
Adaptive Algorithms for Detecting Community
Structure in Dynamic Social Networks

Nam P. Nguyen, Thang N. Dinh, Ying Xuan, My T. Thai
Department of Computer and Information Science and Engineering, University of Florida

Email: {nanguyen, tdinh, yxuan, mythai}@cise.ufl.edu

Abstract—Social networks exhibit a very special property:
community structure. Understanding the network community
structure is of great advantages. It not only provides helpful
information in developing more social-aware strategies for social
network problems but also promises a wide range of applications
enabled by mobile networking, such as routings in Mobile Ad
Hoc Networks (MANETs) and worm containments in cellular
networks. Unfortunately, understanding this structure is very
challenging, especially in dynamic social networks where social
activities and interactions are evolving rapidly. Can we quickly
and efficiently identify the network community structure? Can
we adaptively update the network structure based on previously
known information instead of recomputing from scratch?

In this paper, we present Quick Community Adaptation
(QCA), an adaptive modularity-based method for identifying
and tracing community structure of dynamic online social net-
works. Our approach has not only the power of quickly and
efficiently updating network communities, through a series of
changes, by only using the structures identified from previous
network snapshots, but also the ability of tracing the evolution
of community structure over time. To illustrate the effectiveness
of our algorithm, we extensively test QCA on real-world dynamic
social networks including ENRON email network, arXiv e-print
citation network and Facebook network. Finally, we demonstrate
the bright applicability of our algorithm via a realistic application
on routing strategies in MANETs. The comparative results
reveal that social-aware routing strategies employing QCA as a
community detection core outperform current available methods.

I. INTRODUCTION

Many social networks exhibit the property of containing
community structure [1][2], i.e., they naturally divide into
groups of vertices with denser connections inside each group
and fewer connections crossing groups, where vertices and
connections represent network users and their social interac-
tions, respectively. Members in each community of a social
network usually share things in common such as interests in
photography, movies, music or discussion topics and thus, they
tend to interact more frequently with each other than with
members outside of their community. Community detection
in a network is the gathering of network vertices into groups
in such a way that nodes in each group are densely connected
inside and sparser outside.

It is noteworthy to differentiate between community de-
tection and graph clustering. These two problems share the
same objective of partitioning network nodes into groups;
however, the number of clusters is predefined or given as
part of the input in graph clustering whereas the number of
communities is typically unknown in community detection.
Detecting communities in a network provides us meaningful

insights to its internal structure as well as its organization
principles. Furthermore, knowing the structure of network
communities could also provide us more helpful points of
view to some uncovered parts of the network, thus helps
in preventing potential networking diseases such as virus or
worm propagation. Studies on community detection on static
networks can be found in an excellent survey [3] as well as
in the work of [4][5][6][7] and references therein.

Real-world social networks, however, are not always static.
In fact, most of social networks in reality (such as Facebook,
Bebo and Twitter) evolve and witness an expand in size and
space as their users increase, thus lend themselves to the
field of dynamic networks. A dynamic network is a special
type of evolving complex networks in which changes are
frequently introduced over time. In the sense of an online
social network, such as Facebook, Twitter or Flickr, changes
are usually introduced by users joining in or withdrawing
from one or more groups or communities, by friends and
friends connecting together, or by new people making friend
with each other. Any of these events seems to have a little
effect to a local structure of the network on one hand; the
dynamics of the network over a long period of time, on
the other hand, may lead to a significant transformation of
the network community structure, thus raises a natural need
of reidentification. However, the rapidly and unpredictably
changing topology of a dynamic social network makes it an
extremely complicated yet challenging problem.

Although one can possibly run any of the static community
detection methods, which are widely available [4][5][6][8], to
find the new community structure whenever the network is
updated, he may encounter some disadvantages that cannot be
neglected: (1) the long running time of a specific static method
on large networks (2) the trap of local optima and (3) the
almost same reaction to a small change to some local part of
the network. A better, much efficient and less time consuming
way to accomplish this expensive task is to adaptively update
the network communities from the previous known structures,
which helps to avoid the hassle of recomputing from scratch.
This adaptive approach is the main focus of our study in this
paper. In Figure 1, we briefly generalize the idea of dynamic
network community structure adaptation.

Detecting community structure of a dynamic social network
is of considerable uses. To give a sense of it, consider the
routing problem in communication network where nodes and
links present people and mobile communications, respectively.

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

U.S. Government work not protected by U.S. copyright 2282

:

:
Fig. 1. The network evolves from time t to t+1 under the change ∆Gt. The
adaptive algorithm A quickly finds the new community structure C(Gt+1)
based on the previous structure C(Gt) together with the changes ∆Gt.

Due to nodes mobility and unstable links properties of the
network, designing an efficient routing scheme is extremely
challenging. However, since people have a natural tendency
to form groups of communication, there exist groups of nodes
which are densely connected inside than outside in the under-
lying MANET as a reflection, and therefore, forms community
structure in that MANET. An effective routing algorithm, as
soon as it discovers the network community structure, can
directly route or forward messages to nodes in the same (or to
the related) community as the destination. By doing this way,
we can avoid unnecessary messages forwarding through nodes
in different communities, thus can lower down the number of
duplicate messages as well as reduce the overhead information,
which are essential in MANETs.

