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Abstract—Heating, Ventilating and Air Conditioning (HVAC)
systems are used to provide adequate comfort to occupants
of spaces within buildings. One important aspect of comfort,
the thermal sensation, is commonly assessed by computation of
the Predicted Mean Vote (PMV) index. Model-based predictive
control may be applied to HVAC systems in existing buildings
in order to provide a desired degree of thermal comfort and
simultaneously achieve significant energy savings. This control
strategy may be formulated as a discrete optimisation problem
and solved by means of structured search techniques. Finding
the optimal solution depends on the ability of computing many
PMV values in a small amount of time. As the PMV formulation
involves iterative computations consuming variable time, it is cru-
cial to have a method for fast, possibly constant execution time,
computation of the PMV index. In this paper it is experimentally
shown that an Artificial Neural Network (ANN) can estimate the
PMV index with varying degrees of efficiency over the trade-off
of accuracy versus computational speed-up.

I. INTRODUCTION AND MOTIVATION

In European Union (EU) countries, primary energy con-
sumption in buildings represents about 40% of the total
energy consumption [1]–[3], and, with variations from country
to country, half of this energy is spent for indoor climate
conditioning. It is estimated that the use of efficient energy
management systems in buildings can save up to 8% of the
energy consumption in the entire EU [4]. Around 83% of
the EU dwellings were constructed before 1990 and about
50% of them before 1970 [1]. Therefore it is of fundamental
importance to control efficiently the existing HVAC systems,
in order to decrease energy usage and increase compliance
with the European Directive (2010/31/EU) on the energy
performance of buildings [3].

A Model-Based Predictive Control (MBPC) methodology
formulated with the purpose of efficiently controlling existing
HVAC systems in public buildings has been one subject of
research by the authors [5], [6]. The objective is the minimi-
sation of the energy required to maintain a desired minimum
comfort level for the occupants. Although the perception of
comfort is related to several environmental factors such as
lighting, temperature and air quality, in this work only the
thermal comfort conditions aspect is addressed.

Most HVAC systems are composed of a number of external
units located on the buildings roof, at least one internal unit
in each independent room with the corresponding operating
unit, and a PC management station to which all the units are

connected, commonly via a LonWorks communication bus.
This station is able to monitor and control many aspects of all
the HVAC system. Those of major interest are: specifying a
temperature set-point for a given room, switching the internal
unit on or off, and disabling the operating unit so the occupants
can not change an operating mode defined by a higher level
control system. Typically, the HVAC systems are actuated
manually by the occupants using the operating unit located
in the room, which allows basic actions such as turning
the system on or off, or setting a desired temperature set-
point. The latter is commonly specified as an integer number
within a restricted range, therefore defining a finite number
of control alternatives. This is a characteristic that can be
explored, as an approach to non-linear MBPC consists in
discretising the control space into an appropriate finite set
of control actions and performing a search for the optimal
future control trajectory within the available set of control
options. In this case the MBPC problem may be solved by
means of discrete optimisation methods. Branch-and-Bound
has been proposed [7] and applied successfully to this type of
discrete (or discretised) non-linear MBPC problems [8]–[12],
and therefore have been used in this context by the authors
[5], [6].

A. Motivation

Figure 1 provides an illustration of the research experi-
mental facilities available for the work summarised above. As
the discrete MBPC problem is solved using the branch-and-
bound search technique, finding the optimal solution depends
on the ability of computing many PMV values in a small
amount of time. As the PMV formulation involves iterative
computations consuming variable time, it is crucial to have a
method for fast, possibly constant execution time, computation
of the PMV index. Also, one of the goals of the project is
the development of a monolithic plug-in controller which will
fuse the functionalities of the control systems laboratory PC
station, the wireless sensor network central node, and part
of the HVAC management PC station as depicted in Fig. 1.
This should be a small, low cost device, with just enough
computational capability to execute the required algorithms
within a fixed small amount of time, therefore the PMV
routine should be implemented by a fast constant execution
time method.
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Fig. 1. Research facilities for HVAC control

Feed-forward ANNs are direct input-to-output connectionist
computing structures capable of approximating a smooth func-
tion with arbitrary accuracy provided sufficient neurons are
used. These features are the means to achieve the requirements
stated above. The feed-forward ANN direct input-to-output
structure provides the constant execution time, their ability
to approximate non-linear functions provide the capability
of approximating the PMV function. The accuracy of the
approximation is related to the number of neurons used in
the ANN hidden layer(s), which in turn is linearly related
to the execution time. Consequently the problem consists
in finding the appropriate trade-off between the PMV index
approximation accuracy and the estimation execution time.

