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Abstract—We analyze transfer learning with Deep Neural
Networks (DNN) on various character recognition tasks. DNN
trained on digits are perfectly capable of recognizing uppercase
letters with minimal retraining. They are on par with DNN fully
trained on uppercase letters, but train much faster. DNN trained
on Chinese characters easily recognize uppercase Latin letters.
Learning Chinese characters is accelerated by first pretraining
a DNN on a small subset of all classes and then continuing to
train on all classes. Furthermore, pretrained nets consistently
outperform randomly initialized nets on new tasks with few
labeled data.

I. INTRODUCTION

Knowing how to drive a car helps to learn more quickly
how to drive a truck. Learning French is easier if you already
know a Latin language. Learning the second language is easier
than the first. Mathematics prepares students to study physics.
Learning to get along with one’s siblings may prepare one
for getting along with others. Chess playing experience might
make one a better strategic political or business thinker.

Such musings motivate our investigation of transfer learn-
ing, where new tasks and concepts are learned more quickly
and accurately by exploiting past experience. In its most
general form, transfer learning occurs when learning in one
context enhances (positive transfer) or undermines (negative
transfer) a related performance in another context. Transfer is
a key ingredient of human learning: humans are often able
to generalize correctly from a single training example. Unlike
most machine learners, however, humans are trained on many
different learning problems over their lifetime.

Although there is no generally accepted definition of trans-
fer learning, many have found that neural nets (NN) pre-
trained on one task can learn new, related tasks more quickly.
For example, [1] investigates if learning the n-th thing is any
easier than learning the first, and concludes from experiments
that methods leveraging knowledge from similar learning
tasks outperform models trained on a single task. Similarly,
multitask learning [2] can improve generalization capabilities
by learning several tasks in parallel while using a shared
representation. From an NN point of view this is most easily
implemented by a classification network with multiple outputs,
one per class in the classification task. A similar paradigm is
self-taught learning, or transfer learning from unlabeled data

[3]. This approach is especially promising if labeled data sets
for the various learning tasks are not available.

Here we focus on NN-based classifiers and experimentally
investigate the effect of transfer learning on well-defined
problems where enough labeled training data are available.
In particular, we train deep NN (DNN) on uppercase letters
and digits from NIST SD 19 [4], as well as on Chinese char-
acters provided by the Institute of Automation of the Chinese
Academy of Sciences (CASIA [5]). Training a classifier on the
Latin alphabet (up to 52 classes) is a rather straightforward
problem, whereas training a classifier on the GB1 subset
of Chinese characters (3755 classes) already poses a major
challenge for any NN-based classifier that takes raw pixel
intensities as its input.

DNN consist of many layers. All but the last layer can be
interpreted as a general purpose feature extractor that maps
an input into a fixed dimensional feature vector. Usually all
the weights are randomly initialized and trained by back-
propagation [6], [7], sometimes after unsupervised layer-wise
pretraining [8], [9], [10]. Here we investigate if weights of
all but the last layer, trained on a given task, can be reused
on a different task. Instead of randomly initializing a net we
start from an already trained feature extractor, transferring
knowledge from an already learned task to a new task. For
the new task only the last classification layer needs to be
retrained, but if desired, any layer of the feature extractor
might also be fine-tuned. As we will show, this strategy is
especially promising for classification problems with many
output classes, where good weight initialization is of crucial
importance.

In what follows we will shortly describe the deep neural
network architecture and give a detailed description of the
various experiments we performed.

II. DEEP NEURAL NETWORK ARCHITECTURE

Our DNN [7]consists of a succession of convolutional and
max-pooling layers. It is a hierarchical feature extractor that
maps raw pixel intensities of the input image into a feature
vector to be classified by a few, we generally use 2 or 3,
fully connected layers. All adjustable parameters are jointly
optimized, minimizing the misclassification error over the
training set.
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A. Convolutional layer

Each convolutional layer performs a 2D convolution of its
Mn−1 input maps with a filter of size Kx, Ky . The resulting
activations of the Mn output maps are given by the sum of
the Mn−1 convolutional responses which are passed through
a nonlinear activation function:

Yn
j = f(

∑
i

Yn−1
i ∗Wn

ij), (1)

where n indicates the layer, Y is a map of size Mx, My ,
and Wij is a filter of size Kx, Ky connecting input map i with
output map j, and ∗ is the valid 2D convolution. That is, for an
input map Yn−1 of size Mn−1

x , Mn−1
y and a filter W of size

Kx, Ky the output map Yn is of size Mn
x =Mn−1

x −Kx+1,
Mn

y =Mn−1
y −Ky + 1.

