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Abstract—Location-based Social Discovery (LBSD) services
enable users to discover their geographic neighborhoods to
make new friends. Original LBSD services were designed to
provide the exact distances to nearby users. It has been shown
that it is easy to pinpoint any target user’s location by using
trilateration based on the exact distances from three fake GPS
locations to the target user. To thwart the trilateration attack,
contemporary LBSD services then began to report distances of
nearby users in concentric bands, e.g., bands of 100 meters. In this
paper, we investigate the user location privacy leakage problem
in LBSD services reporting distances in discrete bands. Using
number theory, we analytically show that by strategically placing
multiple virtual probes with contrived fake GPS locations, one
can nevertheless pinpoint user locations in band-based LBSD.
Our methodology guarantees to pinpoint any reported user within
an area bounded by one square meter, even for LBSD services
using large bands (such as 100m as used by WeChat). To the best
of our knowledge, this is the first work that explicitly exploits
and quantifies user location privacy leakage in band-based LBSD
services. Our study is expected to draw more public attention to
this serious privacy issue and hopefully motivate better privacy-
preserving LBSD designs.

I. INTRODUCTION
The skyrocketing growth of location-based social networks

(LBSNs) has gained billions of users driven by the wide
proliferation of both smartphone technology and ubiquitous
location-based services (LBSs). A popular type of LBS, termed
Location-based Social Discovery (LBSD) services, provides
a smartphone user a list of nearby people (not necessarily
friends) along some indication of how far away the users
are. The smartphone user can then exchange messages with
the discovered nearby users, thereby attempting to make new
friends or meet up with existing nearby friends.

In real-world LBSD services, there has been a plethora of
prevalent applications including WeChat, Momo, and Skout.
WeChat – which provides other services in addition to LBSD
– boasts more than 600 million users and is currently used
by essentially all smartphone users in China on a daily basis.
In order to protect users’ privacy, these services generally do
not report the exact longitude and latitude locations of the
nearby users. In the first generation, they instead reported to
the smartphone user exactly how far away each of the nearby
users are. For example, suppose Alice is a smartphone and
runs the LBSD application. The first generation applications
would report to Alice information like “Bob is 176 meters
away and Clark is 227 meters away”. This information would

not provide Bob’s and Clark’s exact locations but instead locate
them to circles of radius 176 and 227 meters, respectively.
Unfortunately, as we review in Section II, it has been shown
that it is easy to pinpoint any reported user’s location by using
trilateration based on the exact distances from three fake GPS
locations to the reported user. (Fake GPS is an App that lets
any smartphone user – such as Alice – to configure her fake
longitude and latitude locations to any place in the world.)

To thwart the trilateration attack, contemporary LBSD
services then began to report distances of nearby users in
concentric bands, e.g., they might say “Bob is between 100
and 200 meters away, and Clark is within 200 and 300 meters
away”. This would put Bob in a large circular band of π2002 -
π1002 m2 and Clark in an even larger circular band of π3002
- π2002 m2. By reporting distances in bands, one can no
longer directly apply trilateration to pinpoint the locations of
the discovered users. WeChat, for example, currently uses this
concentric band approach when reporting distances. This band-
based approach therefore seemingly protects users’ privacy to
a much greater extent.

We show, nevertheless, that by using fake GPS to carefully
place multiple virtual probes, we can nevertheless pinpoint
the discovered users’ locations, even when band-based privacy
protection mechanisms are used. Our methodology guarantees
to pinpoint any reported user within an area bounded by one
square meter, even for LBSD services using large bands (such
as 100m as used by WeChat). To the best of our knowledge,
this is the first work that explicitly exploits and quantifies user
location privacy leakage in band-based LBSD services.

