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Abstract—The problem of combining multiple feature rankings
into a more robust ranking is investigated. A general framework
for ensemble feature ranking is proposed, alongside four instan-
tiations of this framework using different ranking aggregation
methods. An empirical evaluation using 39 UCI datasets, three
different learning algorithms and three different performance
measures enable us to reach a compelling conclusion: ensemble
feature ranking do improve the quality of feature rankings.
Furthermore, one of the proposed methods was able to achieve
results statistically significantly better than the others.

I. INTRODUCTION

Feature selection has been an important research topic of
pattern recognition, machine intelligence and data mining for
a long time now [1], [2], [3]. There are plenty of studies
pointing out that a subset of features may produce better
predictive models (in terms of accuracy) than the entire feature
set. This is because learning algorithms may be adversely af-
fected by the presence of irrelevant and/or redundant features.
Besides improving classification accuracy, feature selection
significantly reduces the computational time necessary to
induce the models, leading to simpler and faster classifiers
for classifying new instances; facilitates data visualization and
data understanding; and reduces the measurement and storage
requirements.

Feature selection can be broadly divided into three cat-
egories. Filter methods are directly applied to datasets and
generally provide an index for each feature quality by mea-
suring some properties in the data. Wrapper and embedded
methods, on the other hand, generally use a learning algorithm
to indirectly assess the quality of each feature or feature sets.
Wrapper uses the classification accuracy (or other performance
measure) of a learning algorithm to guide a search process
in the feature space and embedded methods use the internal
parameters of some learning algorithms to evaluate features.

A relaxed formalization of feature selection is feature rank-
ing. In the feature ranking setting, a ranked list of features
is produced and one can select the top ranked features,
where the number of features to select can be analytically or
experimentally determined or set by the user. Many feature
selection algorithms use feature ranking as a principal or
auxiliary step because of its simplicity, scalability, and good
empirical success. Furthermore, a ranked list of feature might
be interesting by itself, as for instance in the microarray

analysis, where the ranked list of features is used by biologists
to find correlations among top ranked features and some
diseases [3].

Likewise as finding the best subset of features is impractical
in most domains, we may expect that algorithms that construct
the best ranking of features are unfeasible. Inspired from
ensemble learning, where a combination of models is used to
improve predictive performance, in this paper we investigate
methods whereby the combination of independent feature
rankings would result into a (hopefully) more robust feature
ranking. These methods are based on different ranking aggre-
gation approaches, and may take as input rankings produced
by any combination of different feature ranking algorithms.

The main contributions of this paper are:

1) A general and flexible framework for combining feature
rankings. This framework is based into ranking aggre-
gation mechanisms, and allows different instantiations
depending on how the input base rankings are obtained
as well as how the aggregation is carried out;

2) An empirical investigation of four concrete instantiations
of this framework. These instantiations are based into
four different aggregation approaches and are simple to
implement, computationally cheap and in all but one
case do not introduce new free parameters to set up;

3) An extensive empirical evaluation and analysis involving
39 datasets, three different learning algorithms and three
different classification evaluation measures. Statistical
analysis of the empirical evaluation enable us to reach
a compelling conclusion: combining feature rankings
do improve the quality of the ranked list of features.
Furthermore, in our experiments, one of the proposed
instantiations excels the others.

This paper is organized as follows: Section II presents
related work. Section III presents a general framework for
ensemble feature ranking. Section IV describes the four in-
stantiations of this framework using four different ranking
aggregation approaches studied in this paper. Section V de-
scribes the experimental setup used to evaluate the methods.
Section VI presents and discusses the results, and Section VII
concludes.
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II. RELATED WORK

Combining different feature selection methods has received
considerable attention in recent years, thanks principally to the
interest in the development of reliable and stable feature se-
lection methods for gene selection in bioinformatics tasks [4],
[5], [6]. Similar procedures based on ranking aggregation have
been independently proposed by different authors. In [4], [5],
rankings obtained from the same feature ranking algorithm
ran in different samples of a dataset are combined through
rank averaging — a ranking aggregation technique equivalent
to the Borda method described in Section IV. The motivation
is to construct a more robust ranking to avoid bias due to
sampling variations, a critical issue in gene selection problem
due to the high dimension and low sample size. In [6], a
similar procedure using rank averaging is proposed, although
using different ranking algorithms to obtain the input rankings
rather than a single algorithm in different data samples. The
motivation is also to soften the course of dimensionality/low
sample size in gene selection tasks. Another algorithm similar
do Borda was developed in [7], although the input rankings
were based in a unsupervised approach rather than supervised
ranking.