The contributions of this paper are:

• We propose QCA, a fast and adaptive algorithm for
efficiently identifying the community structure of a dy-
namic social network. Our approach takes into account
the previously discovered network structure and processes
on network changes only, thus significantly reduces com-
putational cost and processing time.

• We study the dynamics of a social network and prove
theoretical results regarding its various behaviors over
time, which are the basic features of our method.

• We extensively evaluate our algorithms on various real
world dynamic social networks including Enron email
network, ArXiv citation network and Facebook network.
Experimental results show that our method not only
achieves competitive modularities but also high quality
community structures in a timely manner.

• As an application, we employ QCA as a community
identification core in routing strategies in MANETs.
Simulation results show that QCA outperform the current
available methods and confirm the bright applicability of
our proposed method in mobile computing.

The rest of this paper is organized as follow: Section II
presents the preliminaries and problem definition. Section
III gives a complete description of our algorithms and their
theoretical analysis. Section IV shows experimental results of
our approach on various real world datasets. In sections V , we
present a practical application of our approach in MANETs.
In Section V I , we discuss about the related work and finally
conclude our work in Section V II .

II. PRELIMINARIES

In this section, we present the notations, objective function
as well as the dynamic graph model representing a social
network that we will use throughout the paper.

(Notation) Let G = (V,E) be an undirected unweighted
graph with N nodes and M links representing a social
network. Let C = {C1, C2, .., Ck} denote a collection of
disjoint communities, where Ci ∈ C is a community of
G. For each vertex u, denote by du, C(u) and NC(u) its
degree, the community containing u and the set of its adjacent
communities. Furthermore, for any S ⊆ V , let mS , dS and euS
be the number of links inside S, the total degree of vertices
in S and the number of connections from u to S, respectively.
The pairs of terms community and module; node and vertex as
well as edge and link and are used interchangeably.

(Dynamic social network) Let Gs = (V s, Es) be a time
dependent network snapshot recorded at time s. Denote by
∆V s and ∆Es the sets of vertices and links to be introduced
(or removed) at time s and let ∆Gs = (∆V s,∆Es) denote
the change in term of the whole network. The next network
snapshot Gs+1 is the current one together with changes, i.e.,
Gs+1 = Gs ∪ ∆Gs. A dynamic network G is a sequence of
network snapshots evolving over time: G = (G0, G1, .., Gs).

(Objective function) In order to quantify the goodness of a
network community structure, we take into account the most
widely accepted measure called modularity Q [6], which is
defined as: Q =

∑
C∈C

�
mC

M �
d2C

4M2

)
. Basically, Q is the fraction

of all links within communities subtracts the expected value
of the same quantity in a graph whose nodes have the same
degrees but links are distributed randomly, and the higher
modularity Q, the better network community structure is.
Therefore, our objective is to find a community assignment
for each vertex in the network such that Q is maximized.
Modularity, just like other quality measurements for commu-
nity identifications, has some certain disadvantages such as its
non-locality and scaling behavior [7] or resolution limit [9].
However, it is still very well considered due to its robustness
and usefulness that closely agree with intuition on a wide range
of real world networks.

Problem Definition: Given a dynamic social network G =
(G0, G1, .., Gs) where G0 is the original network and G1,
G2,.., Gs are the network snapshots obtained through ∆G1,
∆G2,.., ∆Gs, we need to devise an adaptive algorithm to
efficiently detect and identify the network community structure
at any time point utilizing the information from the previous
snapshots as well as tracing the evolution of the network
community structure.

III. METHOD DESCRIPTION

Let us first discuss about how changes to the evolving
network topology affect the structure of its communities.
Assume that G = (V,E) is the current network and C =
{C1, C2, .., Ck} is its corresponding community structure. We
use the term intra-community links to denote edges whose two
endpoints belong to the same community and the term inter-
community links to denote those with endpoints connecting

2283

(a) (b) (c) (d)

Fig. 2. 2(a): When an edge (u, v) joining C(u) and C(v) is introduced. Tests on membership changing are performed on sets X and Y 2(b): a) The
original community b) After an edge (in dotted line) is removed, the community is broken into two smaller communities 2(c): a) The original network with
four communities b) After the highest degree node is removed, the leftover nodes join in different modules, forming a new network with three communities
2(d): a) The original community b) When the central node g is removed, a 3-clique is placed at a to discover b, c, d and e. f assigned singleton afterwards

different communities. For each community C of G, the
number of connections linking C with other communities
are much fewer than the number of connections within C
itself, i.e., nodes in C are densely connected inside than
outside. Intuitively, adding intra-community links inside or
removing inter-community links between communities of G
will strengthen those communities and make the structure of
G more clear. Vice versa, removing intra-community links and
inserting inter-community links will loosen the structure of G.
However, when two communities have less distraction caused
by each other, adding or removing links makes them more
attractive to each other and thus, leaves a possibility that they
will be combined to form a new community. The community
updating process, as a result, is extremely challenging since
any insignificant change in the network topology can possibly
lead to an unexpected transformation of its community struc-
ture. We will discuss in detail possible behaviors of a dynamic
network community structure in Section III-A.

