
Learning Similarity Metric with SVM
Xiaoqiang Zhu∗, Pinghua Gong∗, Zengshun Zhao† and Changshui Zhang∗

∗State Key Laboratory on Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Automation, Tsinghua University, Beijing 100084, China
†College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao, China

{zhuxq05, gph08}@mails.tsinghua.edu.cn, zhaozengshun@gmail.com, zcs@mail.tsinghua.edu.cn

Abstract—In this paper, we show how to learn a good similarity
metric for SVM classification. We present a novel approach to
simultaneously learn a Mahalanobis similarity metric and an
SVM classifier. Different from previous approaches, we opti-
mize the Mahalanobis metric directly for minimizing the SVM
classification error. Our formulation generalizes the traditional
large margin principle used in standard SVM, that is, we
maximize the margin-radius-ratio. The learned similarity metric
significantly improves the classification performance of standard
SVM. Empirical studies on real datasets show the proposed
approach achieves higher or comparable classification accuracies
compared with state-of-the-art similarity learning methods.

I. INTRODUCTION

In many machine learning and data mining tasks, the raw
input features are roughly collected. Due to the absence
of prior knowledge, using Euclidean metric to measure the
similarity among raw data points is a popular choice for these
tasks. This often fails to generate discriminative representa-
tions for given problems. In this way, even state-of-the-art
algorithms, such as k-nearest neighbor (KNN) and support
vector machine (SVM), cannot achieve optimal performances
[1] [2] [3] [4]. Hence, similarity learning, which aims
to learn a data adaptive similarity metric to generate more
discriminative representations for given problems, has drawn
many researchers attention.

To learn a good similarity metric, several approaches from
different aspects have been proposed. Generally speaking,
these similarity learning approaches can be roughly divided
into two categories.

The first category is to directly tune a Mahalanobis sim-
ilarity metric from labeled examples in the feature space.
Mahalanobis metric, which is a sufficiently powerful class
of metrics that work on many real-world problems [1] [2]
[3], generalizes the Euclidean metric by admitting arbitrary
linear scalings and rotations of the feature space. Represen-
tative work include neighborhood component analysis (NCA)
[5], large margin nearest neighbor (LMNN) [6], information-
theoretic metric learning (ITML) [7], etc. These approaches
optimize the Mahalanobis metric by exploiting partial empiri-
cal knowledge among data points. For example, they constrain
the distances between data points in different classes to be
larger than the distances between data points in the same
classes. However, most of these approaches are designed for
improving the KNN performance only.

The second category is kernel learning approaches. Un-
like Mahalanobis similarity metric learning methods, these
approaches implicitly learn a generalized similarity metric
defined by the kernel function. They then design classification
algorithms, e.g., SVM, that only depends on the kernel func-
tion. Well-performing approaches include kernel alignment
[8], simpleMKL [9], radius based kernel learning (RKL) [4]
and so on. However, most of these approaches are either
restricted to learn the kernel function specified to a linear
combination of several base kernels or limited to estimate the
kernel matrix in a transductive setting and cannot naturally
generalize to new data points [10].

In this paper, we present a new similarity metric learning
scenario. We focus on the task of learning a good similarity
metric for SVM classification. Inspired by the success of previ-
ous work, we propose a novel approach to learn a Mahalanobis
similarity metric simultaneously with the training of SVM
classifier. We optimize the Mahalanobis metric directly for
minimizing the SVM classification error. It results in more
discriminative representations of input data and significantly
improves the classification performance of standard SVM.
Besides, our approach is inductive and can be easily extend
to the out-of-sample points.

Our formulation generalizes the traditional large margin
principle used in standard SVM. We propose to maximize the
margin-radius-ratio, that is, the ratio between the margin and
radius of minimum enclosing ball (MEB). It is proved in [11]
that the margin-radius-ratio bounds the estimation error of
SVM, which denotes the gap between the expected error and
the empirical error. Large margin-radius-ratio leads to small
estimation error.

We learn the Mahalanobis similarity metric by estimating a
linear transformation matrix in the feature space. This allows
us to (1) learn a low-dimension projection matrix in high
dimensional classification tasks which saves us considerable
computational cost; (2) kernelize our algorithm to learn a
nonlinear similarity metric.

II. LINEAR SIMILARITY METRIC LEARNING WITH SVM

A. SVM

Standard SVM aims to maximize the generalization ability
of learned classifier [12]. It trains the classifier by employing
the large margin principle.

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

Specifically, given dataset {(xi, yi)}ni=1, xi ∈ RD, yi ∈
{+1,−1}, standard SVM [13] is to find an optimal classifi-
cation hyperplane with the largest margin. The hyperplane is
wTx+ b = 0, with (w, b) calculated by:

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖22 + C

n∑
i=1

ξpi ,

s.t. ∀i, yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0,

(1)

where parameter p > 0. p = 1 and p = 2 are two common
choices, named L1 loss and L2 loss respectively [14].

The objective function in Eq. (1) is to maximize the margin
(margin γ = 1/‖w‖2) as well as minimize the empirical error
(defined by term

∑
i ξ

q
i). C is a tuneable tradeoff parameter.