In this work, we adopt a generic approach to prove that
it is possible for an ordinary user of an LBSD network to
pinpoint individuals’ locations and trace their mobility patterns
in any targeted area. The attack not only can target a specific
individual, but from any one geographical location (such as
Washington D.C.), it can also target any other geographical
region (e.g., Beijing) and monitor all the users using the service
in that region. Obviously, if a weak adversary can monitor a
region in a city, then so can a stronger adversary such as a
government intelligence agency. We emphasize, however, that
a person can only be discovered if he is a user of the LBSD
service. For example, if a WeChat user only uses WeChat
for messaging friends and posting photos, and never uses
WeChat’s LBSD service, then the user is not locatable by
the methods described in this paper. And a user’s mobility
is only traceable if the user repeatedly uses the LBSD service
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(repeatedly queries “People Nearby” in WeChat).
In this paper, we first consider a one-dimensional version

of the problem. We employ number theory to prove that under
some easily satisfiable conditions, we can locate a reported
user to within a half meter. We then extend the methodology
to the two-dimensional approach by placing virtual probes as a
lattice of equidistant points (honeycomb). Our approach com-
bines the distance observed by several probes to determine an
overlapping area bounded by

√
3
2 m2 containing the target user.

Therefore, we can use such information to pinpoint the users,
and even identify their mobility patterns if they repeatedly use
the LBSD service. Our analysis shows that current band-based
LBSD services fail to protect users’ location privacy.

II. PROBLEM STATEMENT
In this section, we first overview the state-of-the-art of

LBSD Services and the trilateration attack on exact distance.
We then present the problem when LBSD services use band-
based distance.

A. LBSD Services and Trilateration Attack
LBSD applications enable a user to find nearby users. In

the example of WeChat, which has drawn 600 million users
globally since the service was released in January 2011, it
provides a “People Nearby” LBSD service, which reads in the
current geo-localization of the mobile device and returns a list
of other WeChat users in geographic proximity, establishing
on-the-spot connection among nearby users. One option is to
report the exact distance to the nearby users. As reported in [1],
LBSD services with exact distance are vulnerable to the so
called Trilateration Attack. In Euclidean geometry, trilateration
is the process of determining relative locations of points by
measurement of exact distances, using the geometry of circles.
To perform the attack, when a target user lies on three circles
from known locations, then the centers of the three circles with
their exact radii provide sufficient information to pinpoint the
possible locations down to one unique location of the target
user.

LBSD applications read in a user’s location from his device
as long as the user uses the LBSD feature: if a user never
triggers the LBSD feature, one’s location privacy will not be
threatened by the attack. However, Terence Chen et al. [2] has
observed that only about 6% of the total number of users in
their dataset has their locations hidden from public access.

To defend against trilateration attack, contemporary LBSD
applications, such as WeChat, Momo, and Skout, adopt obfus-
cation techniques to blur the location information by having the
user’s smartphone submit ROUNDUP relative distance instead
of the exact relative distance. For example, WeChat reports the
relative distance in bands of 100m. When WeChat shows that
the target user is 500m away from a certain user, it means that
the target user is located in a band area centered at the current
user’s location with radius r ranging from 400m to 500m.
We outline the distance report accuracy and coverage of some
prevalent LBSD applications in Table I [3]. In general, we
assume that LBSD applications provide the relative distance
in bands of K meters. Then the relation between the reported
relative distance ωd and the exact relative distance d can be
formalized as follows:

ωd =

(⌊
d

K

⌋
+ 1

)
×K.

TABLE I: Location-based Social Discovery Applications

App Accuracy Limit Coverage Limit

WeChat 100m 1km
Momo 10m N/A
Skout 0.5mile N/A
Whoshere 100m N/A
Topface 100m N/A
SayHi 10m 1000km
iAround 10m N/A
U+ 10m N/A
LOVOO 100m 27.8km
KKtalk 10m N/A

B. Adversary Model
Simple trilateration attack no longer works with band

distance. In this paper, we develop a new location privacy
attack on LBSD applications reporting band distance. In the
adversary model, an attacker places multiple virtual probes
in a remote geographical region (e.g., pinpoint NYC from
Shanghai), which can be done easily by spoofing the LBSD
applications with fake GPS locations. Each virtual probe
collects nearby LBSD users with the corresponding relative
distance bands to the probe. While virtual probes can be
deployed in arbitrary locations, we assume that virtual probes
are positioned to form a lattice of equidistant points. The
attacker is to pinpoint the target user in a lattice by using
relative band distances provided by virtual probes based on
revised trilateration methodology. We analytically show that
by carefully placing multiple virtual probes with contrived
fake GPS locations, one can be located somewhere in the
highlighted area with three circular rings as illustrated in
Figure 1.

