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Abstract— Despite considerable advances in sensing 
instrumentation and IT infrastructure, monitoring and 
diagnostics technology has not yet found its place in health 
management of mainstream machinery and equipment. The 
fundamental reason for this being the mismatch between the 
growing diversity and complexity of machinery and equipment 
employed in industry and the historical reliance on “point-
solution” diagnostic systems that necessitate extensive 
characterization of the failure modes and mechanisms. While 
these point solutions have a role to play, in particular for 
monitoring highly-critical assets, generic yet adaptive solutions, 
could facilitate large-scale deployment of diagnostic and 
prognostic technology. We present the role of hidden-Markov 
models for autonomous diagnostics.  The proposed methods have 
been tested on a CNC machining test-bed outfitted with thrust-
force and torque sensors for monitoring drill-bits. 

Keywords- autonomous diagnostics; hidden Markov model; 
sequential clustering 

I. INTRODUCTION  
 Condition Based Maintenance (CBM) is a philosophy that 

applies sensors to equipment for the purposes of monitoring, 
diagnostics, and prognostics, to facilitate optimal maintenance. 
CBM has the potential to greatly reduce costs by helping to 
avoid catastrophic failures and by more efficiently 
determining the intervals required for maintenance schedules 
[1]. The economic ramifications of CBM are many fold since 
they affect labor requirements, replacement part costs, routine 
maintenance scheduling, increased capacity, enhanced 
logistics, and supply chain performance [1,2]. Despite 
considerable advances over the last few decades in sensing 
instrumentation, signal processing algorithms, and information 
technology infrastructure, monitoring and diagnostics 
technology has not yet found its place in health management 
of mainstream machinery and equipment [6].  

Diagnostics is the process of identifying, localizing, 
determining, and classifying the severity of equipment failure, 
whereas prognostics is the process of predicting the 
remaining-useful-life (RUL) [4]. Diagnostics is not only 
important but is a prerequisite for effective prognostics. The 
primary challenge is to achieve high degree of accuracy in 
reasoning out the health-state of the equipment given the 
sensory signals. The major technical challenges with effective 
diagnostics are as follows [1]: 1) Sensory signal statistics tend 

to be quasi-stationary and vary as a function of operating 
conditions and ambient conditions, 2) Machine character can 
be quite variable due to differences in machining, part-size 
variations, fastener tightness, wear variations, replacement-
part variations, and aging, and 3) Features indicative of 
machine health can be obscured by signals from other sources, 
multitude of transmission paths, and by noise. In addition, 
historical datasets and cases when available for building 
diagnostic algorithms tend to be limited and not “labeled” in 
terms of fault progression and severity. CBM diagnostic 
techniques must be robust and effective under these 
conditions.   

The traditional methods for diagnostics, leading to “point 
solutions”, can be broadly grouped into two categories: 
physics (or mechanistic) based and empirical based [2]. The 
physics based methods involve extensive characterization of 
equipment to understand the different failure modes and their 
mechanisms, something tedious and resource intensive. Sensor 
selection, mounting, and feature selection are equally 
important and demanding issues. Physics based methods are 
economically justified when dealing with equipment that is 
pervasive (e.g., motors, pumps, generators, gear boxes and so 
on) and/or mission critical. The empirical methods often 
involve tracking of few critical features (based on failure 
mode) combined with simplistic thresholds set from 
experience. The extant literature is vast and reports good 
success in developing these point solutions [5, 6]. However, 
we need cost-effective technologies for monitoring a wide-
array of equipment that is neither mission-critical nor 
pervasive. A further complicating factor is that industry, partly 
attributable to a growing push for mass customization, is 
building and employing more and more “custom” equipment, 
mostly ruling out the traditional “point solution” method. The 
goal then is to develop “generic” diagnostic and prognostic 
algorithms that are rapidly configurable, and adaptive (i.e., 
learn on-line using unsupervised learning algorithms) to 
facilitate effective and efficient large-scale deployment of 
CBM technology for a wide variety of equipment/assets. A 
study by NIST concluded that the availability of “generic” 
methods for effective diagnostics and prognostics and their 
reliability is a prerequisite for widespread deployment of 
CBM technology [7].  