Given an unlabeled data x, the prediction output label is:

ŷ = sign

(
n∑

i=1

αiyi x
T
i x︸︷︷︸+b

)
, (2)

where αi(i = 1, 2, ..n) are the dual variables and b is a
bias. They can be obtained by solving the dual formulation
of Eq. (1) using a quadratic programming solver.

Eq. (2) shows that the SVM classifier relies on the inner
product (say, similarity1) between data points. Here we present
a novel approach to learn an appropriate similarity metric for
SVM to improve its performance.

B. Learning a linear similarity metric with SVM

1. Similarity Metric
Our approach learns a Mahalanobis similarity metric via a

linear transformation L in the input space. Similarity among
data points is defined as the inner product after applying the
transformation L to input data:

SL(xi,xj) = (Lxi)
T (Lxj) = xT

i L
TLxj .

Learning the transformation L is equivalent to learning the
Mahalanobis matrix M = LTL [16]. In high dimensional
classification tasks, such as face recognition and document
classification, we can constrain L to be a d × D (d � D)
matrix, that is, a low-dimension projection matrix. This will
save us considerable computational cost. Because directly esti-
mating the Mahalanobis matrix M needs to learn 1

2D×(D+1)
parameters (M is a D×D symmetric matrix). In our approach
learning the transformation L needs only d×D parameters.

2. Learn the metric by maximizing margin-radius-ratio
Embedding the above similarity metric into standard SVM,

our approach simultaneously learns the linear transformation
L and an SVM classifier (w, b):

(L∗,w∗, b∗) = argmin
(L,w,b)

1

2
R(L)2‖w‖22 + C

n∑
i=1

ξ2i ,

s.t. ∀i, yi(wTLxi + b) ≥ 1− ξi, ξi ≥ 0.

(3)

1Treating inner product as the similarity measure is a popular approach to
similarity-based classification [15].

Here R(L) is the radius of minimum enclosing ball (MEB)
of data in the transformed space. The MEB is the smallest
ball that encloses all data points, whose radius R(L) can be
obtained by:

R(L) = min
y,c

y, s.t. ∀i, y ≥ ‖Lxi − c‖2. (4)

The idea of Eq. (3) is to maximize the margin-radius-
ratio in the transformed space, that is, the ratio between the
margin and the radius of minimum enclosing ball. This is a
generalization of traditional large margin principle. According
to [11], the estimation error of SVM, which denotes the gap
between the expected error and the empirical error, is bounded
by the margin-radius-ratio:

√
O(R2γ−2)/n. γ is the margin

of SVM classifier. n is the number of data points. R is the
radius of MEB of data. We can see that large margin-radius-
ratio γ/R leads to small estimation error.

In standard SVM, the radius R of MEB is a constant and
we can safely employ the large margin principle to minimize
‖w‖22 (as well as the empirical error). But in our similarity
learning scenario, the radius R changes with different learned
transformations applied to input data. Large margin γ itself can
not guarantee small estimation error. To get a good generaliza-
tion performance, we propose to maximize the margin-radius-
ratio γ/R directly. That is, to minimize R2/γ2 = R2‖w‖22 (as
well as the empirical error).

3. Margin maximization in unit-enclosing-ball
Directly solving Eq. (3) is difficult, which contains a com-

plicated term R(L) defined by Eq. (4). Here we derive an
equivalent formulation which can tackle this difficulty.

We notice that in Eq. (4), c is the center of data points.
Hence, with a preprocessing step to centralize the input data:
xi ←− xi − 1

n

∑n
i=1 xi, R(L) can be easily calculated as:

R(L) = max
i

||Lxi||2.
In the following, without special declaration the data are
supposed to be centralized.

Now we can reformulate Eq. (3) as Eq. (5):

(L∗,w∗, b∗) = argmin
(L,w,b)

1

2
‖w‖22 + C

n∑
i=1

ξ2i ,

s.t. ∀i, yi(wTLxi + b) ≥ 1− ξi, ξi ≥ 0,

∀i, ‖Lxi‖22 ≤ 1.

(5)

Eq. (5) eliminates the complicated computation of the radius
R of MEB from the objective and adds an unit-enclosing-ball
constraint, which forces the radius R of MEB to be unit in
the transformed space. Theorem 1 guarantees that these two
equations have equivalent optimal solutions.

Theorem 1: Eq. (5) is equivalent to Eq. (3). That is to say,
for any optimal solution obtained in Eq. (3), there exists an
equivalent optimal solution in Eq. (5), and vice versa.

We defer the proof of Theorem 1 to Appendix A. Theorem 1
brings us an interesting view to see the formulation of Eq. (3)
and Eq. (5). In Eq. (3) we maximize the margin-radius-ratio,

which explicitly considers the MEB of data in the objective.
Theorem 1 says we can find an equivalent solution by max-
imizing the margin under an unit-enclosing-ball constraint.
This leads to an easier optimization problem.

4. Mechanism of tuning the Mahalanobis similarity metric
The objective of Eq. (5) implies the mechanism of tuning the

Mahalanobis similarity metric. Assume we “freeze” the classi-
fier (w, b), then optimizing Eq. (5) is to find an optimal trans-
formation L which minimizes the empirical error

∑n
i=1 ξ

2
i .