In order to reflect changes introduced to a social network, its
underlying graph is constantly updated by either inserting or
removing a node or a set of nodes, or by either introducing or
deleting an edge or a set of edges. In fact, the introduction or
removal of a set of nodes (or edges) can be decomposed as a
sequence of node (or edge) insertions (or removals), in which
a single node (or a single edge) is introduced (or removed)
at a time. This observation helps us to treat network changes
as a collection of simple events where a simple event can be
one of newNode, removeNode, newEdge, removeEdge whose
details are as follow:
• newNode (V +u): A new node u with its associated edges

are introduced. u could come with no or more than one
new edge(s).

• removeNode (V − u): A node u and its adjacent edges
are removed from the network.

• newEdge (E+e): A new edge e connecting two existing
nodes is introduced.

• removeEdge (E − e): An existing edge e in the network
is removed.

A. Algorithms

Our approach first requires an initial community structure
C0, which we refer to as the basic structure, in order to process
further. Since the input model is restricted as an undirected
unweighted network, this initial community structure can be

obtained by performing any of the available static community
detection methods [4][5][8]. To obtain a good basic structure,
we choose the method proposed by Blondel et al in [5] which
produces a network community structure of high modularity
in a reasonable amount of time [3].

1) New node: Let us consider the first case when a new
node u and its associated connections are introduced. Note
that u may come with no adjacent edge or with many of them
connecting one or more communities. If u has no adjacent
edge, we create a new community containing only u and
leave the other communities as well as the overall modularity
Q intact. The interesting case happens, as it always does,
when u comes with edges connecting one ore more existing
communities. In this latter situation, we need to determine
which community u should join in in order to maximize the
gained modularity. There are several local methods introduced
for this task, for instance the algorithms of [4][8]. Our method
is inspired by a physical approach proposed in [10], in which
each node is influenced by two forces: FCin (to keep u stays
inside community C) and FCout (the force a community C
makes in order to bring u to C) defined as follow: FCin(u) =

euC−
du(dC−du)

2M and FSout(u) = max
S∈NC(u)

{
euS−

dudoutS

2M

}
where

doutS is of opposite meaning of dS .
Taking into account the above two forces, a node u can

actively determines its best community membership by com-
puting those forces and either lets itself join in the community
having the highest Fout(u) (if Fout(u) > F

C(u)
in (u)) or stays

put in the current community otherwise. By Theorem 1, we
bridge the connection between those forces and the objective
function, i.e., joining the new node in the community with
highest outer force will maximize the local gained modularity.
This is the central idea for handling the first case when a new
node and its adjacent links are introduced. The detailed process
is presented in Alg. 1.

Theorem 1: Suppose C is the community that gives maxi-
mum FCout(u) when a new node u with degree p is introduced
to G, then joining u in C gives the maximal modularity
contribution.

2) New edge: In case that a new edge e = (u, v) connecting
two existing vertices u, v is introduced, we divide it further
into two smaller cases: e is an intra-community link (totally
inside a community C) or an inter-community link (connects
two communities C(u) and C(v)). If e is inside a community

2284

Algorithm 1 New Node
Input: New node u with associated links; Current structure Ct.
Output: An updated structure Ct+1

1: Create a new community of only u;
2: for v ∈ N(u) do
3: Let v determine its best community;
4: end for
5: for C ∈ NC(u) do
6: Find FC

out(u);
7: end for
8: Let Cu ← arg maxC {FC

out(u)};
9: Update Ct+1 : Ct+1 ←

(
Ct\Cu

)
∪

(
Cu ∪ u

)
;

C, its presence will strengthen the inner structure of C
according to Lemma 1. Furthermore, by Theorem 2, we know
that adding e should not split the current community C into
smaller modules. Therefore, we leave the current network
structure intact in this case.

The interesting situation happens when e is a link connect-
ing communities C(u) and C(v) since the presence of e could
possibly make u (or v) leave its current modules and join in
the new community. Additionally, if u (or v) decides to change
its membership status, it can eventually advertise its new
community to all its neighbors and some of them might want
to change their memberships as a consequence. By Lemma
2, we show that if u (or v) should ever change its cluster
assignment then C(v) (or C(u)) is the best new community
for it. But how can we efficiently and quickly decide whether
u (or v) should change its membership or not in order to form
a better community structure when e is added? To this end, we
provide a criterion to test for membership changing of u and
v in Theorem 3. Here, if both ∆qu,C,D and ∆qv,C,D fail to
satisfy the criteria, we can safely preserve the current network
community structure and keep going (Corollary 1). Otherwise,
we move u (or v) to its new community and consequently let
its neighbors determine their best modules to join in, using
local search and swapping to maximize gained modularity.
Figure 2(a) describes the procedure for this latter case. The
detailed algorithm is described in Alg. 2.

Lemma 1: For any C ∈ C, if dC ≤M − 1 then adding an
edge within C will increase its modularity contribution.

Theorem 2: If C is a community in the current snapshot of
G, then adding any intra-community link to C will not split it
into smaller modules.

Lemma 2: When a new edge (u, v) connecting communities
C(u) and C(v) is introduced, C(v) (or C(u)) is the best
candidate for u (or v) if it should ever change its membership.