More concisely, we consider
• a geographical region as a lattice of equidistant vir-

tual probes, the distance between one probe and any
adjacent probe is x;

• each probe reports the relative distance to the target
user in bands/units of K;

• x is chosen such that gcd (x,K) = 1, where x,K ∈ Z
and x,K ≥ 1.

The problem under study is illustrated in Figure 1.

Fig. 1: Lattice (honeycomb)

III. PRELIMINARY NUMBER THEORY
In this section, we introduce notations from number theory

and review several lemmas which will be used later. Due to
space limitations, we only present a snapshot of all the lemmas
and theorems we obtained throughout this paper.
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Division: Consider two integers a, b ∈ Z =
{...,−1, 0, 1, 2, ...}, we say that b divides a iff ∃ c ∈ Z, such
that a/b = c, and write b | a. Common Divisor: For a, b ∈ Z,
we call d ∈ Z a common divisor of a and b if d | a and d | b;
moreover, we call such a d a greatest common divisor of a
and b if d is non-negative and all other common divisors of a
and b divide d, and write gcd (a, b) = d. Congruence: For a
positive integer n and for a, b ∈ Z, we say that a is congruent
to b modulo n if n | (a− b), and write a ≡ b (mod n).

Lemma 3.1: For a, b ∈ Z, there exist s, t ∈ Z such that
as+ bt = 1 if and only if gcd(a, b) = 1.

For simplicity, by using Extended Euclidean Algorithm
to compute s and t where |s| ≤ |b| and |t| ≤ |a|, the proof of
Lemma 3.1 is trivial [4].

Lemma 3.2: For any y ∈ Z such that 1 ≤ y ≤ K − 1 and
any positive integer x such that gcd(x,K) = 1, there exists
n ∈ Z where 1 ≤ n ≤ K − 1, such that

n · x ≡ y (mod K).

Lemma 3.3: For any y ∈ Z such that 1 ≤ y ≤ K − 1 and
any positive integer x such that gcd(x,K) = 1, there exists a
unique n ∈ Z where 1 ≤ n ≤ K − 1, such that

n · x ≡ y (mod K).

Remark 3.4: By applying Lemma 3.2 and Lemma 3.3, we
can obtain that fx(N) ≡ N ·x (mod K) is a permutation over
ZK . For the above s, note that fs(N) ≡ N ·s (mod K) is the
inversion of fx(N) over ZK , i.e., fs(fx(N)) ≡ N (mod K).

IV. ONE-DIMENSIONAL ADVERSARIAL METHODOLOGY
In this section, we consider a special One-Dimensional (1-

D) case of the problem that we try to detect the target user’s
location along a line, which is composed of a set of evenly
spaced probes. We prove that the accuracy of 1-D case is
bounded by half meter.

A. Formulation
We summarize the notations introduced throughout this

section in Table II.

TABLE II: Summary of Notations

Symbol Meaning

O the target point (the location of the user)
dpi

the accurate distance between the probe pi and the target point O
ωpi

the reported distance between the probe pi and the target point O
rpi the remainder of the distance to probe pi, i.e., rpi ≡ dpi

(mod K)

As illustrated in Figure 2, in the 1-D case, all the virtual
probes are evenly spaced along a line. Then we have

Fig. 2: One-dimensional Line

dpi = dpi−1 + x = dp1 + (i− 1) · x, where i ≥ 1, (IV.1)

x =
⌊ x

K

⌋
×K + rx, where 0 ≤ rx < K, rx ∈ Z,

ωpi =

(⌊
dpi

K

⌋
+ 1

)
×K, where ∀i ∈ N.