In [8] the ranking obtained by the aggregation of several
rankings generated by different ranking algorithms, combined
through rank averaging, are used to guide a sequential hill-
climbing backward elimination procedure. The use of the ag-
gregated ranking considerably outperforms the use of individ-
ual rankings on several UCI datasets. In [9] a similar approach
is investigated, although using a forward feature inclusion
rather than backward elimination. The author shows that the
aggregated ranking is, in general, more stable than individual
rankings according to the stability criterion she derived in
the paper. In [10], the authors proposed an algorithm which
combines different feature rankings generated by ROGER [11]
— a genetic algorithm that outputs a linear combination of
features which maximizes the area under the ROC curve —
by reordering the features according to the frequency a feature
appears better ranked than another into a paired analysis. This
approach is similar to the Condorcet criterion described in
Section IV, although the authors assume that a Condorcet
winner always exists (a constraint that is not always satisfied
in practice).

A somehow related approach is [12], where the authors use
traditional ensemble approaches (in this case, ensembles of
decision trees named Random forest (RF)) to perform feature
selection. RF is a random subspace method that combines trees
generated from random subsets of features from the original
feature set, and is capable of efficiently ranking features
for large data sets [13]. The authors exploit this property
of RF, augmenting the original data with artificial contrast
variables constructed independently from the target, and use
their ranking for removal of irrelevant variables from the
original set. Redundancy elimination is performed by using a
variable masking measure that incorporates surrogate variable
scores from ensembles of trees. Another approach has been

recently proposed in [14], where a ensemble of probabilistic
distance measures is proposed to evaluate features.

Our framework, described in the next section, generalizes
these mentioned approaches by not being tailored to any
particular feature ranking and by considering different aggre-
gation approaches.

III. A GENERAL FRAMEWORK FOR ENSEMBLE FEATURE
RANKING

Let D = {x1,x2, . . . ,xn} be a dataset consisting of n
examples or instances. Each instance xi = (xi1, xi2, . . . , xim)
is a vector of m values, where each value xij of this vector
represents a certain property (a feature) of that instance. The
vector fj = (x1j , x2j , . . . , xnj)

t is the vector of values of a
feature fj . In other words, D can be seen as a n×m matrix,
where each row i is the instance xi and each column j is the
feature fj . Features can be either discrete or continuous. In
so-called supervised problems, a feature of particular interest
is called the target feature ftarget. When this target feature is
discrete, this problem is known as a classification problem,
and the value xi,target is called the class of the instance i.

A feature ranking algorithm R applied to the dataset D
produces an ordered list of features π = [f1−, f

2
−, . . . , f

j
−],

where the superscript denotes the position in the ranked list
of a certain feature f−, and this list is ordered by decreasing
importance with respect to ftarget. Ties are allowed and are
indicated by the same superscript for the tied features, that is,
if features fa and fb are tied at the rank w, and they appear as
fwa and fwb in the ranking. Furthermore, this ranking might be
partial, that is, not all features appear in the ranking. Based
on this ranking we can select a subset of the top k ranked
features [f1−, . . . , f

k
−], k ≤ m, where k can be set by the user

or adjusted analytically or experimentally.
Different ranking algorithms may produce different rank-

ings. Considering that many ranking algorithms are available,
and that it is unlikely that exists an ”universal” feature ranking
algorithm, that is, a feature ranking that always produces
the best ranking w.r.t. the target feature, it is plausible to
assume that a combination of different feature rankings (called
ranking aggregation) might produce a better ranking than in-
dividual rankings. The motivation behind combining different
feature rankings is similar to ensemble methods in supervised
learning, where multiple models were used to obtain better
predictive performance than could be obtained from any of
the constituent base models[15], [16].