The application of an ANN to estimate the PMV index
function has been studied before [13]–[15]. In all cases the
approach taken was not the best for application in real-time
control applications although this was the main motivation. In
this work it is shown that by following a simpler and more
appropriate approach for real-time control, it is possible to
select a desired compromise between accuracy and execution
time. More importantly it is shown that, when compared to
the results in [13]–[15], an increased accuracy with shorter
execution time may be achieved.

II. THE PMV INDEX

The American Society of Heating Refrigerating and Air
Conditioning Engineers (ASHRAE) proposed the thermal sen-
sation scale with the purpose of quantifying the thermal sen-
sation of people [16]. It uses a numerical coding, as described
in table I, to express the qualitative thermal sensation. An
index, designated PMV, was proposed by Fanger [17] in
order to predict the average vote of a large group of persons

TABLE I
THE ASHRAE THERMAL SENSATION SCALE

cold cool slightly cool neutral slightly warm warm hot
-3 -2 -1 0 1 2 3

on the thermal sensation scale. The index depends on six
factors: metabolic rate, clothing insulation, air temperature and
humidity, air velocity, and the mean radiant temperature. It is
computed by means of a heat-balance equation [18], [19] given
by,

PMV =
(
0.303e−0.036M + 0.028

)
[(M −W )−

− 3.05× 10−3 [5733− 6.99 (M −W )− Pa]−
− 0.42 [(M −W )− 58.15]−
− 1.7× 10−5M (5867− Pa)−
− 0.0014M (34− ta)−

− 3.96× 10−8fcl

[
(tcl + 273)

4 − (t̄r + 273)
4
]
−

− fclhc (tcl − ta) ] , (1)

where M and W are the metabolic rate and external work,
both in W/m2, Pa is the partial water vapour pressure in
Pascal, and ta and t̄r are the air temperature and mean radiant
temperature, in degrees Celsius. The surface temperature of
clothing, tcl, and the convective heat transfer coefficient, hc,
are given by,

tcl =35.7− 0.028 (M −W )− Icl
[
3.96× 10−8fcl×

×
[
(tcl + 273)

4 − (t̄r + 273)
4
]

+

+ fclhc (tcl − ta) ] , (2)



and

hc =

{
h∗c if h∗c > 12.1

√
Va

12.1
√
Va if h∗c < 12.1

√
Va

(3)(
h∗c = 2.38 (tcl − ta)

1/4
)
,

respectively. Va is the air velocity in m/s and Icl is the
clothing thermal resistance in m2·oC/W . These two equations
are solved iteratively until a prescribed degree of convergence
is attained or a maximum number of iterations is reached.
Finally, in (1) and (2), fcl, which is the ratio of body surface
area covered by clothes to the naked surface area, is defined
by:

fcl =

{
1.00 + 1.290Icl if Icl ≤ 0.078

1.05 + 0.645Icl if Icl > 0.078
. (4)

The mean radiant temperature, t̄r, is a quantity which is hard
to measure. The instrument most commonly employed in its
determination is a black globe thermometer [20]. It consists
of a black painted sphere with a temperature sensing device
at its centre. Denoting the globe temperature by tg , the mean
radiant temperature may be determined as [21],

t̄r =
[
(tg + 273)

4
+

+
1.10× 108V 0.6

a

εD0.4
(tg − ta)

]1/4
− 273 , (5)

where D and ε are the globe diameter in meters and the globe
emissivity coefficient, respectively.
Pa, the water vapour pressure in Pascal, is easily related

to the relative humidity of the air, ha, by means of Antoine’s
equation [22]:

Pa = 10hae(16.6536−4030.183/(Ta+235)) (6)

By means of (1) to (6), the PMV appears conceptually as a
function of six variables that can be measured or estimated:

PMV = f (ta, tg, ha, Va, Icl,M) (7)

Reference values for M and Icl may be found in many
handbooks related to HVAC systems and are also provided in
the references presented in this section, which the interested
reader should consult for an in-depth discussion of the PMV
index model presented in (1) to (7).