On the other hand, by “freezing” the transformation L the
optimal classifier (w, b) is obtained by margin maximization in
the transformed space. In practice, the transformation and the
classifier are optimized simultaneously, towards to minimizing
of the SVM classification error directly.

5. Optimization
The problem of Eq. (5) is non-convex, since variables L and

w couple together. We use the gradient-projection method [17]
to solve it. By eliminating the variables ξi, Eq. (5) can be
reformulated as Eq. (6).

(L∗,w∗, b∗) = argmin
(L,w,b)

f(L,w, b),

s.t. ∀i, ‖Lxi‖22 ≤ 1,
(6)

where

f(L,w, b) =
1

2
‖w‖22 + C

n∑
i=1

max
[
0, 1− yi(w

TLxi + b)
]2

.

5.1 Gradients computation
Differentiating f(L,w, b) with respect to the transformation

matrix L and classifier (w, b) gives the following gradients:

∂f

∂w
= w − 2C

n∑
i=1

max
[
0, 1− yi(w

TLxi + b)
]
(yiLxi),

∂f

∂b
= −2C

n∑
i=1

max
[
0, 1− yi(w

TLxi + b)
]
yi,

∂f

∂L
= −2C

n∑
i=1

max
[
0, 1− yi(w

TLxi + b)
]
(yiwxT

i).

(7)

5.2 Updating with projection
We update the variables using gradient decent method with

Armijo rule to search a suitable step size α.

wt+1 = wt − α
∂f

∂w

∣∣
wt ,

bt+1 = bt − α
∂f

∂b

∣∣
bt
,

Lt+1 =

[
Lt − α

∂f

∂L

∣∣
Lt

]+
.

(8)

Here [·]+ means projection to the constrains, which is typically
defined by Eq. (9):

[L]+ = argmin
A

‖A− L‖2F , s.t. ∀i, ‖Axi‖22 ≤ 1. (9)

The optimization problem in Eq. (9) is a Quadratic Constraint
Quadratic Programming(QCQP) problem. In practice we find

it converges slowly. Since the projection is a critical subroutine
in the optimization procedure, it will be called for many
times and greatly affects the convergence speed of the whole
algorithm. To speed it up, we propose a heuristic projection
strategy, defined by Eq. (10):

[L]+ =
L

R
, where R = max

i
‖Lxi‖2. (10)

It is a straightforward projection by scaling L with respect to
the radius R. We find this simple projection strategy really
works experimentally. It leads to much faster convergence
speed than using projection of Eq. (9).
6. Algorithm implementation

Algorithm 1 gives the implementation details. We call it
Linear-MSVM (Linear Metric learning with SVM).

Algorithm 1: Linear-MSVM
Input : Data set: {xi, yi}ni=1;

A start point: (L0,w0, b0).
Initialize: β(0 < β < 1), ε(typically 10−6) ;1

Centralize the input data: xi ←− xi − 1
n

∑n
i=1 xi;2

for t = 0, 1, 2, · · · do3

Compute the gradient ∂f
∂(Lt,wt,bt)

by Eq. (7) ;4

for m = 0, 1, 2, · · · do5

α = βm ;6

Update (Lt+1,wt+1, bt+1) by Eq. (8) ;7

if Armijo rule is satisfied then8

break;9

end10

end11

if | f(Lt,wt,bt)−f(Lt+1,wt+1,bt+1)
f(Lt,wt,bt)

| < ε then12

L∗ = Lt+1,w
∗ = wt+1, b

∗ = bt+1, break;13

end14

end15

Output: L∗,w∗, b∗

III. NONLINEAR SIMILARITY METRIC LEARNING WITH
SVM

In this section we show how to kernelize Linear-MSVM
to learn a nonlinear similarity metric. We first map the input
data into a kernel space F , then learn a linear transformation
L in F . This is equivalent to learning a nonlinear similarity
metric in the input space. Here kernel space F refers to the
transformed space by a nonlinear kernel map φ : RD → F .

We parameterize the linear transformation in kernel space
to be L = HΦX , where ΦX = [φ(x1), ..., φ(xn)]

T and H is a
weight matrix which allows us to parameterize L as the linear
combination of the feature points φ(x1), ..., φ(xn). Similar
ideas can be found in previous work such as [18] and [10].
This kind of parameterization benefits us to easily compute
the similarity in the transformed kernel space. Define

zi = ΦXφ(xi)

= [φ(x1), ..., φ(xn)]
T
φ(xi)

= [k(x1,xi), ..., k(xn,xi)]
T
.

Here k(· , ·) is a kernel function,

k(xi,xj) = φ(xi)
Tφ(xj).

Hence,
Lφ(xi) = HΦXφ(xi) = Hzi.

Similarity among data in the kernel space with the similarity
metric defined by parameterized transformation L is:

SL(φ(xi), φ(xj)) = (Lφ(xi))
T
(Lφ(xj))

= (Hzi)
T (Hzj)

= zTi H
THzj .

A more inspiring result is that we can directly apply the
Linear-MSVM algorithm to learn the nonlinear metric, by
mapping input dataset {xi, yi}ni=1 to be {zi, yi}ni=1, which
is declared in the following proposition:

Proposition 1: We can directly apply the Linear-MSVM
algorithm to learn a nonlinear metric with SVM by mapping
the inputs using function L : xi → zi, zi = L(xi) =
[k(x1,xi), ..., k(xn,xi)]

T . xi is an input point and zi is the
corresponding mapping point. k(· , ·) is a kernel function.