In general, ensemble methods involve two steps: the first one
is creating different base models, each providing their output,
while the second step is to compose the different outputs into
a single model. Different approaches can be used to generate
the base input feature rankings. The most common are:

1) Variation of the ranking algorithm: Different feature
ranking algorithms can be applied to the same dataset so that
each ranking algorithm produces a different ranking.

2) Variation of the instances: Different subsamples of the
dataset can be generated by sampling the instances with or
without replacement, and the same feature ranking algorithm



be applied to these subsamples, producing a different ranking
for each subsample.

3) Variation of the features: For feature ranking algorithms
that are not univariate, that is, methods that not only uses
information of the feature and the target feature but also take
correlation to other features into account, different subsamples
can be generated by taking different subset of features and the
same feature ranking algorithm be applied to these subsamples,
generating a different ranking for each subset of features.

4) Hybrid approaches: a combination of the previous men-
tioned methods.

The first two approaches generate complete rankings, that
is, rankings contemplating all features while the third approach
(or any combination which involves this approach) generates
partial rankings.

The motivation for using feature ranking algorithms to
construct ensembles is twofold. First, as stated before, many
feature selection methods uses feature ranking as a principal
or auxiliary step because of its simplicity, scalability, and
good empirical success [3]. Filter methods naturally provide a
feature quality score that can be used to rank features. For
wrapper based methods, the predictive performance of the
algorithm used as a wrapper can be used to rank features.
For instance, the difference in accuracy of the predictive model
with and without the feature could be used to rank features. For
embedded methods, some information inside the model can be
used for ranking. For instance, in decision trees, the level of
the node in a tree can be used as a ranking and in SVMs,
the ranking can be based on weights of the support vectors,
as in [17]. Therefore, ensembles of feature ranking may be
build upon a large number of methods already proposed in
the literature.

Second, ranking aggregation methods can be used to com-
bine the base rankings. Ranking aggregation is generally based
on order-based aggregation, that is, only the orders of the
attributes in the ranking are taken into account. There are
several advantages of using order-based aggregation. One of
them is that order-based aggregation is naturally calibrated and
scale insensitive. If we want to do a score-based aggregation,
we generally should firstly rescale the values to the same
range (say, between 0 and 1) so that different absolute scales
do not influence in the aggregate result. Furthermore, even
though values might be in the same absolute scales, they may
represent different relative scales. In other words, the same
score (say 0.6) might represent different feature relevance for
two different feature scoring algorithms. To avoid the influence
of different relative scales when aggregating scores we must
introduce some weight factor to “calibrate” scores. These
weights are not generally easy to determine, and in general
are set up empirically. Other advantages of rank aggregation
are that they are generally computationally cheap, and have
none or few free parameters to set up.

Within this framework, combining feature selection methods
can be performed in a very general and flexible way. Our tech-
nique is not tailored nor limited to a specific feature ranking
method. As long as a feature selection method produces a

ranked list of features, this ranking can be used to construct
a base ranking that can be used as input for constructing
the ensemble. Furthermore, using ranking aggregation is a
simple yet elegant and effective technique in the sense that
they are easy to implement and use, and can naturally handle
uncalibrated methods, partial lists and ties. The next section
describes the four ranking aggregation methods we have
implemented in this study.

IV. RANKING AGGREGATION METHODS

Ranking aggregation is a classical problem from social
choice and voting theory. Roughly speaking, the rank aggre-
gation problem is to combine many different rank orderings
on the same set of candidates (the base-rankings), in order
to obtain a ”better” ordering [18]. In our setting, candidates
are features and base-rankings are different rank orderings of
these features.

An aggregation method takes as input a number of (partial)
ranked lists and produces as output another ranked list. We
have implemented four different rank aggregation methods to
test whether they produce good rankings for the problem of
combining different feature rankings. The aggregation methods
we have implemented are described next.

Borda (BC): The Borda count of an element is its mean
position in the input rankings, that is, Borda(i) =

∑n
j=1 πj(fi),

where πj(fi) is the rank of feature fi in the ranking πj . The
Borda algorithm ranks the elements by increasing order of
Borda counts.