Theorem 3: Assume that a new edge (u, v) is added to G.
Let C ≡ C(u) and D ≡ C(v). If ∆qu,C,D ≡ 4(M + 1)(euD +
1−euC)+euC(2dD−2du−euC)−2(du+1)(du+1+dD−dC) > 0
then joining u to D will increase the overall modularity.

Corollary 1: If the condition in Theorem 3 is not satisfied,
then neither u (or v) nor its neighbors should be moved to D.

3) Node removal: When an existing node u of a community
C is removed at time t, all of its adjacent edges are removed as
a result. This case is challenging in the sense that the resulting
community is very complicated: it can be either unchanged
or broken into smaller pieces and could probably be merged

Algorithm 2 New Edge
Input: Edge {u, v} to be added; Current structure Ct.
Output: An updated structure Ct+1.
1: if (u and v are new vertices) then
2: Ct+1 ← Ct ∪ {u, v};
3: else if C(u) 6= C(v) then
4: if ∆qu,C(u),C(v) < 0 and ∆qv,C(u),C(v) < 0 then
5: return Ct+1 ≡ Ct;
6: else
7: w = arg max{∆qu,C(u),C(v),∆qv,C(u),C(v)};
8: Move w to the new community;
9: for t ∈ N(w) do

10: Let t determine its best community;
11: end for
12: Update Ct+1;
13: end if
14: end if

with other communities. To give a sense of it, let’s consider
two extreme cases when a single degree node and a node
with highest degree in a community is removed. If a single
degree node is removed, it leaves the resulted community
unchanged (Lemma 4). However, when a highest degree vertex
is removed, the current community might be disconnected and
broken in to smaller pieces which then are merged to other
communities as depicted in Figure 2(c). Therefore, identifying
the leftover structure of C is a crucial part once a vertex in C
is removed.

To quickly and efficiently handle this task, we utilize the
clique percolation method presented in [2]. In particular, when
a vertex u is removed from C, we place a 3-clique to one of
its neighbor and let the clique percolate until no vertices in
C are discovered (Figure 2(d)). We then let the remaining
communities of C choose their best communities to merge in.
The detailed algorithm is presented in Alg. 3.

Algorithm 3 Node Removal
Input: Node u ∈ C to be removed; Current structure Ct.
Output: An updated structure Ct+1.
1: i← 1;
2: while N(u) 6= ∅ do
3: Si = {Nodes found by a 3-clique percolation on v ∈ N(u)};
4: if Si == ∅ then
5: Si ← {v};
6: end if
7: N(u)← N(u)\Si;
8: i← i+ 1;
9: end while

10: Let each Si and singleton in N(u) consider its best communities;
11: Update Ct;

4) Edge removal: In the last case when an edge e = (u, v)
is about to be removed, we divide further into four subcases
(1) e is a single edge connecting only u and v where u and
v are of single degree (2) either u or v has degree one (3)
e is an inter-community link connecting C(u) and C(v) and
(4) e is an inter-community link. If e is an single edge, it
is clear that removing e will result in the same community
structure plus two singletons of u and v themselves. The
same reaction applies to the second subcase when either u
or v has single degree due to Lemma 4, thus results in the
prior network structure plus u (or v). When e is an inter-
community link, the removal of e will strengthen the current
network communities (Lemma 3) and hence, we just make no

2285

change to the community structure.
The last but most complicated case happens when an intra-

community link is deleted. As depicted in Figure 2(b), remov-
ing this kind of edge often leaves the community unchanged if
the community itself is densely connected; however, the target
module will be divided if it contains substructures which are
less attractive or loosely connected to each other. Therefore,
the problem of identifying the structure of the remaining
modules becomes very complicated. Theorem 4 provides us
a convenient tool to test for community bi-division when an
intra-community link is removed from the host community
C. However, it requires an intensive look for all subsets of
C, which may be time consuming. Note that prior to the
removal of (u, v), the community C hosting this link should
contain dense connections within itself and thus, the removal
of (u, v) should leave some sort of ‘quasi-clique’ structure
inside C. Therefore, we find all maximal ‘quasi-cliques’ within
the current community and have them (as well as leftover
singletons) determine their best communities to join in. The
detailed procedure is described in Alg. 4.

Lemma 3: If C1 and C2 are two communities of G, then
the removal of an inter-community link connecting them will
strengthen modularity contributions of both C1 and C2.

Lemma 4: The removal of (u, v) inside a community C
where only u or v is of degree one will not separate C.

Lemma 5: (Separation of a community) Let C1 ⊆ C and
C2 = C\C1 be two disjoint subsets of C. (C\C)∪{C1, C2} is
a community structure with higher modularity when an edge
crossing C1 and C2 is removed, i.e, C should be separated
into C1 and C2, if and only if e12 <

d1d2−dC+1
2(M−1) + 1.

Theorem 4: (Testing of module separation) For any com-
munity C, let α and β be the lowest and the second highest
degree of vertices in C, respectively. Assume that an edge e
is removed from C. If there do not exist subsets C1 ⊆ C and
C2 ≡ C\C1 such that

1) e is crossing C1 and C2

2) min {α(dC−α),β(dC−β)}
2M < e12 <

(dC−2)2

8(M−1) + 1

then any bi-division of C will not benefit the overall Q.

