice.     

      Gradient descent B-Spline registration between 2D CED 

slices guides the automatic segmentation to find the coarse 

prostate boundary.   It registers a 2D source image to a 2D 

target image (adjacent slice).  A 2D B-Spline is used to map 

the coordinates of the registered image to the coordinates of 

the input source image.   A separate B-Spline basis is setup 

for each axis given the number of control points and the 

degree of the basis functions to use.   Each B-Spline is 

uniformly opened with control points spaced equally for 

each dimension.   Bilinear interpolation is used to determine 

which input source image values to assign to the resulting 

registered source image.   The error measure between the 

input target image and the current registered source image is 

normalized mutual information (NMI).   Controls points are 

moved one at a time by means of gradient descent 

minimization in order to minimize the error.  The gradient is 

approximated at each control point by means of finite 

differences.   

       The B-Spline function that maps the coordinate of the 

target image to the normalized 2D coordinate of the 

registered source image is expressed in (1). 
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Where, the       values are the control points.        is the 

basis function, which recursively defines the B-Spline 

blending function using the Cox de Boor algorithm [7].  

      are the number of the control points along each x, y 

direction.         are the degree of the B-Spline curve.       
   are the x, y image dimensions.        are the image 

indices on the target image.  

             contains normalized 2D coordinates (i.e. in unit 

square) that identify a location in the source image 

corresponding to the sample at the target image.  A measure 

of error between the source and target images can be 

computed.   The goal is to select the control point positions 

to make the error measure as small as possible.  This is done 

by moving a single control point at a time using gradient 

descent.   The gradient of the error function is estimated at 

each control point        .   The gradient at each control point 

is denoted by (2), 
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where,   ,    are sample increments in the target image.    

The gradient direction is expressed in (3) as a unit length 

vector, 

 

     (     )  ‖  (     )‖⁄        (3) 

 

the error measure is computed by moving the control point 

along the decreasing gradient direction.  The point is moved 

by small steps up to the boundary formed by the 

neighboring control points until a minimum is found.  The 

error measure function   between the input target image and 

the current registered source image is NMI.   

       Figure 3 demonstrates the VOI contour propagation 

result after applying the B-Spline registration.   Slice 7 (the 

source CED image) is registered with Slice 6 (the target 

186



CED image), and the VOI is copied from the registered slice 

7 to slice 6.    

 

2.2. Ball-pivoting and Poisson based surface 

reconstruction 

 

The semi-automatic prostate segmentation generates VOIs 

for each axial, sagittal and coronal image.  Each VOI 

contour is generated from the high resolution xy plane.  The 

distance between VOI contours is large due to the low 

resolution along the z axis on each orthogonal image.  We 

select 100 points to represent each VOI contour and merge 

the resulting three VOIs in the DICOM space, forming a 

rough point cloud.  The point cloud reflects the high 

resolution density from each image, and compensates for the 

low z axis resolution.  The Ball-Pivoting and Poisson 

surface reconstruction algorithms are run against the point 

cloud to construct the high resolution prostate 3D surface.  

     We implemented the Ball-Pivoting Algorithm (BPA) [8] 

in Java, where the BPA is a purely computational geometry 

based approach. It takes the point cloud as input without 

normal information to build a rough surface.  The algorithm 

starts by placing a r-ball (a ball of radius r) in contact with 

three sample points from the point cloud set.  Two of the 

points form an edge, then the algorithm pivots the ball until 

it touches the third point.   The three points form the initial 

seeding triangle.   The r-ball pivots around each edge of the 

current triangle mesh boundary.  When a new point falls 

into the ball contact range, a new triangle is created.   This 

process repeats until all the points have been considered.   A 

set of triangles is formed while the ball rotates on the 

surface, constituting the interpolating mesh.   

        The point cloud merged from the three VOIs has low 

density sample points due to the low z axis resolution. As a 

result, the BPA generated mesh will have many holes on the 

surface.   We could re-run the BPA with a larger ball radius 

as the post-processing hole-filling algorithm to patch the 

surface.   However, we chose the Poisson surface 

reconstruction algorithm to guarantee the smooth surface 

and correct surface normal creation.           

       The Java-based Poisson algorithm (PA) utilizes the 

implicit function to approximate the surface as a solution to 

a Poisson equation [9].  PA takes surface points and point 

normals generated from BPA as input.  It partitions the 3D 

point space into octree based 3D grids.   Sparse grids around 

the non-sample point regions, and smaller dense grids 

around the sample points.   The imported point normals are 

used as the vector field of the sample point on the small 

grid.  Without the point normals, the sample point vector 

field can be tri-linear interpolated from the 6 neighbors 

around the 3D grid.  When the vector field is computed, PA 

splats the vector field to surrounding grid neighbors to 

remove holes.    Then, the key point is to reconstruct the 

surface by solving the indicator function of the surface M.  

The 3D indicator function χ is defined as 1 at points inside 

the surface, and 0 at points outside, as shown in (4). 
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The gradient of the indicator function is a vector field that is 

zero almost everywhere, except at points near the surface, 

where it is equal to the inward surface normal.   So, the 

normal vector field n can be viewed as the gradient of the 

„smoothed‟ indictor function   , where          
Computing the indicator function thus reduces to inverting 

the gradient operator to find the scalar function χ  whose 

gradient best approximates a vector field   defined by the 

samples points,  i.e.      ‖      ‖.   By applying the 

divergence operator, the problem transforms to solving 

Poisson equation (5) for χ .     

