
More Sound Static Handling of Java Reflection

Yannis Smaragdakis George Kastrinis
George Balatsouras

Department of Informatics, University of Athens
Athens, 15784, Greece

{smaragd,gkastrinis,gbalats}@di.uoa.gr

Martin Bravenboer
LogicBlox Inc.

Two Midtown Plaza
Atlanta, GA 30309, USA

martin.bravenboer@acm.org

Abstract
Reflection is a highly dynamic language feature that poses
grave problems for static analyses. In the Java setting, re-
flection is ubiquitous in large programs. Any handling of re-
flection will be approximate, and overestimating its reach in
a large codebase can be catastrophic for precision and scala-
bility. We present an approach for handling reflection with
improved empirical soundness (as measured against prior
approaches and dynamic information) in the context of a
points-to analysis. Our approach is based on the combina-
tion of string-flow and points-to analysis from past litera-
ture augmented with (a) substring analysis and modeling of
partial string flow through string builder classes; (b) new
techniques for analyzing reflective entities based on infor-
mation available at their use-sites. The resulting analysis is
general, without any need for hand-tuning. In experimental
comparisons with prior approaches, we demonstrate a com-
bination of both improved soundness (recovering the major-
ity of missing call-graph edges) and increased performance.

1. Introduction
Whole-program static analysis is the engine behind sev-
eral modern programming facilities for program develop-
ment and understanding. Compilers, bug detectors, secu-
rity checkers, modern development environments (with au-
tomated refactorings, slicing facilities, and auto-complete
functionality), and a myriad other tools routinely employ
static analysis machinery. Even the seemingly simple effort
of computing a program’s call-graph (i.e., which program
function can call which other) requires sophisticated analy-
sis in order to achieve precision in a modern language.

Yet, static whole-program analysis suffers in the presence
of common dynamic features, especially reflection. When
a Java program accesses a class by supplying its name as
a run-time string, via the Class.forName library call, the
static analysis has very few available courses of action: It ei-
ther needs to conservatively over-approximate (e.g., assume
that any class can be accessed, possibly limiting the set later,
after the returned object is used), or it needs to perform a
string analysis that will allow it to infer the contents of the

forName string argument. Both options can be detrimen-
tal to the scalability of the analysis: the conservative over-
approximation may never become constrained enough by
further instructions to be feasible in practice; precise string
analysis is impractical for large programs of realistic size. It
is telling that no practical Java program analysis framework
in existence handles reflection in a sound way, although
other language features are modeled soundly.1 Thus, the first
challenge of static reflection handling is empirical sound-
ness: the static analysis is intended to thoroughly cover dy-
namic behavior. After all, the reason to perform static anal-
ysis is to capture more program behaviors than a dynamic
execution—the converse is a paradox that puts the value of
the static analysis in question. Even if guaranteed full sound-
ness is impractical, it is desirable to capture most actual be-
havior for the well-behaved reflection patterns encountered
in regular, non-adversarial programs.

The second challenge of handling reflection in a static
analysis is scalability. The online documentation of the IBM
WALA library [Fink et al.] concisely summarizes the current
state of the practice, for points-to analysis in the Java setting.

Reflection usage and the size of modern li-
braries/frameworks make it very difficult to scale
flow-insensitive points-to analysis to modern Java
programs. For example, with default settings, WALA’s
pointer analyses cannot handle any program linked
against the Java 6 standard libraries, due to extensive
reflection in the libraries.

The same caveats routinely appear in the research litera-
ture. Multiple published points-to analysis papers analyze
well-known benchmarks with reflection disabled [Smarag-
dakis et al. 2011; Kastrinis and Smaragdakis 2013b; Ali and
Lhoták 2012, 2013].

In this paper, we describe an approach to analyzing re-
flection in the above setting (points-to analysis, Java). Our
approach requires no manual configuration and achieves
significantly higher empirical soundness without sacrificing

1 In our context, sound = over-approximate, i.e., guaranteeing that all pos-
sible behaviors of reflection operations are modeled.

1 2014/11/15

scalability, for realistic benchmarks and libraries (DaCapo
Bach and Java 7).

There are two new technical elements in our work:

• We augment prior algorithms for inter-related reflection
and points-to analysis [Livshits et al. 2005; Livshits 2006]
with a substring analysis, as well as a string flow anal-
ysis. The insight behind this treatment is that reflection
is often used to dynamically access entities with partially
known names, and the dynamic part of the configuration
is limited to package prefixes, method name suffixes, etc.
Thus, much of the dynamic information (i.e., other sub-
strings contributing to the eventual string representing a
class or member name) can be supplanted by mere over-
approximation.