Algorithm 4 Edge Removal
Input: Edge (u, v) to be removed; Current structure Ct.
Output: An updated clustering Ct+1.
1: if (u, v) is a single edge then
2: Ct+1 = (Ct\{u, v}) ∪ {u} ∪ {v};
3: else if Either u (or v) is of degree one then
4: Ct+1 = (Ct\C(u)) ∪ {u} ∪ {C(u)\u};
5: else if C(u) 6= C(v) then
6: Ct+1 = Ct;
7: else
8: % Now (u, v) is inside a community C %
9: L = {Maximal “quasi-cliques” in C};

10: Let the singletons in C\L consider their best communities;
11: end if
12: Update Ct+1;

Finally, our main algorithm QCA for quickly updating
community structures of dynamic social networks is presented
in Alg. 5.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of
our QCA algorithm on identifying and updating the network
community structures of dynamic social networks. To illustrate
the strength and effectiveness of our approach, we choose three
popular real-world social networks including ENRON email
network [11], arXiv e-print citation network (provided by the
KDD cup 2003 [12]) and Facebook online social network [13].
The static method we are comparing to is the one proposed
by Blondel et al [5], which we refer to as Blondel method
or static method. In addition to the static method, we further
compare QCA to a recent dynamic adaptive method called
MIEN proposed in [14]. Basically, MIEN tries to compress and
decompress network modules into nodes in order to adapt with
the changes and uses fast modularity method [4] to keep the
network structure updated. In particular, we will show in the
experiments the following quantities (1) modularity values (2)
the quality of the identified network communities through NMI
scores and (3) the processing time of our QCA in comparison
with other methods. The above networks expose to contain
clear community structures due to their high modularities,
which is the main reason for them to be chosen.

Algorithm 5 Quick Community Adaptation (QCA)
Input: G ≡ G0 = (V0, E0), E = {E1, E2, .., Es} a collection of simple events
Output: Community structure Ct of Gt at time t.
1: Use [5] to find an initial community clustering C0 of G0;
2: for (t← 1 to s) do
3: Ct ← Ct−1;
4: if Et = newNode(u) then
5: New Node(Ct, u);
6: else if Et = newEdge((u,v)) then
7: New Edge(Ct, (u, v));
8: else if Et = removeNode(u) then
9: Remove Node(Ct, u);

10: else
11: Remove Edge(Ct, (u, v));
12: end if
13: end for

In order to quantify the quality of the identified community
structure, i.e., the similarity between the identified communi-
ties and the ground truth, we adopt a well known measure
in Information Theory called Normalized Mutual Information
(NMI). NMI has been proven to be reliable and is currently
used in testing community detection algorithms [3]. Basically,
NMI(U, V) equals 1 if structures U and V are identical and
equals 0 if they are totally separated. Due to space limit, the
readers are encouraged to read [3] for NMI formulas.

For each network, time information is extracted in different
ways and a portion of the network data (usually the first
network snapshot) is collected to form the basic network
community structure. Our QCA algorithm takes into account
that basic community structure and runs only on the network
changes whereas the static method has to be performed on the
whole network snapshot up to each time point.

A. ENRON email network

The Enron email network contains email messages data
from about 150 users, mostly senior management of Enron

2286

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0 5 10 15 20
Time point

Blondel
QCA

MIEN

(a) Modularity

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20
Time point

Blondel
QCA

MIEN

(b) Number of Communities

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20
Time point

Blondel
QCA

MIEN

(c) Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20
Time point

QCA
MIEN

(d) NMI

Fig. 3. Simulation results on Enron Email Network dataset

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

(a) Modularity

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

(b) Number of Communities

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

(c) Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
Time point

QCA
MIEN

(d) NMI

Fig. 4. Simulation results on ArXiv e-Print Citation Network

 0.55

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0 5 10 15 20 25
Time point

Blondel
QCA

MIEN

(a) Modularity

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25
Time point

Blondel
QCA

MIEN

(b) Number of Communities

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25
Time point

Blondel
QCA

MIEN

(c) Running Time(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25
Time point

QCA
MIEN

(d) NMI

Fig. 5. Simulation results on Facebook Social Network

Inc., from Jan 1999 to July 2002 [11]. Each email address is
represented by an unique identification number in the dataset
and each link corresponds to a message sent between the
sender and the receiver. After a data refinement process, we
choose 50% of total links to form a basic community structure
of the network with 7 major communities, and simulate the
network evolution via a series of 21 growing snapshots in
which roughly 103 links are added at a time.

We first evaluate the modularity values computed by QCA,
MIEN and Blondel method. As shown in Figure 3(a), our
QCA algorithm archives competitively higher modularities
than the static method but a little bit less than MIEN method
while maintaining the nearly same number of communities
of the other two (Figure 3(b)). In particular, the modularity
values produced by QCA very well approximate those found
by static method with lesser variation. There are reasons for
that. Recall that our QCA algorithm takes into account the
basic community structures detected by the static method (at
the first snapshot) and processes on network changes only.
Knowing the basic network community structure is a great
advantage of our QCA algorithm: it can avoid the hassle of

searching and computing from scratch to update the network
with changes. In fact, QCA uses the basic structure for finding
and quickly updating the local optimal communities to adapt
with changes introduced during the network evolution.