 

               (5) 

 

When the indictor function is solved, a zero-set function is 

applied to extract the iso-surface.    

        Figure 4 demonstrates the Ball-Pivoting and Poisson 

surface reconstruction results respectively.  The Java-based 

open source MIPAV [6] visualization software uploads the 

final extracted surface in the axial image.  Finally, the 

surface is decimated and saved as a stereolithography(STL) 

surface file to import into SolidWorks for 3D printing. The 

BPA and PA combine together to provide a fast and robust 

model for smooth surface reconstruction.   

 

3. RESULTS 

 

The performance of the semi-automatic segmentation model 

was evaluated with 45 MRI datasets.  We compare the semi-

automatic segmentation results with expert manual 

segmentation.   The expert manual segmentation is made by 

trained researchers and verified by a radiologist. VOI binary 

masks, VOI volumes and 3D prostate surface volume are 

used to quantitatively evaluate the segmentation accuracy.  

The VOIs binary mask method generates the binary mask 

from VOIs.  Then it compares the overlapped region with 

false negative (FN), false positive (FP), and true positive 

(TP) volume fractions.   The VOI binary masks use the 

expert manual segmentation as the established truth, Truth 

Positive (TP) reflects the majority overlapped region 

between the semi-automatic and manual segmentations.  For 

volumetric measure, the VOIs volume is computed by 

multiplying the total VOI pixels with a single voxel volume. 

The 3D surface volume is calculated from the binary surface 

volumetric mask by multiplying the total surface volumetric 

voxels with a single voxel volume.      

       Our proposed method achieves 90% average 

segmentation accuracy.  Figure 5a demonstrates the average 

volume difference between semi-automatic and the expert 

manual segmentation.  Figure 5b shows the average True 

Positive overlapped region with the expert‟s segmentation 

as the ground truth.  The segmentation on axial image 
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always performs better than the sagittal and coronal images.  

Figure 6 demonstrates the segmentation results from the 

registration guided model.  The red contours present the 

semi-automatic segmentation; the green contours present the 

manual segmentation.         

       Our proposed segmentation and surface reconstruction 

model takes under 4 minutes to generate the high resolution 

3D prostate surface from thick-sliced MRI images in three 

orthogonal views.  The 3D prostate surface generated from 

only one view, such as axial view, gives low resolution in 

the slice direction (z axis) dues to the MRI scan. The axial 

generated surface always results in a stair-stepping partial 

volume effect.  By merging the axial, sagittal and coronal 

VOIs contours into a point cloud in DICOM space, the low 

resolution issue from each orthogonal view‟s slice direction 

can be essentially eliminated.   The Ball-pivoting and 

Poisson algorithms finally build a smoothed high resolution 

3D prostate surface for 3D mold printing.     

      The proposed model relies heavily on registration to 

drive the segmentation algorithm.   We also implement 2D 

OAR registration based method as compared to the 2D 

gradient descent B-Spline registration based approach.  For 

the OAR parameters, the rotation range is set to between [-

20, 20] degree, the rotation step is set to 2 degree; the cost 

function is correlation ratio; the interpolation for sub-

sampling is the cubic B-Spline.  For the B-Spline 

registration, the B-Spline function degree is set to 2, B-

Spline number of control point is set to 8; gradient descent 

min step is set to 1, max step is set to 10; the convergence 

limitation is 0.05; and the cost function is NMI.   Toward 

the apex and base, the prostate shape is tapered much faster 

than in the central gland.   From experimental results, the 

OAR method is highly unstable near apex and base as 

compared to the B-Spline method.  The B-Spline parameters 

are robust to most MRI axial, sagittal and coronal images.               

      This model is implemented in Java with a stepwise 

pipeline-based approach (segmentation, surface 

reconstruction and visualization) under MIPAV software, 

which is freely available and open-source, and can be 

obtained from http://mipav.cit.nih.gov. 

 

4. CONCLUSION 

 

A novel method for MRI prostate segmentation, surface 

reconstruction was presented in this paper.  Unlike previous 

deformation and learning based methods, the proposed 

model takes advantage of gradient descent B-Spline 

registration to provide a robust concurrent segmentation 

mechanism, which is simple, efficient and fast.   The BPA 

and PA surface reconstruction algorithms ensure the rapid 

prototyping of high resolution 3D prostate surface from 

thick-slices MRI images at three orthogonal views.  The 

distributed segmentation and reconstruction pipeline provide 

a unified tool under MIPAV for generating prostate surface 

model that can be used to improve the correlation of prostate 

MRI to histopathology [2] and fusion of MRI to TRUS for 

targeted biopsy [10]. The Java based implementation of the 

model ensures the wide dissemination to the medical 

imaging research community.  Future work will investigate 

machine learning based MRI prostate segmentation to 

improve the segmentation accuracy and to reduce the 

processing time.  
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Figure 1.  Schematic representation of segmentation and 

surface reconstruction model from prostate MRI images 

 

  

 
 

  Figure 2.  Registration guided automatic segmentation 

model 

    

 
Figure 3.   VOI contour propagation result after B-Spline 

registration from CED slice 7 to 6.  
 

 

 
 Figure 4. Ball-Pivoting and Poisson surface reconstruction 
 

 

 
(a)VOIs volume difference 

 

 
(b) VOIs overlapped region 

            Figure 5. Segmentation performance evaluation 

 

 

 
(a) Axial image 

 
(b) Sagittal image 

 
(c) Coronal image 

       Figure 6. Registration guided model segmentation results  
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