Proof: Since Lφ(xi) = Hzi, treating zi as the mapping
point corresponding to input point xi and H as the trans-
formation matrix, it falls into the Linear-MSVM paradigm.
That is to say, with the parameterized transformation L,
we are in fact mapping the input dataset {xi, yi}ni=1 to be
{zi, yi}ni=1. The mapping function L : xi → zi is defined as
zi = L(xi) = ΦXφ(xi) = [k(x1,xi), ..., k(xn,xi)]

T . k(· , ·)
is some kernel function, e.g., RBF kernel.

To classify a new data xq , we first map it using function
L: zq = L(xq) = [k(x1,xq), ..., k(xn,xq)]

T . then classify it
using the rule ŷ = sign(wTLφ(xq)+ b) = sign(wTHzq + b).

Hence, to learn a nonlinear metric in the input space,
we need only first map the input dataset {xi, yi}ni=1 to be
{zi, yi}ni=1 in a parameterized space using the function L,
then apply the Linear-MSVM algorithm to learn a linear
transformation in the parameterized space.

Algorithm 2: Nonlinear-MSVM
Input : Data set: {xi, yi}ni=1;

A kernel function k(· , ·);
A start point H0.

Map the input dataset by computing the Gram-Matrix K1

using {xi, yi}ni=1 and k(· , ·);
Take {zi, yi}ni=1, H0 as inputs to compute H∗,w∗, b∗2

using Algorithm 1, zi is the i-th column vector of K;
Output: H∗,w∗, b∗

Now we present the nonlinear metric learning algorithm.
Note that zi(i = 1, 2, ...n) is the i-th column vector of
the Gram-Matrix K,K(i, j) = k(xi,xj). Hence, to learn a
nonlinear metric in the input data space, we first pre-compute
the Gram-Matrix K using the input data and a given kernel
function k(· , ·), then use Linear-MSVM algorithm to find

the optimal similarity metric and the SVM classifier, taking
{zi, yi}ni=1 as inputs. Details are described in Algorithm 2,
which we denote as Nonlinear-MSVM.

IV. EXPERIMENTS

A. Experimental settings

In this section we test the classification performances of our
proposed similarity metric learning algorithms on real world
datasets. All the comparisons are divided into two groups:

• Linear similarity metric methods: As Linear-MSVM
learns a linear similarity metric via a linear transformation
directly in the input space, we compare it with two state-
of-the-art Mahalanobis metric learning algorithms: NCA2

and LMNN3. NCA learns a linear transformation as
Linear-MSVM does, and LMNN estimates a Mahalanobis
matrix in the input space. Besides, linear SVM is used
as the baseline of the proposed Linear-MSVM.

• Nonlinear similarity metric methods: Our Nonlinear-
MSVM algorithm estimates a nonlinear similarity metric
by learning a linear transformation in the kernel space.
We compare it with two state-of-the-art kernel learning
methods SimpleMKL4 and RKL[4]. Nonlinear SVM is
also taken as the baseline of Nonlinear-MSVM.

All the experimental results are averaged over 10 runs. In
each run, we randomly generate 70/30 splits of the data, with
70% training and 30% testing. To tune the parameters, we use
5-fold cross-validation in the training set.

For NCA and LMNN which use KNN classifiers for clas-
sification, we cross validate the number of neighbors K in
{1, 3, 5, 7, 9}.

For SVM based methods (all above mentioned methods
except NCA and LMNN), parameter C is cross-validated in
{10−3, 10−2, 10−1, 100, 101, 102, 103}.

For Nonlinear-MSVM and Nonlinear SVM, we use
RBF kernel function with parameter γ cross-validated in
{10−3, 10−2, 10−1, 100, 101, 102, 103}.

For kernel learning methods SimpleMKL and RKL, 12 base
kernels are used, including 7 RBF kernels with parameter
γ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103} and 5 polynomial
kernels with order r ∈ {1, 2, 3, 4, 5}.

NCA may trap into local optimums. Hence, we use three
strategies for initializing of NCA: identity matrix, PCA trans-
formation matrix and random matrix. We report the best results
of NCA in three cases. Our proposed algorithms may trap into
local optimums too. But in the next sub-section we will show
that different initializations of our algorithms result in similar
performances. Thus in all our experiments, we simply initialize
the transformation L of our algorithms to be identity matrix.