The running time of QCA and the static method in this small
network are relatively close: the static method requires one
second to complete each of its tasks while our QCA does not
even ask for one (Figure 3(c)). In this dataset, MIEN requires
a little more time (1.5 second in average) to complete the
task. Time and computational cost are significantly reduced in
QCA since our algorithms only take into account the network
changes while the static method has to work on the whole
network every time.

Due to the lack of the proper information about real commu-
nities in Enron Inc. (and in other datasets), we use community
structure identified by the static method as a reference to
the ground truth. The quantity NMI(QCA,Blondel) (or
NMI(QCA) in short) indicates how community labels as-
signed by QCA similar to those of the ground truth computed
at every timepoint. A NMI value of 1 means two assignments
are identical and 0 implies the opposite. As one can see in

2287

Figure 3(d), both the NMI scores of MIEN method and ours
are very high and relatively close to 1, indicating that in this
Enron email network, both our QCA and MIEN algorithm are
able to identify high quality community structure with high
modularity; however, only our method significantly reduces
the processing time and computational requirement.

B. arXiv e-print citation network

The arXiv e-print citation network [12], which was initial-
ized in 1991, has become an essential mean of assessing re-
search results in various areas including physics and computer
sciences. At the time the dataset was collected, the network
already contained more than 225K fulltext articles and was
growing of over 40K submissions each year, ranging from
Jan 1996 to May 2003.

In our experiments, citation links of the first two years 1996
and 1997 were taken into account to form the basic community
structure of our QCA method. In order to simulate the network
evolution, a total of 30 time dependent snapshots of the arXiv
citation network are created on a two-month regular basis in
the duration between Jan 1998 and Jan 2003.

We compare modularity results obtained by QCA algorithm
at each network snapshot to Blondel method as well as to
MIEN method. It reveals from Figure 4(a) that the modularities
returned by QCA are very close to those obtained by the static
method with much more stabler and are far higher than those
of MIEN. In particular, the modularity values produced by
QCA algorithm cover from 94% up to 100% that of Blondel
method and from 6% to 10% higher than MIEN. Moreover, our
method reveals a much better network community structure
since it discovers many more communities than both the static
method and MIEN as the network evolves (Figure 4(b)). This
can be explained based on the resolution limit of modularity
[9]: the static method might disregard some small communities
and tend to combines them in order to maximize the overall
network modularity.

Second observation on running time shows that QCA out-
performs the static method as well as its competitor MIEN:
QCA takes at most 2 seconds to complete updating the net-
work structure while Blondel method requires more than triple
that amount of time (Figure 4(c)) and MIEN asks for more
than 5x time. In addition, higher NMI scores of QCA than
MIEN methods (Figure 4(d)) implies network communities
identified by our approach are not only of high similarity to
the ground truth but also more precise than that detected by
MIEN, meanwhile the computational cost and the running time
are significantly reduced.
C. Facebook social network

This data set contains friendship information (i.e., who
is friend with whom and wall posts) among New Orleans
regional network on Facebook, spanning from Sep 2006 to
Jan 2009 [13]. To collect the information, the authors created
several Facebook accounts, joined each to the regional net-
work, started crawling from a single user and visited all friends
in a breath-first-search fashion. The data set contains more
than 60K nodes (users) connected by more than 1.5 million

friendship links with an average node degree of 23.5. In our
experiments, the nodes and links from Sep 2006 to Dec 2006
are used to form the basic community structure of the network
and each network snapshot is recored after every month during
Jan 2007 to Jan 2009 for a total of 25 network snapshots.

Evaluation depicted in Figure 5(a) reveals that QCA algo-
rithm achieves competitive modularities in comparison with
the static method, and again far better than those obtained by
MIEN. In the general trend, the line representing QCA results
closely approximates that of the static method with much more
stable. Moreover, the two final modularity values at the end
of the experiment are relatively the same, which means that
our adaptive method performs competitively with the static
method running on the whole network.

Figure 5(c) describes the running time of the three methods
on the Facebook data set. As one can see from this figure,
QCA takes at least 3 seconds and at most 4.5 seconds
to successfully compute and update every network snapshot
whereas the static method, again, requires more than triple
processing time. MIEN method really suffers on this large
scale network when requiring more than 10x amount of QCA
running time. This result confirms the effectiveness of our
adaptive method when applied to real-world social networks
where a centralized algorithm may not be able to detect a good
network community structure in a timely manner.

However, there is a limitation of QCA algorithm we observe
on this large network and want to point out here: As the the
duration of network evolution lasts longer over time (i.e., the
number of network snapshots increases), our method tends
to divide the network into smaller communities to maximize
the local modularity, thus results in an increasing number of
communities and a decreasing of NMI scores. Figure 5(b) and
5(d) describes this observation. For instance, at snapshot #12
(a year after Dec 2006), the NMI score is approximately 1/2
and gets decaying after this timepoint. It implies a refreshment
of network community structure is required at this time, after a
long enough duration. This is reasonable since activities on an
online social network, especially on Facebook social network,
tend to come and go rapidly and local adaptive procedures are
not enough to reflect the whole network topology over a long
period of time.