The concept of autonomous diagnostics is based on 
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unsupervised techniques. The term “unsupervised” implies 
ability to learn on-line without human supervision. 
Autonomous diagnostic methods learn gradually from the 
system onto which they are deployed. If developed, they can 
be deployed onto a variety of systems with ease, without 
requiring much equipment specific fine-tuning. This paper 
presents a practical framework for autonomous diagnostics 
based on Hidden Markov Models (HMMs). HMM is a finite-
state machine that is also a doubly stochastic process 
involving at least two levels of uncertainty: a random process 
associated with each state, and a Markov chain that  
characterizes the probabilistic relationship among the states in 
terms of how likely one state is to follow another [8]. HMMs 
are known for their application in temporal pattern recognition 
such as automatic speech recognition [9, 10], handwriting, 
gesture recognition, economic and financial series analysis 
[11], and bioinformatics (e.g., EEG time-series clustering [12] 
and gene expression clustering [13]).  

Given the success of HMMs with these applications, in 
particular with speech recognition that has a lot of similarity to 
machine diagnostics, there is hope that they will be equally 
effective in diagnostic applications. Two side-benefits are the 
existence of computationally efficient methods for system 
identification and computing of likelihoods using HMMs. 
They can also be used to build data-driven models of 
machines relieving somewhat the need to identify specific 
features in data to be used as health indicators [1]. We should 
however note that there are some notable differences between 
speech recognition and machine diagnostics [1]. For example, 
in speech processing the number of phonemes is a relatively 
small finite set. Furthermore, words which are constructed as 
sequences of phonemes also represent a finite (although large) 
set. In spite of this, the literature reports good results from 
application of HMMs for machine monitoring and diagnostics 
[1-2, 14-15]. However, almost all of this literature treats the 
task of developing diagnostics models as one of building 
classification models (i.e., supervised learning) relying on 
labeled training histories/datasets (in terms of fault 
progression and severity). On the contrary, the goal here is to 
build HMM models for diagnostics while working with 
unlabeled datasets, necessitating a “clustering” approach. 
However, a critical challenge in working with many clustering 
algorithms is of knowing in advance the target # of clusters. 

To overcome aforementioned problem with clustering 
methods, this paper reports two HMM-based clustering 
methods with varying level of complexity. These methods 
‘generate’ an effective labeling scheme for sensor signals, in 
turn promoting autonomy of the diagnostics engine. First 
method employs a competitive learning framework [14] 
whereas, the second method exploits inherent gradual 
deterioration of machine health and uses a sequential 
clustering [15] approach to drive the HMM-based time-series 
clustering. The underlying assumption is that the sensor 
signals are in the form of time-series (univariate or 
multivariate). While the manuscript focuses on monitoring 
cutting tools used by CNC machines (in particular drill bits), 
using a dynamometer to monitor thrust-force and torque on the 

cutting tool, the framework is relevant for monitoring a wide 
variety of equipment (e.g., rotary equipment employing 
vibration sensors) but might involve significant signal pre-
processing and/or feature selection. While the monitored unit 
could be a component, sub-system, or a whole piece of 
equipment, the rest of this manuscript generally refers to the 
monitored unit as an asset or equipment. 

Rest of the paper is organized as follows: section 2 briefly 
presents the background of HMM. Methods are discussed in 
section 3. Experimentation and results have been presented in 
section 4. Finally, conclusion and future research in section 5. 

II. BACKGROUND OF HIDDEN-MARKOV MODELS 
Hidden Markov model (HMM) is a finite-state machine 

that is also a doubly stochastic process involving at least two 
levels of uncertainty: a random observation process associated 
with each hidden-state, and a Markov chain, which 
characterizes the probabilistic relationship among the states in 
terms of how likely one state is to follow another. Note here 
that the “hidden state” of a HMM is not the same as the 
“health-state” of an equipment under diagnosis. In fact, in the 
proposed approach, a complete HMM will model a single 
health-state. In working with HMMs, the objective is to either 
characterize the hidden-states given the observation sequence 
or calculate the likelihood of the sequence given the HMM.  

Let tX  denote the hidden state at time t  and tO  the 
corresponding observation. Assuming that there are k  
possible states, we have {1,..., }tX k∈ . Let 1 2{ , ,... }To o o  
denote the observation sequence of random variable tO . Note 
that io  can be univariate or multivariate and that the length of 
the observation sequence, T, can be arbitrary. Characterization 
of a HMM is done through its parameters, ( , , )A Bλ π= .  The 
parameters for a basic (first-order) HMM are the initial state 
distribution 1( ) ( )i P X iπ = = , the transition model 

, 1{ } ( | )i j t tA P X j X iα −= = = = , and the observation model 
( ) ( | )j t t t tb o P O o X j= = = , which is the probability of a 

particular observation vector at a particular time t  for state 
j . The complete collection of parameters for all observation 

distributions is represented by { ( )}jB b= ⋅ .  A flexible 
representation of  ( | )t tP O X  as a mixture of Gaussians for 
observation vectors in Lℜ  is [16]: 

, ,
1

( | )

( | ) ( ; , )

t t t
M

t t t m i m i
m

P O o X i

P M m X i N o
=

= = =

= =∑ μ Σ
 

where , ,( ; , )t m i m iN o μ Σ is the Gaussian density with mean iμ  

and covariance iΣ , tM  the hidden variable that specifies the 
mixture components, and ,( | )t t i mP M m X i c= = =  the 
conditional prior weight of each mixture component.  