Algorithm 1 takes in x, {ωpi} as input, and returns the
accurate distance to the first probe dp1 after certain iterations.
By using Binary Search, the iterative algorithm can be further
improved to reduce the computation time. The complexity of
Binary Search Method and Simple Iterative Method are also
numerically evaluated in Section VI.

Algorithm 1 Iterative Algorithm for 1-D Case
Initialization
INPUT
The distance between one probe and any adjacent probe: x;
The set of samples for the reported distance: {ωpi};
Extended Euclidean Algorithm
Compute s such that s · x+ t ·K = 1
T ← K
REPEAT
T ← T − 1
N = fs(T ) + 1 = T · s (mod K) + 1

∆(T ) =

{
1,

ωpN

K =
ωp1

K +
⌊
fs(T )·x

K

⌋
;

0, Otherwise.

UNTIL ∆(T ) = 1 or T = 1
RETURN Dp1 = ωp1 − T − 1

2

Note that the key role of the Algorithm 1 is the equation

ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
. (IV.2)

We can use equation IV.2 as a test function to determine the
location. Since

1 ≤ T ≤ K − 1, fs(T ) · x ≡ fx(fs(T )) ≡ T (mod K).

We have

fs(T ) · x =

(⌊
T · s · x

K

⌋
−
⌊
T · s
K

⌋
· x

)
×K + T. (IV.3)

Thus let N = fs(T ) + 1, it follows

ωpN

K
=

⌊
⌊dp1

K ⌋ ×K + rp1 + ⌊
fs(T )·x

K ⌋ ×K + T

K

⌋
+ 1.

(IV.4)

If rp1 + T < K, then

ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
; (IV.5)

otherwise

ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
+ 1. (IV.6)

Algorithm 1 first tries to find the greatest T which satisfies
Equation IV.2. Eventually it returns Dp1 = ωp1 − T − 1

2 as
the distance from target point O to probe p1. Note that if
dp1 ∈ Z+, we can let the algorithm return Dp1 = ωp1 −T − 1
as the detected distance from target point O to probe p1, where
Dp1 is the exact value of dp1 .

Thus for correctness, we have the following result which
we state formally.
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Theorem 4.1: If Dp1 = ωp1 − T − 1
2 is returned by

Algorithm 1, then

|Dp1 − dp1 | ≤
1

2
.

Namely, the error of Algorithm 1 is bounded by 1
2 . In partic-

ular, if dp1 ∈ Z+, we can find the exact target point with a
slight modification to the algorithm by letting the output be
Dp1 = ωp1 − T − 1.

V. TWO-DIMENSIONAL ADVERSARIAL METHODOLOGY
In this section, we prove if the target user is located in the

aforementioned probe array, the algorithm will position the
target user within an area S of size S ≤

√
3
2 square meter.

A. Search for the Shadow Point
Before presenting our Two-Dimensional (2-D) algorithm,

we summarize the notations introduced throughout the rest of
paper in Table III.

TABLE III: Summary of Notations

Symbol Meaning

O′ the target point (the location of the user)
O the projection of the target point to the line of virtual

probes
dpi

= |OPi| the distance from O to Pi

dqi
= |OQi| the distance from O to Qi

Dpi
= |O′Pi| the distance from O′ to Pi

Dqi
= |O′Qi| the distance from O′ to Qi

ωpi
the reported distance from O to Pi

ωqi
the reported distance from O to Qi

As illustrated in Figure 3, to detect the location of a target
user located at position O′ on a 2-D plane, we deploy virtual
probes along a line close to the target point O′. Let O be the
projection of O′ to the virtual probe line, we name the probes
to the left of O as P1, P2, · · · , PN , and the probes to the right
of O as Q1, Q2, · · · , QN .