III. PREVIOUS WORK

Previous ANN models of the PMV index found in the liter-
ature employ Multi-Layer Perceptron (MLP) networks [13],
[15] or Least-Squares Support Vector Machines (LSSVM)
[14]. All cases share the input-output modelling approach
presented in Fig. 2, except for [14] where, apparently, M
is constant with a value of 58.2 W/m2 (seated, relaxed
condition), therefore not considered at the model input. Addi-
tionally, in [13] ha is determined in relation to the wet-bulb
temperature, twb, and in [14] t̄r is made equal to ta.

On what concerns the hidden layer activation functions, a
sigmoid was used in [13], and a Gaussian kernel was consid-
ered in [14]. For [15] only a maximum error performance was

ANN
PMV index

tg or t̄r

ta

twb or ha

Va

Icl

M

PMV

MODEL

Fig. 2. Common PMV ANN modelling approach.

available in addition to the information regarding the type of
ANN and input-output structure employed.

In Both [13] and [14], the training data sets were pre-
pared firstly by specifying an operational range for each
input variable, secondly by generating model input patterns
with values from within these ranges. These are presented
in Table II where the clothing insulation is shown in clo1

(clothing insulation units). In [14] the values were taken at
constant step sizes of 0.1, 7.5, 0.1, and 0.25, for ta, ha,
Va, and Icl, respectively. This feature is not reported in [13],
presumably as the data was selected randomly from within the
ranges considered. Using these techniques 23040 data patterns
were generated in [13] and 6035 in [14], for training the
neural models. Regarding the last, the ranges and step sizes
combine to 31570 points, therefore some subset selection was
performed.

The results presented in [13] are the sum of the square of the
errors obtained with training data (0.11) and a plot showing
the true PMV line and the one obtained with the NN over
9 hours of consecutive data sampled at a rate of 10 minutes.
The visible difference in the plot, constructed with 54 points,
seems to account for more than 0.11 which does not favour the
generalisation ability of the model. The results were obtained
with a network having 6 inputs, two hidden layers with 8 and
4 neurons, and an output neuron. Collectively the model has
97 parameters to train.

In [14] the results reported are for 100 test points, different
from the points in the training set, which cover a range of
the PMV index from approximately -1.6 to 1.25. Clearly this
range is not near the boundaries defining the thermal sensation
scale, and is a reflection of the range selected for ta. Within
this test set the authors report a maximum absolute error of
0.0097 and a mean absolute error of 0.0022.

Considering the work in [15] the only data available was
that the larger error was below 5%.

IV. PROPOSED APPROACH FOR REAL-TIME CONTROL

For real-time control applications there are two important
features that any PMV index approximation method should
efficiently balance: accuracy and computing time. This means

11 clo = 0.155 m2 × oC/W



TABLE II
INPUT RANGES ADOPTED IN PREVIOUS WORK MODELS [13], [14].

Ref. ta tg or t̄r ha or twb Va Icl M

[13] [16, 34] tg = [14, 36] twb = [8, 31] [0.1, 1.0] [0.5, 1.0] [58.2, 93.0]

[14] [20, 28] t̄r = ta ha = [20, 95] [0.1, 0.5] [0.0, 1.5] = 58.2

this work [16, 32] tg = [13, 35] ha = [20, 70] × × ×
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Fig. 3. Using a set of PMV models in an HVAC control system.

that the PMV models should simultaneously be as simple and
as accurate as possible.

For most (if not all) HVAC real-time control applications,
the environment is controlled in closed spaces where all
occupants are assumed (and possibly advised) to be dressed
similarly regarding the type of clothing they wear. Moreover
it is likely that within each type of closed space they will be
performing similar activities like attending a lecture, sitting
writing a research paper, or having breakfast at the cafeteria.
These two assumptions mean that for a given space it is
possible to specify the values of the clothing insulation, Icl,
and the metabolic rate, M , therefore these may be removed
from the PMV model input. If it is further assumed that the
air velocity, Va, varies little within the space and its value is
determined by measurements, Va may be considered constant
and may also be removed from the PMV model input.