B. Max-pooling layer

The biggest architectural difference between our DNN and
the CNN of [11] is the use of max-pooling layers [12], [13],
[14] instead of sub-sampling layers. The output of a max-
pooling layer is given by the maximum activation over non-
overlapping rectangular regions of size Kx, Ky . Max-pooling
creates slight position invariance over larger local regions
and down-samples the input image by a factor of Kx and
Ky along each direction. In the implementation of [15] such
layers are missing, and instead of performing a pooling or
averaging operation, nearby pixels are simply skipped prior to
convolution.

C. Classification layer

Kernel sizes of convolutional filters and max-pooling rect-
angles are chosen such that either the output maps of the last
convolutional layer are down-sampled to 1 pixel per map,
or a fully connected layer combines the outputs of the last
convolutional layer into a 1D feature vector. The last layer is
always a fully connected layer with one output unit per class
in the recognition task. We use a softmax activation function
for the last layer such that each neuron’s output activation can
be interpreted as the probability of a particular input image
belonging to that class.

D. Training procedure

During training a given dataset is continually deformed prior
to each epoch of an online learning algorithm. Deformations
are stochastic and applied to each image during training,
using random but bounded values for translation, rotation and
scaling. These values are drawn from a uniform distribution
in a specified range, i.e. ±10% of the image size for trans-
lation, 0.9 − 1.1 for scaling and ±5◦ for rotation. The final
image is obtained using bilinear interpolation of the distorted
input image. These distortions allow us to train DNN with
many free parameters without overfitting and greatly improve
generalization performance. All DNN are trained using on-line
gradient descent with an annealed learning rate. Training stops
when either the validation error becomes 0, the learning rate
reaches its predefined minimum or there is no improvement on

the validation set for 50 consecutive epochs. The undistorted,
original training set is used as validation set.

III. TRANSFER LEARNING

We start by fully training a net on a given task. After training
stops, we keep the net with the smallest error on the validation
dataset and change the number of neurons in the output layer to
match the number of classes in the new classification task (e.g.
if we train on digits before transferring to letters, the output
layer size will grow from 10 to 26 neurons). The output layer
weights are reinitialized randomly; the weights of remaining
layers are not modified.

The net pretrained on the source task is then retrained on
the destination task. We check performance by fixing all but
the last n layers and retraining only the last n layers. To
see how training additional layers influences performance, we
begin by only training the last layer, then the last two, etc.,
until all layers are trained. Since max-pooling layers do not
have weights, they are neither trained nor retrained (their fixed
processing power resides in the maximum operator).

One way of assessing the performance of transfer learning
is to compare error rates of nets with pretrained weights to
those of randomly initialized nets. For all experiments we list
recognition error rates of pre-trained and randomly initialized
nets whose n top layers were trained.

IV. EXPERIMENTS

All experiments are performed on a computer with i7-950
(3.33GHz), 16GB RAM and 4 x GTX 580. We use the GPU
implementation of a DNN from [7]. This allows for performing
all experiments with big and deep DNN on huge datasets
within several days.

We experiment with Latin characters [4] and Chinese char-
acters [5]. We test transfer learning within each dataset, but
also from the Latin alphabet to Chinese characters. With
so many different tasks, i.e. digits, lowercase letters, upper-
case letters, letters (case insensitive), letters (case sensitive),
Chinese characters, one can try transfer learning in many
ways. Instead of trying them all, we select the hardest and
most interesting ones. Here we consider a transfer learning
problem hard if the number of classes or the complexity of the
symbols increases. We perform transfer learning from digits to
uppercase letters, from Chinese characters to uppercase Latin
letters and from uppercase Latin letters to Chinese characters.
In total there are 344307 digits for training and 58646 for
testing; 69522 uppercase letters for training and 11941 for
testing. For the Chinese character classification task there are
3755 different classes, which poses a major challenge for
any supervised classifier, mainly because the dataset is huge
(more than one Million samples equaling 2.5GB of data).
We therefore evaluate the DNN on 1000 instead of all 3755
classes, resulting in 239121 characters for training and 59660
for testing. This is sufficient for a proof of concept that transfer
learning between different datasets works. We also investigate
the effect of pretraining a DNN on subsets of the classes,



i.e., we use subsets of 10 and 100 out of the 1000 classes to
pretrain a DNN.