Fig. 3: Projection of The Target Point

We denote the direction from O to PN as X⃗1, and the
direction from O to QN as X⃗2. Similar to the 1-D case,
we assume the distance between two adjacent probes is a
constant x. We define a problem termed shadow problem
detection which is used to find point O, the projection of target
point O′. We further assume |OO′| ≤ h (where h ≤

√
3
2 x),

since O′ is close to the line.
We detect the shadow point O from two directions X⃗1

and X⃗2 respectively. For simplicity, we only apply the di-
rection X⃗1 to the following lemmas, which also hold for the
direction X⃗2.

Lemma 5.1: If |O′O| is bounded, i.e., |O′O| = h ≤
√
3
2 x,

where x ∈ Z+ and gcd(x,K) = 1, then

|Dpn − dpn | −→ 0, as n −→∞.

Corollary 5.2: If n ≥ x+ 1, then

dpn < Dpn < dpn +
1

2
. (V.1)

Lemma 5.3: If n ≥ x+1, and 0 ≤ dp1 −⌊dp1⌋ ≤ 1
2 , then

the following holds: ⌊
Dpn

K

⌋
=

⌊
dpn

K

⌋
. (V.2)

For any 1 ≤ T ≤ K − 1, let N = fs(T ) + 1. We have
dpN = dp(fs(T )+1)

, DpN = Dp(fs(T )+1)
. Then, we have the

following lemma.
Lemma 5.4: There exists T0, where 1 ≤ T0 ≤ K−1, such

that for any 1 ≤ T ≤ K − 1, and T ̸= T0, we have⌊
dp(fs(T )+1)

K

⌋
=

⌊
Dp(fs(T )+1)

K

⌋
.

Remark 5.5: In fact, Lemma 5.4 is a key component to
prove the below Theorem 5.6.

The explicit algorithm to find the shadow point O from
the direction X⃗1, which is denoted as Algorithm 2 , is
demonstrated as follows. Algorithm 2 takes in x, {ωpi} as
input, and returns T and Dp1 = ωp1 − T − 1

2 .

Algorithm 2 Search the Shadow Point from Direction X⃗1

Initialization
INPUT
The distance between one probe and any adjacent probe: x;
The set of samples for the reported distance from Direction
X⃗1: {ωpi};
Extended Euclidean Algorithm

Compute s such that s · x+ t ·K = 1
T ← K
REPEAT
T ← T − 1
N =

(⌊
x
K

⌋
+ 1

)
×K + fs(T ) + 1

∆(T ) =

{
1,

ωpN

K =
ωp1

K +
⌊
fs(T )·x

K

⌋
+ x ·

(⌊
x
K

⌋
+ 1

)
;

0, Otherwise.

UNTIL ∆(T ) = 1 or T = 1
RETURN T and Dp1

= ωp1
− T − 1

2

For its correctness, we note that the key role of Algorithm 2
is to test the following equation

ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
+ x ·

(⌊ x

K

⌋
+ 1

)
. (V.3)

We let

M =
(⌊ x

K

⌋
+ 1

)
×K, and N = M + fs(T ) + 1,

and define

∆(T ) =

{
1,

ωpN

K =
ωp1

K +
⌊
fs(T )·x

K

⌋
+ x ·

(⌊
x
K

⌋
+ 1

)
;

0, Otherwise.

Then we have
ωpN

K
=

ωp1

K
+

⌊
rp1 + T

K

⌋
+

⌊
fs(T ) · x

K

⌋
+ x ·

(⌊ x

K

⌋
+ 1

)
.

(V.4)
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If rp1 + T < K, then

ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
+ x ·

(⌊ x

K

⌋
+ 1

)
; (V.5)

otherwise
ωpN

K
=

ωp1

K
+

⌊
fs(T ) · x

K

⌋
+ x ·

(⌊ x

K

⌋
+ 1

)
+ 1. (V.6)

Algorithm 2 first tries to find the greatest T which sat-
isfies Equation V.3. Eventually Algorithm 2 returns output
Dp1

= ωp1
− T − 1

2 as the distance from target point O
′

to probe p1. Symmetrically, the explicit algorithm to find
the shadow point O from the direction X⃗2 is denoted as
Algorithm 3.