B. Influence of initialization

As pointed out in the optimization section, our proposed
formulation is non-convex. We study experimentally the in-
fluence of different initializations on two real-world datasets:

2http://www.cs.berkeley.edu/∼fowlkes/software/nca/
3http://www.cse.wustl.edu/ kilian/Downloads/LMNN.html
4http://www.mloss.org

0 50 100 150 200 250 300 350
21

22

23

24

25

26

27

28

29

30

31

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Converge curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(a) dataset=liver , C=0.1

0 50 100 150 200 250 300 350
200

205

210

215

220

225

230

235

240

245

250

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Convergence curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(b) dataset=liver , C=1

0 50 100 150 200 250 300 350
2000

2100

2200

2300

2400

2500

2600

2700

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Converge curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(c) dataset=liver , C=10

0 200 400 600 800 1000 1200 1400 1600 1800
8

9

10

11

12

13

14

15

16

17

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Converge curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(d) dataset=TechTC-100(No.68) , C=0.1

0 200 400 600 800 1000 1200 1400 1600 1800
20

40

60

80

100

120

140

160

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Convergence curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(e) dataset=TechTC-100(No.68) , C=1

0 200 400 600 800 1000 1200 1400 1600 1800
200

400

600

800

1000

1200

1400

1600

running step

V
al

ue
 o

f o
bj

ec
tiv

e
fu

nc
tio

n

Converge curves with different start points

L0=Indentity matrix, (w,b)=SVM solution
L0=PCA Projection, (w,b)=SVM solution
L0=Random matrix, (w,b)=SVM solution
L0=Indentity matrix, (w,b)=Random setting
L0=PCA Projection, (w,b)=Random setting
L0=Random matrix, (w,b)=Random setting

(f) dataset=TechTC-100(No.68) , C=10

Fig. 1. Convergence curves with different initializations. The top is liver dataset, and bottom is Tech-100(N0.68) dataset. Parameter C is the tradeoff coefficient
in Eq. (5), which is set with three different values. It is observed that initialization has no significant influence on the convergence speed.

C=0.1 C=1 C=10
40

45

50

55

60

65

70

75
Liver dataset

L0=Indentity matrix, (w,b)=SVM solution

L0=PCA Projection, (w,b)=SVM solution

L0=Random matrix, (w,b)=SVM solution

L0=Indentity matrix, (w,b)=Random setting

L0=PCA Projection, (w,b)=Random setting

L0=Random matrix, (w,b)=Random setting

C=0.1 C=1 C=10
40

45

50

55

60

65

70

75

80
TechTC−100(No.68) dataset

Fig. 2. Classification accuracies with different initializations. The left is liver dataset, and right is TechTC-100(N0.68) dataset. Parameter C is the tradeoff
coefficient in Eq. (5). It is observed that initialization has no significant influence on the classification performance of the final convergent classifiers.

”liver” dataset (with low-dimensional data) and and ”TechTC-
100(N0.68)” document dataset (with high-dimensional data).
See Table I and Table III for detailed properties of them.

In our proposed approaches, Linear-MSVM is the subrou-
tine of Nonlinear-MSVM. Hence, we evaluate the performance
of Linear-MSVM carefully with six simple and natural strate-
gies for initialization:
(1) L0=Identity matrix,(w0, b0)=SVM solution5;
(2) L0=PCA projection matrix,(w0, b0)=SVM solution;
(3) L0=Random matrix,(w0, b0)=SVM solution;

5By first applying transformation L0 to input data: x → L0x and then
solving the standard SVM defined in Eq. (1).

(4) L0=Identity matrix,(w0, b0)=Random vector;
(5) L0=PCA projection matrix,(w0, b0)=Random vector;
(6) L0=Random matrix,(w0, b0)=Random vector.

The convergence curves under six initialization strategies
are shown in Figure 1, and corresponding classification ac-
curacies are shown in Figure 2. We can see that different
initializations result in similar convergence speeds and classi-
fication accuracies. None of the six initializations significantly
outperforms the others.

Thus in all our experiments, we simply set the initializations
of our algorithms as: L0=Identity matrix and (w0, b0)=SVM
solution.

C. Evaluation on UCI datasets

We evaluate the classification performances of our proposed
algorithms on six low dimensional benchmark UCI datasets
from UCI Machine Learning Repository6. These datasets are
summarized in Table I. We learn a D × D transformation
matrix L here.

TABLE I
PROPERTIES OF SIX BENCHMARK UCI DATASETS. ALL OF THEM ARE

COLLECTED FOR BINARY CLASSIFICATION TASK.

wpbc wdbc splice pima liver ionosphere
Dimension 33 30 60 8 6 33
#Sample 194 569 1000 768 345 351

Table II shows the classification accuracies of both linear
and nonlinear similarity metric learning methods.
(1) On all 6 datasets our proposed algorithms significantly

outperform standard SVM (linear and nonlinear respec-
tively). Moreover, on 4 out of 6 datasets, our Linear-
MSVM defeats nonlinear SVM surprisingly. It indicates:
a) the input features are not the most representable, as we
argued, thus decrease the performance of standard SVM;
b) with the learning of transformations in the feature
space towards to minimizing the classification error, our
approaches do find more discriminative representations
of input data which provides helpful similarity metrics to
improve the performance of standard SVM. Besides, we
notice that on these datasets nonlinear SVM and linear
SVM have similar performances, but our NonLinear-
MSVM performs significantly better than Linear-MSVM.
This shows our approach can properly capture the non-
linear structure of input on these datasets.

(2) Compared with state-of-the-art similarity learning meth-
ods, we observe that: a) in the linear metric group,
our Linear-MSVM algorithm achieves higher accuracies
on 4 datasets, and comparable accuracies on the left 2
datasets. b) in the nonlinear metric group, our NonLinear-
MSVM algorithm achieves higher accuracies on all 6
datasets. Note that SimpleMKL and RKL use richer ker-
nels than our NonLinear-MSVM but still are defeated by
NonLinear-MSVM. We believe this is mainly attributed
to our criteria of directly optimizing the Mahalanobis
similarity metric for minimizing classification error.