Condorcet (CD): Consider a pairwise comparison between
the ranks of two features. The Condorcet criterion states that
if there is some alternative which defeats ever other in simple
pairwise comparisons, then that alternative is the ”Condorcet
winner”. Based on this property, the Condorcet aggregation
method we have implemented works as follows: for each input
ranking, compare the rank πj(fi) of a feature fi on to the
rank of every other feature, one pair at a time (pairwise),
and tally a ”win” for the higher-ranked feature. Sum these
wins for all rankings, maintaining separate counts for each
pairwise combination. The feature which wins every one else
on their pairwise contests is the most preferred over all other
features, and hence the feature which should appear at the
top of the aggregated ranking. This feature is removed and
another Condorcet winner can be calculated, which is ranked
second in the aggregated ranking, and so forth. In case it is
not possible to determine a single Condorcet winner, we opt
for a random tie break among winners.

Schulze (SSD): Also known as Schwartz Sequential Drop-
ping (SSD), this method also obeys the Condorcet criterion.
For each pair fx and fy of features we count how many
rankings ranks fx over fy and how many rankings ranks fy over
fx. If the first number is larger, then fx defeats fy; if the second
number is larger, fy defeats fx; if both numbers are equal, there
is a tie. We can construct a graph from this information as
follows: the features are the vertices, and whenever fx defeats
fy we add an edge from fx to fy . This process leads to a
graph that always has at least one cycle or single element,



which is not defeated by other options. The collection of all
these elements is called the Schwartz set. If there are cycles
in the Schwartz set, we remove edges from the graph to break
these up. In a cycle, the edge connecting fx to fy is removed
if the number of rankings where fx is over fy is minimal,
considering the set of edges in the cycle. If there are several
edges with this number of votes, they are all removed at once.
Removing edges can make the Schwartz set smaller. We repeat
this procedure until the Schwartz set contains no more cycles.
After we have broken up all cycles, the Schwartz set consists
of isolated nodes only, and the corresponding options are the
winners. These nodes were removed from the graph and a new
group of winners can be computed. Features are ranked in
the aggregated ranking according to the winner sequence they
appear. Typically there is only one winner per round. When
there is more than one winner, ties are broken randomly.

Markov Chain(MC4): In [18] it is proposed methods to
construct aggregate rankings based on Markov chains. One
of these methods (MC4) is similar to the Google PageRank
algorithm. In our feature ranking setting, the states of the chain
correspond to the features to be ranked, the transition proba-
bilities depend in some particular way on the input rankings,
and the stationary probability distribution will be used to order
the features to produce the aggregated ranking. The algorithm
works as follows: the markov chain is represented by a graph.
Each feature corresponds to a node in a graph. For each pair
fx and fy , if fx appears above fy in a ranking, a weighed
directed edge joining the nodes fx and fy is created, with
an weight proportional to the distance between these features
in the ranking. These weights are rescaled to 0 − 1 range to
represent transition probabilities. If this node already is present
in the graph, only the weight is updated by adding to the
previous weight a value proportional to the distance between
the two features in the ranking. After the graph is constructed,
the PageRank algorithm is run in this graph till convergence,
and feature are ordered in decreasing order according to the
”prior importance” of each node in the graph. This method
has a parameter α, which is the importance of each node at
the begining of the execution of the PageRank algorithm.

CD, MC4 and SSD naturally handles partial lists and ties
in the input rankings. In order to BC handle partial lists we
must assume that the all items not ranked appear at the bottom
of the ranked list and ties are handled by assigning average
ranks1. Note however that although ties are allowed in the
input ranking, they are randomly broken in the aggregate
ranking. This tie breaking approach for the aggregate rankings
was used due to the stepwise evaluation procedure described
in Section V-B. BC was used in [4], [5], [6], [8], [9] and an
approach similar to CD was used in [10] to combine rankings
of features. We are not aware of the use of MC4 or SSD in
the same context.

1If two features are tied at the 5th position for instance, the average rank
for both features is 5.5

V. EXPERIMENTAL SETUP

A. Datasets

To evaluate the methods proposed in this paper we carried
out an extensive experimental evaluation using 39 datasets
from UCI [19]. The criterion to choose datasets was to select
classification datasets having at least 10 features. A summary
of the main characteristics of these datasets is shown in Table I.
For each dataset, this table shows the dataset name, number
of instances, number of features, number of classes and the
percentage of instances in the majority class.