Above all, the shadow point O can always be located in the
1-meter band by executing the Algorithm 2 and Algorithm 3
respectively.

B. Detect the Shadow Point from Two Directions
In this subsection, we further combine Algorithm 2 and

Algorithm 3 that we study before, itemize our deduction and
eventually justify if T + T̃ = K − 2, the shadow point O can
be uniquely detected from two directions, within 1-meter band
accuracy; otherwise T+T̃ = K−1, the shadow point O can be
selected by the middle point returned by either Algorithm 2 or
Algorithm 3, of which the accuracy is well below or equal to
1 meter. Hence, the shadow point O can always be pinpointed
with an accuracy bounded by 1 meter.

The explicit algorithm to find the shadow point O from di-
rection X⃗1 and direction X⃗2, which is denoted as Algorithm 4,
can be graphically interpreted in Figure 4.

Fig. 4: Detect the Shadow Point from Two Directions

Algorithm 4 takes in x, {ωpi}, and {ωqi} as input by
calling both Algorithm 2 and Algorithm 3 concurrently. By
applying Lemma 5.4, Algorithm 4 falls into two decision
statements, which are T + T̃ = K− 2, and T + T̃ = K− 1. It
eventually returns the setting of the shadow point O on the line
segment between QN and PN , which is demonstrated above.

Thus for correctness, we have the following result.
Theorem 5.6: If Dp1

= ωp1
− T − 1

2 , Dq1 = ωq1 − T̃ − 1
2

is returned by Algorithm 4, then

|Dp1 − dp1 | ≤
1

2
, |Dq1 − dq1 | ≤

3

2
.

or
|Dq1 − dq1 | ≤

1

2
, |Dp1 − dp1 | ≤

3

2
.

Namely, the error of Algorithm 4 is bounded by 1 meter when
outputting the middle point. In particular, if dp1 ∈ Z+ or
dq1 ∈ Z+, we can find the exact shadow point O uniquely
with a slight modification to the Algorithm 4 by letting the
output be Dp1 = ωp1 − T − 1 or Dq1 = ωq1 − T̃ − 1.

C. Locate Target Point
We first execute Algorithm 4 to detect the shadow point O

on the line segment between QN and PN from both di-
rection X⃗1 and X⃗2. As the probe layout is a lattice of
equidistant points, when we make a 60 degrees clockwise
rotation for both X⃗1 and X⃗2, we obtain new directions Y⃗1

and Y⃗2; when we make a 120 degrees clockwise rotation
about direction X⃗ , we obtain new directions Z⃗1 and Z⃗2. By
executing Algorithm 4, we can detect the projected shadow
point O2 along direction Y⃗1, Y⃗2, and the projected shadow
point O3 along direction Z⃗1, Z⃗2. The rotated projections are
graphically illustrated in Figure 5.

Fig. 5: Overlapping Area

The main algorithm is constructed by concurrently calling
Algorithm 4 three times, which is denoted Algorithm 5.
Algorithm 5 takes in x, {ωpi}, and {ωqi} as input, and returns
the overlapping area containing the target point O

′
.

Therefore, we can completely detect three shadow
points O, O2, and O3 respectively from three directions X⃗ ,
Y⃗ , and Z⃗ by executing Algorithm 5. Eventually, the target
point O

′
will be located in a zone bounded by

√
3
2 m2. Thus

for correctness, we have the following result.
Theorem 5.7: If the target point O

′
is returned by Algo-

rithm 5, then the overlapping area S satisfies

S ≤
√
3

2
.

Namely, the error of Algorithm 5 is bounded by
√
3
2 m2.