A. Latin characters: from digits to uppercase letters

For Latin characters the simplest symbols are the digits.
Letters are generally more complex; there are also more
classes, rendering the letter task even more difficult. We choose
uppercase letters as destination task because the data has high
quality (few mislabeled images) and less confusion between
similar classes than lowercase letters. Since classification ac-
curacy is not degraded by labeling errors and confused classes,
results are more easily compared.

All characters from NIST SD 19 are scaled to fit a 20x20
pixel bounding box which is then placed in the middle of
a 29x29 pixel image. The empty border around the actual
character allows moderate distortions without falling outside
the 29x29 box. As in [16], we use rotation of max. ±15◦,
scaling of max. ±15%, and translation of max. ±15%. For
elastic distortions we use a Gaussian kernel with σ = 6
and an amplitude of 36 (see [15] for an explanation of these
parameters).

In our previous work [16] on NIST SD 19 data we used
relatively small and shallow nets. That was fine to train many
nets and build a committee. Here the focus is on obtaining
good results as quickly as possible, hence we only train one
net, although we use a big and deep DNN this time. Its
architecture is detailed in Table I. Filter sizes for convolutional
and max pooling layers are chosen as small as possible (2
or 3) to get a deep net. The three stages of convolution and
max-pooling layers (the feature extractors) are followed by
a classifier formed by one fully connected layer with 200
neurons and the output layer. The learning rate starts at 0.001
and is annealed by a factor of 0.993 after each epoch.

TABLE I
8 LAYER DNN ARCHITECTURE USED FOR NIST SD 19.

Layer Type # maps & neurons kernel
0 input 1 maps of 29x29 neurons
1 convolutional 50 maps of 28x28 neurons 2x2
2 max pooling 50 maps of 14x14 neurons 2x2
3 convolutional 100 maps of 12x12 neurons 3x3
4 max pooling 100 maps of 6x6 neurons 2x2
5 convolutional 150 maps of 4x4 neurons 3x3
6 max pooling 150 maps of 2x2 neurons 2x2
7 fully connected 200 neurons 1x1
8 fully connected 10 or 26 neurons 1x1

A randomly initialized net fully trained on uppercase letters
reaches a low error rate of 2.07% (Table II), and 0.32% if we
consider the first two predictions. This indicates that 84.5%
of the errors are due to confusions between similar classes.
The error slowly increases if the first two convolutional
layers (1 and 3) are not trained. It is worth noting that with
random convolutional filters, in layer 1 and 3, very competitive
results are obtained, an intriguing finding already noted and
investigated elsewhere [17], [18], [19]. However, when no
convolutional layer is trained the error spikes to almost twelve
percent. Transferring the weights learned on the digit task to

the uppercase letter task (second row in Table II) yields good
results even if only the last two fully connected layers are
retrained.

TABLE II
TEST ERRORS [%] FOR NETS PRETRAINED ON DIGITS AND TRANSFERED

TO UPPERCASE LETTERS.

First trained layer
initialization 1 3 5 7 8

random 2.07 2.47 2.7 11.74 38.44
DIGITS 2.09 2.11 2.23 2.36 4.13

In addition, learning from pretrained nets is very fast
compared to learning from randomly initialized nets. In Figure
1 test error rates [%] on uppercase letters are shown as a
function of training time [s], for both randomly initialized
(solid, blue) and pretrained (dotted, red) nets trained from the
fifth (left) and seventh (right) layer onwards. The pretrained
nets start from a much lower error rate, and if only the last two
fully connected layers are (re-)trained (right), the randomly
initialized net never manages to match the pretrained net even
after 10000 s of training. If the last convolutional layer is also
(re-)trained (left), the pretrained net is much better after 1000
s of training, but as training proceeds the difference between
the two nets becomes smaller.

Fig. 1. Test error rates [%] on uppercase letters as a function of training
time [s] for randomly initialized nets (solid, blue) and nets pretrained on digits
(dotted, red). Both nets are (re-)trained on uppercase letters starting from the
fifth (left) and seventh (right) layer, respectively.

We also check the performance of a fully trained small
net that only has the classification layers (i.e. input layer
followed directly by the fully connected layers: 7 and 8)
of the DNN. When both fully connected layers are present
(the net has one hidden layer with 200 neurons) the error
is 4.03%, much higher than the corresponding 2.36% of the
pretrained net. If only the output layer is used (i.e. a net with
input layer followed by the output layer), the error goes up to
42.96%, which is much higher than 4.13%, and even higher
then the random net’s error. The take home message is that
convolutional layers, even when not retrained, are essential for
a low error rate on the destination task.