TABLE I: Summary of the datasets used in the experiments

name # # # % maj.
inst. feat classes class

anneal 898 39 (6/33) 6 76,17
arrhythmia 452 280 (206/74) 16 54,20
audiology 226 70 (0/70) 24 25,22

autos 205 26 (15/11) 7 32,68
breast-cancer 286 10 (0/10) 2 70,28

wisc-breast-cancer 699 10 (9/1) 2 65,52
bridges-version1 107 12 (3/9) 6 41,12
bridges-version2 107 12 (0/12) 6 41,12

cmc 1473 10 (2/8) 3 42,70
horse-colic 368 23 (7/16) 2 63,04

horse-colic.ORIG 368 28 (7/21) 2 63,04
credit-rating 690 16 (6/10) 2 55,51

german-credit 1000 21 (7/14) 2 70,00
cylinder-bands 540 40 (18/22) 2 57,78
dermatology 366 35 (1/34) 6 30,60

glass 214 10 (9/1) 7 35,51
heart-disease 303 14 (6/8) 5 54,46
heart-statlog 270 14 (13/1) 2 55,56

hepatitis 155 20 (6/14) 2 79,35
ionosphere 351 35 (34/1) 2 64,10

synthetic-control 600 62 (60/2) 6 16,67
kr-vs-kp 3196 37 (0/37) 2 52,22

labor 57 17 (8/9) 2 64,91
letter 20000 17 (16/1) 26 4,07

lung-cancer 32 57 (0/57) 3 40,63
lymphography 148 19 (3/16) 4 54,73

mfeat 2000 217 (216/1) 10 10,00
promoters 106 58 (0/58) 2 50,00
mushroom 8124 23 (0/23) 2 51,80
optdigits 5620 65 (64/1) 10 10,18

page-blocks 5473 11 (10/1) 5 89,77
pendigits 10992 17 (16/1) 10 10,41

primary-tumor 339 18 (0/18) 22 24,78
segment 2310 20 (19/1) 7 14,29

sonar 208 61 (60/1) 2 53,37
soybean 683 36 (0/36) 19 13,47

spambase 4601 58 (57/1) 2 60,60
splice 3190 61 (0/61) 3 51,88

sponge 76 45 (0/45) 3 92,11

As can be seen in this table, the datasets have a great
diversity, with the number of instances ranging from 32 to
20, 000, the number of classes ranging from 2 to 26, the
number of features ranging from 10 to 280 and the prevalence
of the most frequent class ranging from 4.07% to 92.11%.



B. Performance curves

The efficiency of a feature ranking algorithm can be directly
measured by comparing the ranking it produces to the true
ranking. A simple and effective direct evaluation criterion it to
compute the rank correlation between the obtained ranking and
the true ranking. However, this can only be done in synthetic
data for which we know beforehand the true ranking. For real
world data we often do not have this true ranking, and we
have to evaluate it indirectly by using the performance of a
predictive model as an indirect measure [20].

We follow the approach described in [6] to evaluate the
feature rankings. We would expect that good rankings should
put on top of the rank the most important features (w.r.t.
some class feature), leaving at the bottom of the list the least
important ones. Intermediate features would be somewhere in
between, ordered by decreasing ranking importance. There-
fore, to evaluate the ranking we perform a stepwise subset
evaluation, generating a ”performance curve2 ”. This stepwise
evaluation was performed as follows: given a dataset D and
an arbitrary ranking algorithm R, let π = [f1−, f

2
−, . . . , f

m
− ]

be the ranked list obtained by applying R on D, where f1−
denotes the top-ranked feature, f2− the second ranked feature
and so forth. To evaluate this ranking, we generate n subsets
{D1, D2, . . . , Dn} from the original dataset D, where each
subset Di is constructed using the top i ranked features, that
is, D1 = {f1−}, D2 = {f1−, f2−}, and so forth. For each dataset
Di, a predictive model is built using a learning algorithm
L, and the a performance measure Mi is calculated into a
separated test set Ti (that contains the same set of features as
in Di). The performance curve is formed by interpolating the
[M1,M2, . . . ,Mm] points of the Mm estimated performance
measures.