VI. IMPLEMENTATION DISCUSSION
We show the architecture for our attacking methodology

in Figure 6. Adversaries gather relative distance samples from
the target user’s smartphone, when the target user uses LBSD
applications. The data are processed in real time via our
attacking algorithms and stealthily pinpoint the target user.
In Figure 6, the initial s satisfying s · x + t · K = 1 is
computed via Extended Euclidean Algorithm, which derives
Algorithm 1. Algorithm 2 and Algorithm 3 are constructed
from two opposite directions X⃗1 and X⃗2 respectively based
on Algorithm 1. Algorithm 4 combines both Algorithm 2 and
Algorithm 3 and executes three times from direction X⃗ , Y⃗ ,
and Z⃗ respectively, which derives Algorithm 5. Finally, the
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Fig. 6: Implementation of Attacking Model

Algorithm 5 returns the overlapping area containing the target
user for tracking or stalking. For each algorithm, if we do
Simple Iterative Search, the computation complexity is O(K),
if we do Binary Search, the complexity is O(⌊log2 K⌋).

In the aforementioned analysis, we assumed that the probe
layout satisfies gcd (x,K) = 1. If we generalize the hypothesis
such that gcd (x,K) = ℓ, where ℓ ∈ Z and ℓ ≥ 1, the
corresponding result will be shown as follows:
• Given 6 · ⌊log2 K⌋ virtual probes, the target user can

be pinpointed in an area bounded by (
√
3
2 · ℓ

2)m2.

VII. RELATED WORK
The field of location privacy in LBSNs has been scrutinized

in recent years. Novel differential privacy mechanisms have
also been proposed [5], [6]. There has been quite some research
invested in inferring a user’s trajectories and further identify
his private background information [7], [8]. Zhou et al. [9]
proposes that an application without any permission may still
obtain sensitive information, including a user’s geo-location
and driving trajectories. The large amount of public back-
ground information can potentially turn harmless resources
into serious privacy leaks by stealthily monitoring application
data-usage statistics, ARP information, etc [10], [11].

In all the aforementioned mechanisms, very little work
exists on LBSDs. To the best of our knowledge, the following
three approaches are the closest to ours. Le Blond et al.
[12] discusses that a third party is used to track plenty of
users’ whereabouts. Both Ding et al. [13] and Li et al. [3]
develop novel automatic tracking systems and demonstrate its
effectiveness and efficiency in achieving high-accuracy geo-
locating. However, we proceed to quantify its accuracy and
develop number theory based algorithms to accurately locate
a target user within a small region. Our approach is the first
work to prove that a victim can be pinpointed in band-based
LBSD services.

VIII. CONCLUSION AND FUTURE WORK
To thwart the trilateration attack, contemporary LBSD

services have begun to report distances of nearby users in con-
centric bands. In this paper, we investigated the user location
privacy leakage problem in LBSD services reporting distances
in concentric bands. Using number theory, we analytically
show that by strategically placing multiple virtual probes
as pre-determined fake GPS locations, one can nevertheless
pinpoint user locations in band-based LBSD. Our methodol-
ogy guarantees to pinpoint any reported user within an area

bounded by one square meter, even for LBSD services using
large bands. We emphasize, however, that a person can only be
discovered if he is a user of the LBSD service. For example,
if a WeChat user only uses WeChat for messaging friends
and posting photos, and never uses WeChat’s LBSD service,
then the user is not locatable by the methods described in this
paper. To the best of our knowledge, this is the first work
that explicitly exploits and quantifies user location privacy
leakage in band-based LBSD services. Our study is expected
to draw more public attention to this serious privacy issue and
hopefully motivate better privacy-preserving LBSD designs.

Providing other frameworks for purely pinpointing the
target user with discrete bands would also be interesting topics.
For example, if an attacker has partial information about a set
of target users, is it possible to learn the location of all the
users? What is the best query to make to pinpoint the target
user? We believe these aspects are worth further investigation
and leave it as an open direction for future work.
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