By defining a context vector C = {Icl, M, Va} and by
using (1) to (6), a set of input-output data pairs may be
generated in order to train an ANN model for the PMV index
in the context C. This approach suggests that within an HVAC
control system like the one in Fig 1, there are a set of distinct
PMV models, PMVi, each for a distinct context Ci. In this
scheme, a supervisory system at an upper operational level
will define the correspondence between each room controlled
by HVAC systems and a pair {PMVi, Ci}. The approach is
illustrated in Fig. 3. The matching between the rooms and
the assumed contexts can be done on the basis of the year
season, of the purpose of the room, and maybe of any strong
deviations of the outside weather from what is expected.

The consequence of using multiple PMV index models, is
that for a specific context Ci, the model has increased accu-
racy and reduced computing time when compared to models
considering multiple contexts. The increase in accuracy comes
from the fact that there are less features to learn in the training
data, whereas the decrease in computing time results from
using fewer inputs and from the necessity to employ fewer
neurons in the hidden layers in order to achieve a desired
accuracy.

The models presented in previous work found in the lit-
erature are all multiple context models [13]–[15]. Although
the motivation was the use in real-time control systems and
the decrease in PMV index computing time, their input-
output structure did not optimise properly the balance between
accuracy and computing time for that purpose.

V. MATERIALS AND METHODS

In this work the models were obtained by means of Radial
Basis Function (RBF) ANNs, a type of ANN commonly
used as a function approximator. This section presents the
experimental facilities, the RBF methodology employed, and
a description of the modelling experiments.

A. Data Acquisition

The experiments were conducted in a classroom of the
Faculty of Sciences and Technology of the University of
Algarve, in the south of Portugal. This is one of 17 rooms
equipped with HVAC systems and Wireless Sensor Networks
(WSNs) that are being used in research for the efficient
use of energy in public buildings. The WSNs are used to
detect motion and the state of doors and windows (open or
closed), and to measure the values of air temperature, globe
temperature and relative humidity. All the measurements are
done at 1 minute interval and stored in databases.

Temperature and relative humidity measurements where
made using SHT11 sensors from Sensirion. The globe temper-
ature was measured by one such sensor placed in the centre of
a thin plastic sphere with a diameter of 125 mm, painted in
matte black. Plastic was used instead of copper, which is more
commonly found in this application, because it was easily
available, but also because according to [21] it overcomes an
undesirable high time constant that appears when copper is
employed.

The air velocity in the room considered was measured by a
BABUC probe in a 6× 6 grid with a spacing of one meter, at
a height of 1.2 meters above ground, and during a period of
3 minutes. Figure 4 illustrates the measurements in terms of
maximum air velocity obtained. From these results an average
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value of approximately 0.08 m/s was selected as a constant
value to be used in the context vector of PMV index models.
Regarding the two additional human factors in the context
vector, a value of 69.78 W/m2 was selected as the metabolic
rate of a sedentary activity (see appendix A of [16]), and for
the clothing insulation a value of 0.85 was used (see appendix
B of [16]).

B. Radial Basis Function Neural Network

The RBF ANN was used in this work as a function
approximator to the PMV index (1). The RBF models are
trained using the Levenberg-Marquardt (LM) algorithm [23],
[24] minimising a modified training criterion [25], [26].

RBF ANNs have the form,

ŷ (x,w,C,σ) =
n∑

i=0

wiϕi (x, ci, σi) , (8)

where ϕi is the Gaussian function,

ϕi (x, ci, σi) = e
− 1

2σ2
i

‖x−ci‖2
, ϕ0 = 1 . (9)

For a specified number of neurons, n, and for a determined
set of inputs, Xt, off-line training a RBF NN corresponds
to determining the values of w, C, and σ such that (10) is
minimised:

Φ (Xt,w,C,σ) =
1

2
‖y − ŷ (Xt,w,C,σ)‖2 . (10)

Please note, that in contrast with (8) and (9), (10) is now
applied to a set of training input patterns, Xt, and not to
a single input pattern, x. As the model output is a linear

combination of the neuron activation functions output (8), (10)
can be given as,

Φ (Xt,w,C,σ) =
1

2
‖y − φ (Xt,C,σ)w‖2 , (11)

where omitting the dependence of ϕ on C and σ,

φ (Xt,C,σ) = [ϕ (x (1)) ϕ (x (2)) · · · ϕ (x (N))]
T
.