To generate the performance curves we have used three
different learning algorithms, all three implemented in the
Weka toolkit [21], with default parameters: J4.8 (which is
weka’s C4.5 decision tree implementation), Naı̈ve Bayes and
SMO (weka’s implementation of Support Vector Machines —
SVM — using Sequential Minimal Optimization) and three
different performance measures: error rate (the percentage
of instances incorrectly classified by the induced predictive
model), AUC (the area under the ROC curve; when multi-
class datasets were used, the AUC was calculated using the
M-measure [22]), and F1 (the harmonic mean of precision and
recall).

C. Input rankings

To generate the input rankings, we have used the following
feature evaluation approaches often used to select subset
of feaatures, as implemented in WEKA [21]. Features are
ranked according to the descending order provided by the
corresponding feature evaluation method.

2In [6], the curve is called ”error curve,” as only the error rate is
used as performance measure. In this paper, as we consider three different
performance measure (error rate, AUC and F1), we called it ”performance
curve.”

1) Information Gain(IG): measures the gain in information
entropy from using an attribute to split the instances into
disjoint subsets according to the values of the attribute. It is
used as a decision tree splitting criterion in ID3 [23].

2) Gain Ratio (GR): is the measure used as decision tree
splitting criteria in C4.5. It is based in the information gain
and was introduced by Quinlan [23] in order to avoid overes-
timation of multi-valued features. The gain ratio compensates
for the number of attributes by normalizing by the information
encoded in the split itself.

3) Symmetric uncertainty (SU): is also a measure based in
the information gain, normalized by the feature entropy times
the class entropy. This value is multiplied by two in order to
be rescaled to the range between zero and one.

4) ChiSquared (χ2): evaluate each feature individually by
measuring the chi-squared statistic with respect to the class.

5) OneR (1R): evaluate each feature individually by using
this feature alone to classify the target attribute.

6) ReliefF (RLF): was first developed in [24] and then
substantially generalized and improved in [25]. It measures
the usefulness of features based on their ability to distinguish
between very similar neighbors examples belonging to differ-
ent classes.

D. Experiments configuration

The experiments were carried out using 10-fold cross-
validation. To avoid any bias in the experimental analysis due
to sampling variances in the cross validation, the experiment
are paired, that is, we used the same training and test sets for
all methods. We ran all methods to generate input rankings as
well as all classifiers using default parameters, as implemented
in Weka [21]. For MC4, we used the implementation of PageR-
ank available in Jung3, with the α parameter set to 0.1. The
training sets were used to generate the input rankings. These
input rankings were given to the four ranking aggregation
algorithms discussed in Section IV. Both input and aggregate
rankings were used to generate classifiers using the stepwise
subset evaluation procedure described in Section V-B, and
these classifiers were evaluated in the test set to generate the
performance curves.

We compare this approach to the approach proposed in [4].
This approach is referenced as linear (Lin), and the input
rankings used were obtained by sampling with replacement at
a rate of 90% the training set 10 times, and running Relief
over each sample. In [4], both Relief and SVM recursive
feature elimination (SVM-RFE) [17] were used to obtain the
base rankings. We were not able to use the SVM-RFE to
obtain the base rankings due to the computational complexity
of this method. In [4], this was possible because they use
microarray datasets, which have low sample sizes. Note that
the base line methods contains 10 input rankings, while the
other aggregation methods we have used contains only six.

3http://jung.sourceforge.net/



VI. RESULTS AND DISCUSSION

Due to lack of space numerical results are not presented
in this paper. To have an overall idea of the performance of
each approach, we calculated the area under each performance
curve and in order to analyze whether there are differences
among the methods, we ran the Friedman test, at 95% of
confidence level. The Friedman test is the nonparametric
equivalent of the repeated-measures ANOVA. Due to lack
of space, only results of these tests are reported here. When
the null-hypothesis is rejected by the Friedman test, we can
proceed with a post-hoc test to detect what differences among
the methods are significant. For this purpose, we ran the
Nemenyi test, which is similar to the Tukey test for ANOVA
and is used when all methods are compared to each other.
See [26] for a thorough discussion regarding statistical tests
in machine learning research.