D. Evaluation on document datasets

We also test our algorithms on higher dimensional document
classification tasks with benchmark datasets from TechTC-
1007. TechTC-100 is collected from real-world application,
with 100 binary classification problems whose categorization
difficulty (as measured by baseline SVM accuracy) is uni-
formly distributed. We randomly pick four of the most difficult
ones, which we believe the inputs are not well representable.
They are summarized in Table III.

6Available at http://archive.ics.uci.edu/ml/
7Available at http://techtc.cs.technion.ac.il/techtc100/

TABLE III
FOUR DATASETS FOR DOCUMENT CLASSIFICATION IN TECHTC-100. THE

FIRST COLUMN LISTS THEIR ID NUMBERS.

TechTC-100 Dimension #Sample
No.15 16384 153
No.24 17400 175
No.68 16248 158
No.87 20450 156

As the dimensionality of document data is high, here we
learn a low-dimensional projection with a d×D matrix L for
linear metric learning methods. D is the dimensionality of in-
put space (in these tasks D > 15, 000). d is the dimensionality
of projection space (no more than 200 experimentally), which
is calculated according to the energy percentage E those used
dimensions hold: E =

∑d
i=1 λ

2
i /
∑D

i=1 λ
2
i . λi corresponds to

the i-th largest eigenvalue of the covariance matrix of inputs.
As LMNN can only learn a square Mahalanobis matrix in

the input space, we project data into d-dimensional space using
PCA for it. This is also done for linear SVM.

Kernel based methods have no explicit setting to learn a low-
dimensional projection. We test their performance just with the
original input data.

Figure 3 illustrates the classification results. As shown in
the top row, our Linear-MSVM algorithm significantly outper-
forms state-of-the-art linear similarity metric methods (NCA,
PCA+LMNN) and the baseline PCA+SVM-Linear. With di-
mensionality d decreasing, the classification performances of
other three methods decrease rapidly, while our Linear-MSVM
algorithm performs consistently well. This demonstrates again
the effectiveness of our proposed algorithms.

On the other hand, our Nonlinear-MSVM algorithm per-
forms better than SimpleMKL and RKL. As is shown in
the bottom row of Figure 3, on 3 datasets our Nonlinear-
MSVM algorithm gets better or comparable accuracies than
SimpleMKL and RKL, and on TechTC-100(No.24) dataset it
is defeated. However, we notice that all the nonlinear metric
based methods, including our Nonlinear-MSVM, are inferior
to our Linear-MSVM algorithm. A reasonable explanation is
that for high dimensional and sparse document data, linear
classifiers in the input space are good enough, with no need
to map the data into higher dimensional kernel space.

Also, it should be pointed out that our proposed Linear-
MSVM and Nonlinear-MSVM algorithms outperform standard
linear SVM and nonlinear SVM respectively on all the four
document datasets again.

V. RELATED WORK

We notice that an early work [19] proposed an algorithm to
train an SVM classifier with scaling each feature of inputs. It
is equivalent to learning a diagonal transformation matrix. Our
proposed approach differs from it in two aspects: (1) We learn
a more generalized transformation matrix. (2) They tune the
metric by minimizing the SVM empirical error. Our approach
directly minimizes the estimation error bound to optimize the
generalization performance of SVM.

TABLE II
THE TESTING CLASSIFICATION ACCURACIES WITH STANDARD DEVIATIONS (IN PARENTHESES) ON UCI DATASETS. ALL THE COMPARISONS ARE

DIVIDED INTO TWO GROUPS: THE FIRST GROUP LEARNS A LINEAR SIMILARITY METRIC IN THE INPUT SPACE DIRECTLY, THE SECOND LEARNS METRIC IN
KERNEL SPACE, WHICH IS EQUIVALENT TO LEARNING A NONLINEAR SIMILARITY METRIC. IN EACH GROUP THE BEST RESULTS ARE SET TO BE BOLD.

data Linear similarity metric methods Nonlinear similarity metric methods
set NCA LMNN SVM-Linear Linear-MSVM SimpleMKL RKL SVM-NonLinear NonLinear-MSVM

wpbc 75.01(5.22) 75.55(6.46) 75.38(6.16) 81.25(3.44) 77.03(1.23) 77.03(1.23) 75.90(2.00) 84.17(3.16)
wdbc 96.61(2.21) 97.08(0.92) 96.43(1.70) 98.07(1.02) 97.59(0.89) 98.30(0.70) 97.14(1.27) 98.37(1.06)
splice 74.00(2.58) 83.77(1.15) 79.639(1.66) 80.40(1.86) 87.78(1.61) 87.91(1.55) 83.77(2.03) 89.07(1.80)
pima 75.35(2.40) 74.56(2.62) 77.48(2.93) 77.74(2.81) 78.12(2.13) 78.51(2.35) 76.87(3.45) 79.04(2.19)
liver 67.66(3.93) 64.02(4.46) 69.12(1.89) 70.18(2.01) 66.71(3.01) 67.48(2.63) 69.58(3.99) 73.65(2.16)

ionosphere 89.66(2.71) 90.12(3.17) 86.89(2.07) 89.84(1.70) 94.79(2.17) 96.11(1.22) 93.83(2.12) 96.20(0.63)