B. Learning uppercase letters from few samples per class

For classification tasks with a few thousand samples per
class, the benefit of (unsupervised/supervised) pretraining is
not easy to demonstrate. After sufficient training, a randomly
initialized net will eventually become as good as the pretrained
net. The benefits of unsupervised pretraining are most evident
when the training set has only few labeled data samples. We
therefore investigate how a randomly initialized net compares
to a net pretrained on digits, (re-)training both nets on 10,
50, 100, 500 and 1000 samples per class, respectively. In
Table III the error rates on the original uppercase test set
(≈2500 samples per class) are listed for all experiments. As
expected, the difference between the pretrained and randomly
initialized net is the bigger the fewer samples are used.
Using only 10 samples per class, the random net reaches
an impressive error rate of 17.85% with and 34.60% without
distortions, indicating that the distortions capture the writing
style variations of uppercase letters very well. Nevertheless,
retraining the pretrained net on only 10 samples per class
results in a much lower error rate of 8.98% and 12.51% with
and without distortions, still better than the error of the random
net trained on distorted samples. The effects of distortions
for the pretrained net are not as severe as for random nets.
This indicates that the information extracted from the digit
task as encoded in the network weights has been successfully
transferred to the uppercase letter task by means of a much
better network initialization.

TABLE III
TEST ERRORS [%] FOR NETS PRETRAINED ON DIGITS AND TRANSFERED

TO UPPERCASE LETTERS. THE EXPERIMENTS ARE PERFORMED ON
DISTORTED (DIST.) AND UNDISTORTED TRAINING SAMPLES.

Number of training samples per class
initialization 10 50 100 500 1000

random + dist. 17.85 5.06 4.07 2.55 2.38
DIGITS + dist. 8.98 4.96 3.77 2.56 2.52

random 34.60 15.17 10.49 5.15 4.42
DIGITS 12.51 6.54 5.03 3.30 3.12

C. Chinese characters to uppercase Latin letters

We continue the experiments with a more difficult problem,
namely, transfer learning between two completely different
datasets. From previous experiments [20] we know that 48x48
pixels are needed to represent the intricate details of the
Chinese characters. We use a similar but smaller net than the
one used for the competition, because we need to run many
more experiments. As for the net used on Latin characters, we
choose small filters to obtain a deep net (Table IV). Because
the input size of a DNN is fixed, uppercase letters are scaled
from 29x29 to 48x48 pixel.

The net fully trained on uppercase letters has a slightly
lower error rate (1.89% Table V) than the one used in
Subsection IV-A. This can be attributed to the deeper and
bigger net. When the first layers are not trained, the error
increases slightly and is twice as big as when only one con-
volutional layer (the seventh layer) is trained. If only the fully

TABLE IV
10 LAYER DNN ARCHITECTURE USED FOR CHINESE CHARACTERS.

Layer Type # maps & neurons kernel
0 input 1 maps of 48x48 neurons
1 convolutional 100 maps of 46x46 neurons 3x3
2 max pooling 100 maps of 23x23 neurons 2x2
3 convolutional 150 maps of 22x22 neurons 2x2
4 max pooling 150 maps of 11x11 neurons 2x2
5 convolutional 200 maps of 10x10 neurons 2x2
6 max pooling 200 maps of 5x5 neurons 2x2
7 convolutional 250 maps of 4x4 neurons 2x2
8 max pooling 250 maps of 2x2 neurons 2x2
9 fully connected 500 neurons 1x1
10 fully connected 10 or 26 or 100 or 1000 neurons 1x1

connected layers are trained, the error increases dramatically.
We continue the experiments with nets pretrained on Chinese
characters. Transfer learning works very well for this problem;
the errors are lower than those of training random nets, even
if the first three convolutional layers (1, 3 and 5) are kept
fixed. It seems that filters trained on Chinese characters can be
fully reused on Latin characters. This was expected, because
although Chinese characters are more complex than Latin
ones, they are written in the same way: a sequence of strokes.
Even if the first nine layers are not trained and only the output
layer is trained, a surprisingly low 3.35% test error rate is
obtained.

TABLE V
TEST ERRORS [%] FOR NETS PRETRAINED ON CHINESE CHARACTERS

AND TRANSFERED TO UPPERCASE LETTERS.