Estimation of parameters ( , , )A Bλ π=  is normally carried 
out through an iterative learning process. A-priori values of π
, A and B are assumed and observation sequences are 
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presented iteratively to the model for parameter estimation. 
All the results reported in this paper are based on the use of 
the Baum-Welch’s Expectation Maximization algorithm [17]. 
Estimation of ( | )p λO  from given 1( ,..., )To o=O  is obtained 
using either the Forward procedure or the Backward procedure 
of the FB-algorithm [18]. Estimation of ( | )p λO  is essential 
in building a HMM-based classifier. 

III.   AUTONOMOUS DIAGNOSTICS THROUGH  
HMM BASED CLUSTERING 

As noted earlier, our objective is to develop effective 
diagnostic methods for tracking incipient equipment failures 
given unlabeled historical datasets (i.e., sensor signal 
histories). Given signal histories from identical assets that 
have undergone a particular type of incipient failure (i.e., 
distinct failure mode), the goal is to characterize the distinct 
health-states of the asset during the degradation from a state of 
perfect health to a state of total failure. This is critical to 
facilitate timely and optimal condition-based maintenance.  

 Given that there exists no labeled target outputs within the 
historical degradation datasets, we rule out the possibility of 
building a diagnostic classifier through supervised learning. 
Instead, we shall rely on unsupervised learning, in particular, 
clustering. We can however do better than pure clustering. 
While the historical datasets do not have labeled target outputs 
during the degradation process, they do provide us with the 
knowledge that the equipment was perfectly healthy at the 
very beginning and that the equipment has failed at the end. 
Given this information, we are recommending two model-
based clustering approaches to develop the diagnostic model. 

A. Clustering of Historical Data 
Let us suppose that sensor signal histories are available for 

N  identical assets subject to a common failure mode 
1 2( , , ..., )NO O O . The sensor signal history from asset n  is of 

the form ,1 ,2 ,{ , ,... }
nn n n n To o o=O , where ,1 ,2 ,, ,...

nn n n To o o  
constitutes time-series segments sampled from the asset at 
regular intervals of time or usage (number of segments 
available from different assets until failure could be different 
depending the rate of degradation). Thus, ,1no is the first time-
series historical segment from asset n . Note again that these 
time-series segments can be univariate or multivariate 
depending on the number of sensors employed and the signal 
processing and feature extraction procedures employed.  

A. 1. Competitive Learning Approach 
Step 1- Generation: We randomly generate a pre-specified 

number (say K ) of HMMs (denoted 1 2{ , ,... }Kλ λ λ ) with a 
pre-specified configuration (i.e., the number of hidden states 
and the observation model representation). During this step, 
all the competing HMMs start with uniform a-priori values for 
π , A  and B . Subsequent steps involve initialization as well 
as iterative fine tuning of these parameters through 
competitive learning. 

Step 2- Initialization: Each of the HMMs is initialized 

using a random sequence out of the N  available sequences 
through very limited training (say, 2 or 3 iterations). 
Mathematically, this is equivalent to adjusting the HMM 
model parameters ߣ ൌ ሺߨ, ,ܣ ) ሻ towards maximizingܤ | )p O λ
. This initialization process better ‘locates’ the HMMs so as to 
properly span the observation space, and in turn, dramatically 
improves convergence during the learning process. 

Step 3- Ordering Phase: All temporal sequences available 
in the dataset are presented in a random sequence (constitutes 
one epoch) to the HMM pool for competition that involves 
calculation of log-likelihoods (i.e., ln ( | )  ,i jP O HMM i j∀ ). 
HMM that wins the competition is allowed one iteration of 
learning (i.e., π , A , B  adjustment) using EM algorithm. 

Step 4- Consistency: Check for consistency or else go back 
to Step-3. Consistency is declared if every sequence is won by 
the same HMM for two consecutive epochs. 

Step 5- Convergence Phase: Further update and fine tune 
the parameters of HMMs using the EM algorithm and its won 
sequences until no significant further improvements in log-
likelihood are witnessed in successive epochs.  