NCA
PCA+LMNN
SVM−Linear
Linear−MSVM

SimpleMKL
RKL
SVM−NonLinear
NonLinear−MSVM

80% 90% 95% 99.5% 100%
40

50

60

70

80

90
TechTC−100(N0.15)

B

40

50

60

70

80

G

80% 90% 95% 99.5% 100%
40

50

60

70

80

90
TechTC−100(N0.24)

C

40

50

60

70

80

H

80% 90% 95% 99.5% 100%
40

50

60

70

80

90
TechTC−100(N0.68)

D

40

50

60

70

80

I

80% 90% 95% 99.5% 100%
40

50

60

70

80

90
TechTC−100(N0.87)

E

40

50

60

70

80

J

63.02 62.12

73.72
69.07 69.46

65.03 66.78 64.43 62.62
67.85 69.46

73.53
69.08 70.91 73.48

Accuracy%

Accuracy% 69.43

 A

 F

Energy Percentage%

Fig. 3. Classification accuracies on four TechTC-100 datasets. Subplot A and F illustrates the legends of each row. 1) top row shows classification accuracies
of linear similarity metric methods when projecting high dimensional document data into low dimensional(d-dim) spaces. d is the least number of dimensions
which holds a given energy, i.e.: E =

∑d
i=1 λ

2
i /

∑D
i=1 λ

2
i . λi corresponds to the i-th largest eigenvalue of the covariance matrix of input data. 2) bottom

row shows classification accuracies of nonlinear similarity metric learning methods. On all four datasets, our Linear-MSVM gets the best performances.

A recently proposed kernel learning method [4] notes the
effect of minimum enclosing ball varying in different ker-
nel spaces. They learn a kernel function which is a linear
combination of several given base kernels. In their method,
margin-radius-ratio is used to measure the goodness of a
learned kernel. To optimize the formulation, they propose a
complicated multilevel optimization strategy. Our approach
employs the principle of maximization of the margin-radius-
ratio in a different setting. We inductively learn a Mahalanobis
metric and an SVM classifier. Our optimization strategy is dif-
ferent from [4]. Instead of optimizing the complicated margin-
radius-ratio directly, we derive an equivalent formulation by
eliminating the radius of MEB in the objective. This leads to
an easier optimization problem.

VI. CONCLUSION

In this paper, we propose a novel approach to simulta-
neously learn a Mahalanobis similarity metric and an SVM
classifier. Our formulation generalizes the traditional large
margin principle and proposes to maximize the margin-radius-
ratio. We estimate the Mahalanobis metric by learning a linear
transformation, which is optimized by minimizing the SVM
classification error. Empirical study shows this criteria results
in more discriminative representations of input data and sig-
nificantly improves the performances of standard SVM (linear

and nonlinear respectively). We also show how to kernelize the
algorithm to learn a nonlinear similarity metric. Experiments
on real world datasets show that our algorithms achieves better
or comparable classification performances than those state-of-
the-art similarity learning methods. For applications with low
dimensional data, we suggest to use the Nonlinear-MSVM
algorithm. For applications with high dimensional sparse data,
such as document classification, our Linear-MSVM algorithm
seems to be a better choice.

Our future work will concentrate on two directions: (1) to
extend the proposed approach into multi-class classification
tasks; (2) to speed up the proposed algorithms in high dimen-
sional tasks by employing the sparsity of data.

ACKNOWLEDGMENT

This work is supported by NingBo Science and Technology
Innovation Foundation (201001B7201008, 201001B7101013),
Zhejiang Provincial Natural Science Foundation of China (No.
Y1110661) and Visiting Scholarship Foundation for University
Key Teacher by the Shandong Province of China (Grant No.
ZR2010FM027).

REFERENCES

[1] A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning globally-
consistent local distance functions for shape-based image retrieval and
classification,” in IEEE 11th International Conference on Computer
Vision(ICCV), 2007.

[2] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” The Journal of Machine
Learning Research(JMLR), vol. 11, pp. 1109–1135, 2010.

[3] M. Slaney, K. Weinberger, and W. White, “Learning a metric for music
similarity,” in Proceedings of the 9th International Conference of Music
Information Retrieval(ICMIR), 2008.

[4] K. Gai, G. Chen, and C. Zhang, “Learning Kernels with Radiuses
of Minimum Enclosing Balls,” in Advances in neural information
processing systems (NIPS), 2010.

[5] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neigh-
bourhood components analysis,” in Advances in neural information
processing systems (NIPS), 2004.

[6] K. Weinberger and L. Saul, “Distance metric learning for large margin
nearest neighbor classification,” in Advances in neural information
processing systems (NIPS), 2005.

[7] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, “Information-theoretic
metric learning,” in Proceedings of the 24th international conference on
Machine learning(ICML), 2007.

[8] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor, “On kernel
target alignment,” Innovations in Machine Learning(IML), pp. 205–256,
2006.

[9] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,”
Journal of Machine Learning Research(JMLR), vol. 9, pp. 2491–2521,
2008.