V. APPLICATION: SOCIAL-AWARE ROUTING IN MANETS

In this section, we present an application where the de-
tection of network community structures plays an important
role in routing strategies in Mobile Ad Hoc Networks. A
MANET is a dynamic wireless network with or without the
underlying infrastructure, in which each node can move freely
in any direction and organize itself in an arbitrary manner.
Due to nodes mobility and unstable links nature of a MANET,
designing an efficient routing scheme has become one of the
most important and challenging problems on MANETs.

Recent researches have shown that MANETs exhibit the
properties of social networks [15][16][17] and social-aware
algorithms for network routing are of great potential. This is
due to the fact that people have a natural tendency to form

2288

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40 45
Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

(a) Delivery Ratio

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45
Time-to-live

LABEL
MIEN
QCA

(b) Average Duplicate Message

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45
Time-to-live

MIEN
LABEL

WAIT
MCP
QCA

(c) Average Delivery Time

Fig. 6. Experimental results on the Reality Mining data set

groups or communities in communication networks, where
individuals inside each community communicate with each
other more frequent than with people outside. This social
property is nicely reflected to the underlying MANETs by the
existence of groups of nodes where each group is densely
connected inside than outside. This resembles the idea of
community structure in Mobile Ad hoc Networks.

Multiple routing strategies [16]-[18] based on the discovery
of network community structures have provided significant en-
hancement over traditional methods. However, the community
detection methods utilized in those strategies are not applicable
for dynamic MANETs since they have to recompute the
network structure whenever changes to the network topology
are introduced, which results in significant computational
costs and processing time. Therefore, employing an adaptive
community structure detection algorithm as a core will pro-
vide speedup as well as robustness to routing strategies in
MANETs.

We evaluate the following five routing strategies (1) WAIT:
the source node waits and keeps sending or forwarding the
messages until it meets the destination node (2) MCP: A node
keeps forwarding the messages until they reach the maximum
number of hops (3) LABEL: A node forwards or sends the
messages to all members in the destination community [15]
(4) QCA: A Label version utilizing QCA as the dynamic
community detection method and lastly, (5) MIEN: A social-
aware routing strategy on MANETs [14].

Even thought the WAIT and MCP algorithms are very sim-
ple and straightforward to understand, they provide us helpful
information about the lower and upper bounds for message
delivery ratio, time redundancy as well as message redundancy.
LABEL forwarding strategy works as follow: it first finds the
community structure of the underlying MANET, assigns each
community with the same label and then exclusively forwards
messages to destinations, or to next-hop nodes having the same
labels as the destinations. MIEN forwarding method utilizes
MIEN algorithm as a subroutine. QCA routing strategy, instead
of using a static community detection method, utilizes QCA
algorithm for adaptively updating the network community
structure and then uses the newly updated structure to inform
the routing strategy for forwarding messages.

We choose Reality Mining data set [19] provided by the

MIT Media Lab to test our proposed algorithm. The Reality
Mining data set contains communication, proximity, location,
and activity information from 100 students at MIT over the
course of the 2004-2005 academic year. In particular, the
data set includes call logs, Bluetooth devices in proximity,
cell tower IDs, application usage, and phone status (such as
charging and idle) of the participated students of over 350,000
hours (4̃0 years). In this paper, we take into account the
Bluetooth information to form the underlying MANET and
evaluate the performance of the above five routing strategies.

For each routing method, we evaluate the followings (1)
Delivery ratio: The portion of successfully delivered over the
total number of messages (2) Average delivery time: Average
time for a message to be delivered. (3) Average number of
duplicated messages for each sent message. In particular, a
total of 1000 messages are created and uniformly distributed
during the experiment duration and each message can not exist
longer than a threshold time-to-live. The experimental results
are shown in Figure 6(a), 6(b) and 6(c).

Figure 6(a) describes the delivery ratio as a function of
time-to-live. As revealed by this figure, QCA achieves much
better delivery ratio than MIEN as well as LABEL and far
better than WAIT. This means that QCA routing strategy
successfully delivers many more messages from the source
nodes to the destinations than the others. Moreover, as time-to-
live increases, the delivery ratio of QCA tends to approximate
the ratio of MCP, the strategy with highest delivery ratio.

Comparison on delivery time shows that QCA requires less
time and gets messages delivered successfully faster than LA-
BEL, as depicted in Figure 6(c). It even requires less delivery
time in comparison with the social-aware method MIEN. This
can be explained as the static community structures in LABEL
can possibly get message forwarded to a wrong community
when the destinations eventually change their communities
during the experiment. Both QCA and MIEN, on the other
hand, captures and updates the community structures on-the-
fly as changes occur, thus achieves better results. Since MIEN
needs to compress and decompress the network communities
whenever network evolves, it may disregard the existence of
newly formed communities and thus, may requires extra time
to forward the messages.

The numbers of duplicate messages presented in Figure 6(b)

2289

indicate that both QCA and MIEN achieves the best results.
The numbers of duplicated messages of MCP method are way
higher than those of the others and are not plotted. In fact, the
results of QCA and MIEN are relatively close and tend to
approximate each other as time-to-live increases.

In conclusion, QCA is the best social-aware routing algo-
rithm among five routing strategies since its delivery ratio,
delivery time and redundancy outperform those of the other
methods and are only below MCP while the number of dupli-
cate messages are much lower. QCA also shows a significant
improvement over the naive LABEL method which uses a
static community detection method and thus, confirms the
applicability of our adaptive algorithm to routing strategies
in MANETs.