By computing the global optimum value (w∗) of the linear
parameters w, with respect to the nonlinear parameters C and
σ, as a least-squares solution,

w∗ = φ+ (Xt,C,σ)y , (12)

where ”+” denotes a pseudo-inverse operation, and replacing
(12) in (11), the training criterion to determine the nonlinear
parameters C and σ is:

Ψ (Xt,C,σ) =
1

2

∥∥y − φ (Xt,C,σ)φ+ (Xt,C,σ)y
∥∥2 .

(13)
This criterion is independent of the linear parameters w,

and reflects the nonlinear-linear parameters structure of the
RBF NN, by separating their computation, each type being
determined by an adequate method.

The initial values for the neuron centre positions are ran-
domly selected from the training data, and the spreads of the
neuron activation functions are initialised using the simple rule
in [27, p. 299]. The training procedure progresses iteratively
using the LM algorithm minimising criterion (13), until a pre-
specified number of iterations is reached. For more details
about the training algorithm and the training criterion the
reading of [26], [28], [29], or [30] is recommended.

C. Data Sets

Although the models were tested using data measured in a
room as described in section V-A, the input vector for training
the RBF ANNs, defined as Xt = [ta t̄r ha], was built using
randomly generated data. ta, t̄r and ha are vectors of N values
taken from the ranges presented in table II, on the row labelled
as this work. They were constructed as follows:

1) ta and ha were selected randomly from a uniform
distribution of values in the ranges specified;

2) For each value tak in ta, a corresponding value tgk in
tg was generated using,

tgk = tak + ρ (−3.0, 3.0) ,

where ρ (a, b) is a random number from the uniform
distribution in the range [a, b]. Implicitly it is assumed
that ta − 3 < tg < ta + 3;

3) t̄r was obtained by means of (5), considering ta and tg
just described, Va = 0.08, D = 0.125, and ε = 0.95;

In order to determine the corresponding output PMV in-
dex values, the context vector was defined as described in
subsection V-A, as C = {0.85, 69.78, 0.08}. Then, Yt was
constructed by means of (1), using each triplet Xt

k in Xt along
with the values in C. This procedure gives rise to the training
data set, Dt = {Xt,Yt}.
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Using the approach just described, an additional data set,
Dv , was prepared in order to validate the models with unseen
data, after the training stage. Dv has 23100 training pairs
(N = 23100).

Figure 5 shows how the input-output patterns are distributed
within the ranges specified for the input variables, considering
the data in Dv for the context C. It may be seen on the
top plot how t̄r distributes densely around the values of ta
for the whole range considered. The same is visible in the
middle plot for the relative humidity and air temperature. The
bottom plots, from left to right, illustrate the scattering of PMV
values around the air temperature and relative humidities,
respectively. This data set allows good model evaluation as
it efficiently covers the variability of combinations that occurs
between input variables.

D. Modelling experiments

Although the input-output structure of the model has been
specified, there are still two design parameters that need to be
determined: the number of neurons and the number of training
patterns. For the first, an exhaustive search was conducted over
the range [2, 32]. For the second, a search was also conducted
as described in the following. It is known that the ideal number
of training patterns is to some extent related to the number of
parameters of the model being fitted [31], [32]. Considering
the RBF in (8) and (9) for the PMV index model presented,
each neuron accounts for 5 parameters, therefore the total
number of parameters is given by n×5, n being the number of
neurons employed. By specifying a number of patterns (p) per
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Fig. 6. Results regarding the selection of the best training set size, the
generalisation capacity of the models, and the accuracy achieved.

model parameter it becomes possible to determine the value
of N for the training data set Dt, as N = n× 5× p. In this
case a search was made for p in {20, 40, 60, 80, 100, 120}.
For each of these values, n was varied in the range [2, 32] as
already mentioned. Considering that the RBF parameters are
initialised randomly, 20 trials were executed for each (n, p)
pair. Each trial consisted on the application of the modified
training criterion LM algorithm for 200 iterations.