A. 2. Sequential Clustering  
Step1- Initialization: The proposed algorithm initiates with 

construction of an HMM λ1 with a pre-specified configuration, 
with the configuration to be “optimized” using cross-
validation procedures outlined later. The parameters of HMM 
λ1 (i.e.,π , A  and B ) are initialized using infancy signal history 
from a random asset i  (e.g., ,1io  or ,2io ). 

Step2- Characterize “Excellent” Health-state: We train 
HMM λ1 to adjust (π , A , B ) towards maximizing ( | )p O λ . 
For training, signals from earliest stages of the asset’s life are 
considered, e.g. ,1io  or ,2io  of all N assets. Because of such 

factors as “wear-in”, our research suggests that ,2io  or ,3io  can 
be more reliable than ,1io  for characterizing the “excellent” 
health-state (depending of course on such factors as time-
between two consecutive samples and typical life of the asset). 
Once trained, all N sequences are evaluated with this trained 
HMM and similarity is observed based on log-likelihood 
values, in particular, their distribution. The log-likelihood 
similarity threshold or cutoff for characterizing the “next” 
health-state is set at kμ σ− , where μ  and σ  denote the mean 
and standard deviation of the log-likelihood value distribution, 
respectively, and k  an integer. The higher the value of k , the 
lower the resolution of characterization of health-states. 

Step 3- Identify Candidate Signals for Characterizing 
“Next” Health-State: Segments from each asset i  that just 
missed the log-likelihood threshold of the previous health-
state are identified as candidate training signals for the “Next” 
health-state. A new HMM λ2 is constructed and trained with 
these newly identified training signal segments.  

Step 4- Termination: Step 3 is repeated until all sensor 
signal segments of each asset have been characterized. 
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B. Labeling Health-states based on HMM Clusters 
Let us suppose that the clustering process yielded M

distinct health-state HMMs, representing the distinct temporal 
dynamics of the sequences that make up the respective 
clusters. Thus, each HMM represents one health-state 
sequentially from “Excellent” to “Failure”.  

C. On-line Diagnostics using HMM-Based Classifier 
Once the distinct health-sates are characterized, during on-

line diagnostics, given the sensor signal segment, 
determination of “current” health-state involves calculation of 
the log-likelihood with respect to all characterized HMMs. 
The health-state corresponding to the HMM with the largest 
log-likelihood is the estimated health-state.  

IV. CASE STUDY: DRILLING PROCESS DIAGNOSTICS  

A. Experimental Setup 
Drilling process, a commonly used machining process, is 

selected here as a test-bed for validating the proposed 
autonomous diagnostics framework. The diagnostics objective 
is to assess the health or well-being of the drill-bit during the 
machining process by utilizing thrust-force and torque signals 
captured by a dynamometer during the drilling cycle. Tests 
were conducted on HAAS VF-1 CNC Machining Center with 
Kistler 9257B piezo-dynamometer at 250Hz to drill holes in ¼ 
inch stainless steel bars. High-speed twist drill-bits with two 
flutes were operated at feed rate of 4.5 inch/minute and 
spindle-speed at 800 rpm without coolant. Each drill-bit was 
used until it reached a state of physical failure either due to 
excessive wear or due to gross plastic deformation of the tool 
tip due to excessive temperature (from excessive wear). 
Fourteen drill-bits were used to generate the signal histories 
necessary for building the diagnostics model.   

B. Observation Sequence 
A sequence is defined here as one that covers an individual 

hole. Due to bit wear and non-uniformity of the work piece 
surface, the actual time necessary to drill a hole varies. This 
results in sequences of different lengths. Thrust-force 
(Newtons) and torque (Newton-meters) signal amplitudes are 
usually quite different. To improve the convergence properties 
of the EM algorithm used for training the HMMs, the 
observational sequences are all normalized to mean zero and 
standard deviation of unity for both thrust-force and torque. 
Observation sequences that are presented to HMMs are not 
subjected to any transformation other than this normalization. 
Figure 1 illustrates a joint plot of normalized thrust-force and 
torque signals during a particular hole.  

C. Labeling Health-states 
[14] subjected 10 HMMs to competitive learning, only 3 

survived the learning process (the remaining 7 HMMs did not 
win the competition for a single sequence). These 3 HMMs 
were able to cluster the thrust-force and torque observation 
sequences from individual drill-bits into 3 health states. 
HMM-1 ended up representing the “good”, HMM-10 
represented the “medium”, and HMM-9 the “bad”.  