VI. RELATED WORK

Community detection on static networks has attracted a lot
of attentions and many efficient methods have been proposed
for this type of networks. Detecting community structure on
dynamic networks, however, has so far been an untrodden area.
Recent work [2] proposed an innovative method for detecting
communities on dynamic networks based on the k-clique
percolation technique. This approach can detect overlapping
communities; however, it is time consuming, especially on
large scale networks. Another recent work of [20] proposed a
detection method based on contradicting the network topology
and the topology-based propinquity, where propinquity is the
probability of a pair of nodes involved in a community. A work
in [11] presented a parameter-free methodology for detecting
clusters on time-evolving graphs based on mutual information
and entropy functions of Information Theory. [21] proposed a
distributed method for community detection in which modular-
ity was used as a measure instead of objective function. A part
from that, [22] attempted to track the evolving of communities
over time, using a few static network snapshots.

In [23], the authors present a framework for identifying
dynamic communities with a constant factor approximation.
However, this method does not seem to make sense on
real-world social networks since it requires some predefined
penalty costs which are generally unknown on dynamic net-
works. A recent work [14] proposes a social-aware routing
strategy in MANETs which also makes uses of a modularity-
based procedure name MIEN for quickly updating the network
structure. In particular, MIEN tries to compose and decompose
network modules in order to keep up with the changes and uses
fast modularity algorithm [4] to update the network modules.
However, this method performs slowly on large scale dynamic
networks due to the high complexity of [4].

VII. CONCLUSION

In this paper, we presented QCA, an adaptive algorithm
for detecting and tracing community structures in dynamic
social networks where changes are introduced frequently. We
show that our adaptive algorithms are not only effective in
updating and identifying high quality network community
structure but also has the great advantage of fast running time,
which is suitable for large and rapidly changing online social

networks. We prove some theoretical results which are the
basic observations of our approach. Finally, via a practical
social-aware routing strategy in MANETs, we show that our
QCA algorithm promises enormous realistic applications in
mobile computing as it can be combined or integrated as a
community detection core.

ACKNOWLEDGMENT
This work is partially supported by the National Science

Foundation under CAREER Award grant number 0953284, by
the DTRA Young Investigator Program under grant number
HDTRA1-09-1-0061 and by the DTRA under grant number
HDTRA1-08-10.

REFERENCES

[1] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. PNAS, 99, 2002.

[2] G. Palla, P. Pollner, A. Barabasi, and T. Vicsek. Social group dynamics
in networks. Adaptive Networks, 2009.

[3] A. Lancichinetti and S. Fortunato. Community detection algorithms: A
comparative analysis. Physical review. E. 80, 2009.

[4] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Phys. Rev. E 69, 2003.

[5] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. J. Stat. Mech.: Theory
and Experiment, 2008.

[6] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phy. Rev. E 69, 2004.

[7] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner. On modularity clustering. IEEE Transactions on
Knowledge and Data Engineering, 20(2), 2008.

[8] A. Clauset, M. E. J. Newman, and C. Moore. Finding community
structure in very large networks. Phys. Rev. E 70, Aug 2004.

[9] S. Fortunato and M. Barthelemy. Resolution limit in community
detection. PNAS, 104, 2007.

[10] Z. Ye, S. Hu, and J. Yu. Adaptive clustering algorithm for community
detection in complex networks. Physical Review E, 78, 2008.

[11] S. Jimeng, C. Faloutsos, S. Papadimitriou, and Philip S. Yu. Graphscope:
parameter-free mining of large time-evolving graphs. In KDD, 2007.

[12] ArXiv dataset. http://www.cs.cornell.edu/projects/kddcup/datasets.html.
KDD Cup 2003, Feb 2003.

[13] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution
of user interaction in facebook. In 2nd ACM SIGCOMM Workshop on
Social Networks, 2009.

[14] T. N. Dinh, Y. Xuan, and M. T. Thai. Towards social-aware routing in
dynamic communication networks. IPCCC, 2009.

[15] P. Hui and J. Crowcroft. How small labels create big improvements.
PERCOMW, 2007.

[16] E. M. Daly and M. Haahr. Social network analysis for routing in
disconnected delay-tolerant manets. In MobiHoc ’07, 2007.

[17] A. Chaintreau, P.Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.
Impact of human mobility on opportunistic forwarding algorithms. IEEE
Transactions on Mobile Computing, 6, 2007.

[18] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-based forwarding
in delay tolerant networks. In MobiHoc ’08, 2008.

[19] E. Nathan and A. Pentland. Reality mining: sensing complex social
systems. Personal Ubiquitous Comput., 10(4), 2006.

[20] Y. Zhang, J. Wang, Y. Wang, and L. Zhou. Parallel community detection
on large networks with propinquity dynamics. In KDD ’09. ACM, 2009.

[21] P. Hui, E. Yoneki, S. Chan, and J. Crowcroft. Distributed community
detection in delay tolerant networks. In Proc. MobiArch, 2007.

[22] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving
communities in large linked networks. PNAS, 101, 2004.

[23] T. Chayant and B. Tanya. Constant-factor approximation algorithms for
identifying dynamic communities. In KDD ’09, 2009.

2290