VI. RESULTS AND DISCUSSION

Having determined all the models spanned by (n, p)r
∣∣20
r=1 ,

where r is the trial number, the first result sought was a
decision on the number of training patterns. The decision was
made on the basis of the models maximum absolute error
obtained on the validation data set, Dv . For each value of
p, the average of that error was computed over all the models
(for all n and r). The top plot of Fig. 6 illustrates the result,
where it is clearly seen that, on average, it is best to train the
models with 80 training patterns for each model parameter.
The middle plot illustrates the best relation between the results
obtained with the training set and those obtained with the
validation set, for p = 80. The plot presents the minimum
and mean of the average absolute error obtained over the
20 trials for each number of neurons n. The difference is
negligible, which allows to conclude that the models provide
excellent generalisation capability. To this respect, it should
be noted that the validation data set has 23100 points, a value
comparable to the training set in [13], and that with only 1600
training patterns (4 neurons case), near 25% of the number
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used in [14], a maximum absolute error of approximately
0.015 is obtained both in training and validation data sets.
Still for p = 80, as it showed the best generalisation, the lower
plot in Fig 6 shows for each number of neurons, the minimum
value, obtained over the 20 trials, of the maximum absolute
error in the validation data set. It may be concluded that
using more than 10 neurons is not necessary as no significant
improvements are obtained.

The model with 5 neurons in the lower plot of Fig. 6,
corresponding to 26 parameters, achieves an average and
maximum absolute error of 0.0025 and 0.011, respectively.
These values are comparable to the results in [14], 0.0022 and
0.0097 (obtained with 100 testing points), although the RBF
model is incomparably smaller. Only two results are presented
in [13]: a Sum of the Square of the Errors (SSE) on the training
set of 0.11, and a figure showing how the model with 97
parameters behaved on a 9 hours experiment within a room.
Regarding the first it is a bit less than half the value of 0.23
obtained by the 5 neuron model. Regarding the figure we may
only comment that the well visible errors clearly show that the
model does not generalise properly, probably due to a large
training set and also, possibly, due to overtraining, considering
the small value of SSE.

Figure 7 shows the fitting of the validation data set by the
5 neurons RBF model, as well as the histogram of the error
obtained. In order to provide a more realistic evaluation of the
PMV index model, it was applied to a set of data acquired
in the room described previously. The data acquisition took
place during a system identification experiment where pseudo-
random binary sequences were being applied to the air condi-
tioning set-point, hence there was significant variability in the
room environment. The result is shown in Fig. 8. The estimates
provided by the model are extremely accurate: the average and
maximum absolute errors were 0.0014 and 0.0075.

A final note is due on the important trade-off between
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Fig. 8. PMV given by (1) (thick black line) and by 5 neuron RBF ANN
(thin white line) during a system identification experiment. Please note that
the lines are coincident, hence the white line is within the black line.
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computing time and estimation accuracy. Figure 9 highlights
the relative performance of RBF models in terms of computing
time and accuracy. The lower plot shows the ratio between the
PMV given by (1) and the one computed by an RBF ANN
with n neurons. It may be seen that a 13 neurons model
is about 20 times faster than (1) and a 5 neurons model is
approximately 55 times faster. The limit case of interest is 4
neurons corresponding to a speed-up near 70. The upper plot
in the same figure shows the relative accuracy in terms of
average absolute error. The limiting case of interest is maybe
12 neurons, about 20 times faster, with the double of the
smaller average error achieved with 32 neurons. Although
this plot may suggest that less than 12 neurons achieves a
bad performance, the middle plot clears this impression. It
shows the relative performance in terms of the maximum
absolute error. It may be seen that with only 5 neurons the
best performance is almost achieved, although in terms of
average error the model is a bit worse than the best one. Using
these curves one may select a specific model with the desired
balance between accuracy and speed-up.

When compared to the models in [13] or [14], those here
presented show better estimation accuracy, specifically on
unseen data in real application, provide a wider coverage of
the PMV input variables and of the thermal sensation scale,
and achieve speed-up improvements. In this last case the gain



is significant, being very large when compared to [14] and
estimated to be about 3.5 times faster than the model in [13].

VII. CONCLUSIONS

A methodology has been presented in order to obtain a set
of radial basis function neural network models to estimate
the PMV index. As the models are necessary for real-time
control, the input-output structure was simplified by separating
dynamical environment variables from human factors that may
be considered constant. The models show good estimation
accuracy over wide ranges of the input variables and provide
good coverage of the thermal sensation scale. This has been
shown with data not used during the training stage, including
data collected in a classroom used for HVAC control research.
When compared to previous work, the design of the models
was planned in detail with the purpose of using them in real-
time control applications, the generalisation of the models was
tested thoroughly, and a procedure was shown in order to select
a model on the basis of a desired compromise between speed-
up and estimation accuracy as opposed to trial and error.
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