First trained layer
initialization 1 3 5 7 8 9

random 1.89 2.04 2.28 3.53 10.45 44.59
CHINESE 1000 1.79 1.89 1.91 1.88 2.22 3.35

D. Chinese characters: speeding up training

Training big and deep DNN is very time-consuming even
on GPUs, especially for classification tasks with many output
classes, resulting in a huge training set. One way of speeding
up training is to pretrain a DNN on a subset of the classes,
i.e. only 1% or 10% of the classes. After pretraining, the net
is retrained on the full problem, hoping that the initialization
reduces training time.

When starting from a random initialization (first row in
Table VI), the error rate is increasing rapidly with the number
of untrained layers, reaching more than 20% when the first
three convolutional layers are not trained. As soon as the net
is pretrained on 1% of the classes (second row in Table VI),
the results improve drastically: retraining the last three layers
results in an error rate of 7.76%, almost three times lower than
before. Pretraining on 10% of the classes greatly improves
the results. Even training only the output layer yields 8.56%,
and training of the first two convolutional layers becomes
irrelevant.

In Figure 2 test error rates [%] on Chinese 1000 are shown
as a function of training time [s], for a randomly initialized



TABLE VI
TEST ERRORS [%] FOR NETS PRETRAINED ON CHINESE-10 OR

CHINESE-100 CHARACTERS OR UPPERCASE LETTERS AND TRANSFERRED
TO CHINESE-1000.

First trained layer
initialization 1 3 5 7 8 9

random 4.84 6.28 9.49 20.82 90.05 96.86
CHINESE 10 4.79 5.02 5.53 7.76 15.37 28.15
CHINESE 100 4.77 4.91 4.83 5.51 6.89 8.56

uppercase 4.80 4.85 5.70 8.42 17.39 31.10

net (solid, blue) and nets pretrained on Chinese 10 (dotted,
red) and Chinese 100 (dash-dotted, green). Training started
from the fifth (left) and seventh (right) layer onwards. The
pretrained nets reach a much lower error rate after shorter
training time. If only the last two fully connected layers are
(re-)trained (right), the randomly initialized net never reaches
the pretrained nets, not even after 50000 s of training; here the
difference between pretraining on 10 vs 100 classes is more
severe. If the last convolutional layer is also (re-)trained (left),
the pretrained nets are still much better, but the difference
between random initialization and pretraining is smaller.

Fig. 2. Test error rates [%] on Chinese 1000 as a function of training
time [s] for randomly initialized nets (solid) and nets pretrained on subsets
of 10 (red, dotted) and 100 (green, dash-dotted) classes. All nets are (re-
)trained on Chinese 1000 starting from the fifth (left) and seventh (right)
layer, respectively.

E. Uppercase letters to Chinese characters

This is the most challenging task because Chinese characters
(destination task) are much more complex than uppercase
letters (source task). Moreover, resizing the letters from 29x29
to 48x48 made them have much thicker strokes than the
Chinese characters. Despite these shortcomings, pretraining on
uppercase letters is almost as good as pretraining on Chinese-
10 (compare rows 2 and 4 in Table VI).

V. CONCLUSION

Transfer learning between different handwritten character
recognition tasks is possible. In particular, transfer learning
from Latin letters to Chinese characters works as well as

pretraining a net with 1% of the classes of the Chinese training
task, despite the lower apparent complexity of Latin letters.
Advantages of transfer learning include: less training time is
needed to obtain good results, and much better results are
obtained when only few labeled samples per class are available
for the destination task.

Unsupervised learning seems to be the most popular choice
to pretrain deep neural networks, but here we show that deep
networks can also be pretrained on either different labeled
datasets or on subsets of the training set. Pretrained deep nets
with frozen weights in the first n layers can serve as rather
universal feature extractors. For new classification tasks, only
the last layer needs to be re-initialized and retrained to accom-
modate for the changing number of output classes. Fine-tuning
of the remaining layers is optional. Consequently, pretrained
nets are much faster to train on new tasks. This is of particular
importance for classification tasks with thousands of output
classes (as often encountered in real world applications), where
it is worthwhile to pretrain the shallow layers of a DNN on
a much smaller subset of the whole training set and then
only retrain the last two fully connected layers. Furthermore,
nets pretrained on different tasks can be reused on new tasks,
offering a highly practical alternative to fully unsupervised
pre-training.
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