To facilitate the analysis, we grouped the experiments into
three groups. First, we grouped results by the performance
measure used to draw the performance curve. The objective
of this grouping is to test whether the performance of the
feature ranking algorithms are robust to different performance
measure or whether the use of a particular measure privi-
leges a particular ranking method. The Friedman tests ran
independently for all datasets grouped by the three different
performance measures used to evaluate the results (F1, error
rate and AUC) rejects the null hypothesis that all ranking
algorithms produce equivalent results and the results of the
post-hoc Nemenyi test are summarized in Figure 1, where
in (a), (b) and (c) are shown the graphical results for the
measures F1, error rate and AUC, respectively. In these graphs,
results were ordered by decreasing performance, where the
best ranking algorithms are placed to the right of the figure.
A thick line joining two or more methods indicates that there
is no statistical significance among those methods.

Overall, the graphs presented in Figure 1 show a clear
pattern. The aggregated rankings perform better than base
rankings, no matter the performance measure used to evaluate
the models. Furthermore, apart from F1, where MC4 is not
significantly better than 1R, all the aggregate rankings are
significantly better than the input rankings. SSD was the best
aggregation technique, no matter the measure used for evalu-
ation. For error and AUC, SSD was significantly better than
any other ranking, either the base rankings or the aggregate
rankings. For F1, SSD is not significantly better than CD,
BC and Lin. For the other two evaluation metrics considered
to evaluate performance, SSD is significantly better than the
base line Lin. The other aggregated rankings, in general, form
a second group although it is not possible to detect whether
one method surpass another. The input rankings form a third
group, and IG always appears with the worst performance,
although it is not possible, in general, to point out significantly
differences among them for all three measures.

In the second group, results were grouped according to
the classifier used to generate the models. The objective of
this grouping is to test whether the performance of of feature

SSD
CD
BC
Lin

MC4
1R
GR
RLF
χ2
SU
IG
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(a) F1
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(b) Error

SSD
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χ2
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(c) AUC

Fig. 1: Results of the Nemenyi test grouped by the three
different measures used to evaluate the feature rankings.
Methods are ordered by performance from left to wright. A
thick line joining two or more methods indicates that there is
no significantly difference among methods.

ranking methods are robust to different learning algorithms
used to build the predictive models or whether the use of a
particular learning algorithm privileges a particular ranking
method. The Friedman tests ran independently for all datasets
grouped by the three different learning algorithms used to
evaluate the results (J48, Naı̈ve Bayes and SVM) rejects the
null hypothesis that all rankings algorithms produce compa-
rable results and results of the post-hoc Nemenyi test are
summarized in Figure 2, where in (a), (b) and (c) are shown
the graphical results for the learning algorithms J48, SVM and
Naı̈ve Bayes respectively.

The results grouped by learning algorithms show a scenario
very similar to the results grouped by performance measure.
The aggregate rankings are clearly better than the base rank-
ings, no matter the learning algorithm used to induce the
models, as all aggregate rankings are significantly better than
the base input rankings. Furthermore, SSD is significantly
better than any other ranking method, either aggregated or base
rankings, no matter the learning algorithm used to evaluate.
Apart from Naı̈ve Bayes, where MC4 is significantly worse
than CD, BC and Lin, the other aggregation approaches,
including the base line Lin, form a second group where no
statistical significance could be identified. The base rankings
form a third group, where for J48 it is not possible to detect



significant differences among all the base methods, while for
SVM and Naı̈ve Bayes it is not possible to detect differences
among 1R, GR and RLF; GR, RLF, χ2 and SU; as well as
among RLF, χ2, SU and IG.
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(a) Decision Tree
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(b) SVM
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(c) Naı̈ve Bayes

Fig. 2: Results of the Nemenyi test grouped by the three
different algorithms used to evaluate the feature rankings.
Methods are ordered by performance from left to wright. A
thick line joining two or more methods indicates that there is
no significantly difference among methods.