[10] I. D. Prateek Jain, Brian Kulis, “Inductive regularized learning of
kernel functions,” in Advances in neural information processing systems
(NIPS), 2010.

[11] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vap-
nik, “Feature selection for SVMs,” in Advances in neural information
processing systems (NIPS), 2001.

[12] V. Vapnik, The nature of statistical learning theory. Springer Verlag,
2000.

[13] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing(ML), vol. 20, no. 3, pp. 273–297, 1995.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” The Journal of
Machine Learning Research(JMLR), vol. 9, pp. 1871–1874, June 2008.

[15] Y. Chen, E. Garcia, M. Gupta, A. Rahimi, and L. Cazzanti, “Similarity-
based classification: Concepts and algorithms,” The Journal of Machine
Learning Research(JMLR), vol. 10, pp. 747–776, 2009.

[16] E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance metric learning
with application to clustering with side-information,” in Advances in
neural information processing systems (NIPS), 2003.

[17] D. Bertsekas, Nonlinear programming. Athena Scientific Belmont,
1999.

[18] L. Torresani and K. Lee, “Large margin component analysis,” in Ad-
vances in neural information processing systems (NIPS), 2007.

[19] Y. Grandvalet and S. Canu, “Adaptive scaling for feature selection in
SVMs,” in Advances in neural information processing systems (NIPS),
2003.

APPENDIX A
PROOF OF THEOREM 1.

Proof: The proof consists of two steps: first, we prove that
Eq. (3) is equivalent to Eq. (11); second, we show Eq. (11)
can change into Eq. (5) by variable substitution.

(L∗,w∗, b∗, R∗) = argmin
(L,w,b,R)

1

2
R2‖w‖22 + C

n∑
i=1

ξ2i ,

s.t. ∀i, yi(wTLxi + b) ≥ 1− ξi, ξi ≥ 0,

∀i, ‖Lxi‖22 ≤ R2.

(11)

(1). Note that in Eq. (11), R becomes a variable, not the
function of L anymore. However, if we can show R∗ = R(L∗)
holds at the optimal point of Eq. (11), then the optimal solution
of Eq. (11) is also the optimal solution of Eq. (3), and vice
versa. In fact, it holds. To prove this, we only need to show

that:
R∗ = max

i
||L∗xi||2, (12)

which means at the optimal point, the equality of the second
constraint in Eq. (11) can be strictly met for some i.

This is true. Assume (L∗
1,w1

∗, b∗1, R
∗
1) is the optimal solu-

tion, but it doesn’t satisfy Eq. (12), i.e.,∀i, ||L∗
1xi||2 < R∗

1.
Denote: r = maxi ||L∗

1xi||2. Hence, 0 < r < R∗
1. Construct

another solution (L∗
2,w2

∗, b∗2, R
∗
2), where:

L∗
2 =

R∗
1

r
L∗
1, w∗

2 =
r

R∗
1

w∗
1,

b∗2 = b∗1, R∗
2 = R∗

1.

It is easy to verify that:

R∗
2 = max

i
||L∗

2xi||2,w∗
2
TL∗

2 = w∗
1
TL∗

1.

Hence, solution (L∗
2,w2

∗, b∗2, R
∗
2) satisfies the two constraints

in Eq. (11). ξis in solution (L∗
2,w2

∗, b∗2, R
∗
2) are the same as

in the solution (L∗
1,w1

∗, b∗1, R
∗
1) for all i.

Now let’s check the value of objective function of Eq. (11),
which we denote as f for brevity.
As

f∗
1 =

1

2
(R∗

1)
2‖w∗

1‖22 + C
n∑

i=1

ξ2i ,

and

f∗
2 =

1

2
(R∗

2)
2 ‖w∗

2‖22 + C
n∑

i=1

ξ2i

=
1

2
(R∗

1)
2

∥∥∥∥ r

R∗
1

w∗
1

∥∥∥∥2
2

+ C

n∑
i=1

ξ2i

=
1

2
r2‖w∗

1‖22 + C

n∑
i=1

ξ2i .

Because r < R∗
1, hence f∗

2 < f∗
1 . This contradicts our

assumption that (L∗
1,w1

∗, b∗1, R
∗
1) is an optimal solution. Thus

at the optimal point, R∗ = maxi ||L∗xi||2, i.e., R∗ = R(L∗).
Hence we prove that Eq. (11) and Eq. (3) have the same
optimal solutions.

(2). Now we just need to show that Eq. (11) is equivalent
to Eq. (5). Denote:

w̃ = Rw, L̃ =
1

R
L.

Substitute w̃, L̃ instead of w, L in Eq. (11), it is clearly
that Eq. (11) turns to be Eq. (5), in which the variable R
is eliminated. If (L∗,w∗, b∗, R∗) is the optimal solution of
Eq. (11), then respectively (1

R∗L
∗, R∗,w∗, b∗) is the optimal

solution of Eq. (5).
According to (1) and (2), we have proved that Eq. (3)

and Eq. (5) have equivalent solutions. That is, if (L∗,w∗, b∗)
is the optimal solution of Eq. (3), then respectively
(1
R(L∗)L

∗, R(L∗)w∗, b∗) is the optimal solution of Eq. (5),
and vice versa.