 
Fig. 1. Joint plot of normalized thrust-force and torque signals during a 

particular hole. Note the overall shape in spite of local randomness. 
 
 [15] initialized “excellent” health-state using signal 

segments from the second hole of the drill-bit set. Continuing 
with the steps outlined in Section III.A.2, the rest of the 
health-states are characterized as well, using   for establishing 
the log-likelihood threshold. Overall, sequential clustering has 
yielded three health-states representing “good”, “medium” and 
“bad”. 

While different drill-bits have spent different number of 
holes in the different health-states, all drill-bits have gone 
through all the three health-states prior to failure. A 
“dynamic” policy of replacing the drill-bit once entering the 
final health-state would not have resulted in any failures. 
Thus, enhancing the value of tracking the health-state of the 
drill-bit on-line for efficient replacement.  

D. Cross-Validation and Testing Process 
 While the results reported in Section IV.C are very good, 

they are not necessarily reproducible. This is attributable to 
the fact that data from all the drill-bits were employed for 
building the diagnostic model as well as testing its 
performance. To evaluate the generalization performance of 
the proposed method, we now report results from cross-
validation and testing experiments.  

For competitive learning [14], the overall classification 
accuracy was 80% for the testing data sets (calculated over the 
14 cross validation passes). The process for calculating these 
results is as follows. When the model was presented with data 
from an individual drill-bit, as long as the model did not 
suggest reverse jumps (i.e., a jump from a ‘medium’ state to a 
‘good’ state), the accuracy was considered to be 100%. The 
higher the number of reverse jumps, the lower the accuracy. 
While two hidden-states were quite inadequate based on the 
observed log-likelihoods, three hidden-states were acceptable, 
however, four hidden-states provided very good performance 
and achieved nearly the same performance achieved by 
HMMs with nearly double the number of hidden states. [14] 
used four hidden-states for all the HMMs. 

[15] proposed more stringent criteria for convergence 
evaluation criteria to evaluate the performance of the model.  
1) No "reverse jumps", meaning that the drill-bit cannot enter 

a state and then revert to a previous state. If 2 or more 

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Normalized Thrust 

N
or

m
al

iz
ed

 T
or

qu
e 

End

Start

512



reverse jumps are noticed in the validation cycle, the model 
building run will be terminated. 

2) At least two health-states have to be detected. If during the 
sequential clustering process no more than 1 HMM model 
was obtained, the run would be terminated. 
Performance Criteria: The performance is judged based 

on the 4 drill-bits in the testing group, based on three criteria: 
1)  Fraction number of runs that did not produce any reverse 

jumps- R(Q).  
2) Fraction number of drill-bits that did enter all the identified 

health-states characterizing the degradation from a state of 
perfect health to a state of total failure- M(Q). 
 

 
Fig. 2. Plot of Q  vs. ( )P Q . 

 
Given the number of hidden-states, Q, combining these 

performance metrics (i.e, ( )R Q  and ( )M Q )  yields an overall 
performance measure. While it is certainly possible to increase 
the importance of certain measures over others, we chose the 
following multiplicative model: 

P(Q)= R(Q)*M(Q) 
In our tests, we reasonably varied the number of hidden-states, 
Q, from 2 to 8 for full 14C10 fold cross-validation. 

 Figure 2 clearly suggests that for this application, three 
hidden-states are best and adequate for configuring the HMMs 
for health-state characterization. The overall performance is 
quite impressive at nearly 99%, even under testing. In theory, 
it is also possible to vary Q  for the different health-state 
HMM models.  

 Certainly, sequential clustering is least demanding and 
more promising. Further, the competitive learning process is 
tedious in particular with HMMs and there are issues with 
convergence and initialization.  

V. CONCLUSIONS AND FUTURE RESEARCH 
In the context of condition-based maintenance, the reported 

HMM diagnostic models allow us to overcome the tedious and 
often impossible task of “labeling” dataset health-states, and 
hence, improve autonomy of techniques for diagnostics. On 
the contrary, traditional HMM based diagnostics frameworks 
often employ a “classification” framework that strictly 
requires labeling. The results from the drilling process case 
study are extremely satisfactory. Both models were able to 
successfully cluster and recognize variable length and 

bivariate time-series sequences that are non-stationary in 
nature. It is not clear at this point if these models will yield 
satisfactory results when spectral properties are of more 
importance over temporal aspects of the sensory signals. 
However, the speech processing community has successfully 
employed HMMs for modeling dynamics of spectral features 
derived from speech signals. Future research will study other 
types of rotary equipment as well as different sensor settings. 
Future research will also consider equipment prognostics. 
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