Finally, we test whether there are significant differences
considering any learning algorithm and evaluation metric used
to evaluate performance. The Friedman tests ran on all the
results rejects the null hypothesis that all rankings algorithms
produce comparable results and results of the post-hoc Ne-
menyi test are summarized in Figure 3. For this comparison,
SSD excels any other ranking, either the aggregate rankings
or the base rankings. CD, BC, MC4 and Lin forms a second
group, where it is not possible to detect significant differences
among them. The base input rankings form three groups where
it is not possible to detect significant differences: 1R, GR, RLF
and χ2; GR, RLF, χ2 and SU; and RLF, χ2, SU and IG.

Overall, the aggregate rankings performed quite well, and
are significantly better than any base input ranking. This is
strong evidence that aggregating different feature ranking do
improve performance. The performance of MC4 is somehow
disappointing, as it was the worst method among the aggregate
rankings. However, this may be due to the non attempt to
adjust the α parameter of the PageRank algorithm. Although
we used a value that is commonly used in the literature, it has

SSD
CD
BC
Lin

MC4
1R

GR
RLF
χ2
SU

IG

1 2 3 4 5 6 7 8 9

Fig. 3: Overall comparison among feature ranking methods.
Methods are ordered by performance from left to wright. A
thick line joining two or more methods indicates that there is
no significantly difference methods.

not adjusted for this particular problem. Furthermore, SSD also
was significantly better than the aggregated methods, including
the base line. Based on this result, we may recommend SSD to
combine feature rankings. However, it should be keep in mind
that for some particular cases, other methods may produce
better results than SSD. This is the case of the use the dataset
cylinder-bands when J48 was used for evaluation, where MC4
produced good results and the other aggregation methods fail.
For other methods, there is little or no differences among
aggregated and input rankings, as in the case of sponge dataset
using J48 for evaluation.

Another important aspect is the computational complexity
of the ranking aggregation methods. Discounting the time
to build the base rankings, BC only need to compute the
average ranks of each features, and the computational cost
is O(j), where j the number of features. CD requires a
computational cost of O(j2) to run, as it verifies all pairwise
combination of features. A properly implementation of SSD
have a computational cost of O(j3) [27]. MC4 also have a
computational cost of O(j3), although in practice a linear time
is required to converge in most of the cases [18]. Although the
computational cost is considerably large for SSD compared
to BC, for most applications where the number of features
is not very large, the actual running time is not a problem.
In our experiments, most of the datasets run in a couple of
minutes in computer with a intel core i3 processor, 4GB of
run, and iOS operating system. For problems with a large
number of features, an hybrid approach can be considered,
where a computationally cheap method is used to discard the
lower portion of the feature ranking (and thus discarding the
most irrelevant features) and a complex method is used to
compute the aggregate ranking with the most relevant ones.
We believe this would not decrease classification performance
significantly, as in our experiments the larger variations among
the methods are in the top part of the feature ranking, although
additional experiments should be conducted to confirm this
hypothesis.

VII. CONCLUSION

This paper investigates methods to construct ensembles of
feature rankings. These methods take as input feature rankings
that can be generated by a wide range of feature evaluation



methods and construct a new ranking using different rank-
ing aggregation procedures. Four different rank aggregation
methods were investigated. Empirical results of an extensive
experimental evaluation using 39 datasets from UCI, three
different learning algorithms and three evaluation measures for
predictive classification performance shows the suitability of
using rank aggregation to derive better feature rankings when
compared to the base rankings taken as input. Furthermore, in
the overall comparison, the Schulze aggregation method (SSD)
excels the other methods using different learning algorithms
and different performance measures to evaluate the ranked
list of features, and may be considered as the first choice to
compose ranking of features.

An interesting direction for future research is how to trans-
form the ensemble feature ranking method into a ensemble
feature selection method, that is, how to automatically select
a subset of features based on the ranked list of features.
One option is to use an approach similar to [8], using a
separated validation set to evaluate the quality of the feature
sets. Another option is to use an approach similar to [12],
introducing artificially generated features that work as cut of
points for discarding irrelevant features. Finally, it would be
interesting to investigate adaptive aggregation methods that
remove base rankings which may degrade performance, as
well as investigates the stability of the aggregation methods
evaluated in this paper.
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