The (simplified) code excerpt shown in Figure 1,
found in the xalan DaCapo benchmark, demon-
strates the need for substring analysis in order to
resolve reflective method invocations. The meth-
ods shown belong to class org.apache.xalan

.processor.XSLTAttributeDef, which represents
an attribute for an element in an XSLT stylesheet.
The method setAttrVal() computes and sets the
value of this attribute, for a given element (of
type ElemTemplateElement), via reflection (calls
getClass, getMethod, invoke). In order to achieve this,
it first has to determine the exact name of the setter method
of the element, by calling getSetterMethodName().
The attribute contains a field m name, which holds the lo-
cal name of the attribute without any prefix. The method
simply transforms this local name to a setter method by
adding a “set” prefix, removing dashes, and changing it
to camel case. (Reflective calls have to be generic, which
explains why patterns such as this, relying on naming con-
ventions and employing some basic string transformation,
are common in practice.)

Note that, in order to resolve the setter method, one
needs to track the flow of the “set” prefix through the
StringBuffer object and use it to match against any
possible setter methods of ElemTemplateElement.

• We introduce new techniques for inferring the result of
reflection calls based on how this result is used later in
the program. Consider, for instance, a sequence of program
statements, possibly remote to each other, yet with values
flowing from one to the next:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Object o1 = c2.newInstance();3

... // o2 aliases o14

e = (Event) o2;5

Assuming that the cast is intended to succeed, we get
information regarding the result of the newInstance call,
which, in turn, informs the result of the forName call. That
is, by keeping track of the flow of objects from an original

1 boolean setAttrVal(..., ElemTemplateElement el) {
2 String setterString = getSetterMethodName();
3 Object val = processValue(..., el);
4

5 Object[] args = new Object[]{ val };
6 Class[] argTypes =
7 new Class[]{val.getClass()};
8 Method meth = el
9 .getClass()

10 .getMethod(setterString, argTypes);
11 meth.invoke(el, args);
12 }
13

14 public String getSetterMethodName() {
15 StringBuffer outBuf = new StringBuffer();
16 outBuf.append("set");
17

18 for (int i = 0; i < m_name.length(); i++) {
19 char c = m_name.charAt(i);
20 if (’-’ == c) {
21 i++;
22 c = m_name.charAt(i);
23 c = Character.toUpperCase(c);
24 }
25 else if (0 == i) {
26 c = Character.toUpperCase(c);
27 }
28 outBuf.append(c);
29 }
30 return outBuf.toString();
31 }

Figure 1: Example of reflection leveraging partial strings.

call that accepts strings and produces reflection objects
(such as a forName or a getField call) we infer that this
string could have been the name of a subtype of Event.
This effectively propagates information back to the source
of an unknown object.

Similar reasoning has been employed in other work
[Livshits et al. 2005; Li et al. 2014]. Yet our approach
generalizes past techniques significantly: we support inter-
procedural reasoning, leverage information from strings
and not just casts, and introduce “invented” objects that
fully materialize at the point of a cast and subsequently aid
the analysis modeling.

As a result of carefully balancing the soundness and scal-
ability of all techniques, our approach is both more sound
and more scalable than past work. In experimental compar-
isons with the recent ELF system [Li et al. 2014] (itself
improving over the reflection analysis of the DOOP frame-
work [Bravenboer and Smaragdakis 2009b]), our algorithm
discovers most of the call-graph edges missing (relative to a
dynamic analysis) from ELF’s reflection analysis. This im-
provement in empirical soundness is accompanied by in-
creased performance relative to ELF, demonstrating that
near-sound handling of reflection is often practically possi-
ble.
In summary, our work:

2 2014/11/15

• introduces key techniques in static reflection handling
that contribute greatly to empirical soundness and to scal-
ability;
• thoroughly quantifies the empirical soundness of a static

points-to analysis, compared to past approaches and a
dynamic analysis;
• is implemented and evaluated on top of an open, avail-

able framework (DOOP [Bravenboer and Smaragdakis
2009b]) that can be improved by others. This can offer
a platform for experimentation with sophisticated static
reflection handling, possibly also leading to good static
handling of other dynamic features (e.g., complex dy-
namic loading).

2. Background: Joint Reflection and
Points-To Analysis

As necessary background, we next present an abstracted
model of the inter-related reflection and points-to analysis
upon which our approach builds. The model is a light refor-
mulation of the analysis introduced by Livshits et al. [2005];
Livshits [2006]. The main insight of the Livshits et al. ap-
proach is that reflection analysis relies on points-to informa-
tion, because the different key elements of a reflective ac-
tivity may be dispersed throughout the program. A typical
pattern of reflection usage is with code such as:

String className = ... ;1

Class c = Class.forName(className);2

Object o = c.newInstance();3

String methodName = ... ;4

Method m = c.getMethod(methodName, ...);5

m.invoke(o, ...);6

All of the above statements can occur in distant pro-
gram locations, across different methods, invoked through
virtual calls from multiple sites, etc. Thus, a whole-program
analysis with an understanding of heap objects is required
to track reflection with any amount of precision. This sug-
gest the idea that reflection analysis can leverage points-
to analysis—it is a client for points-to information. At the
same time, points-to analysis needs the results of reflection
analysis—e.g., to determine which method gets invoked in
the last line of the above example, or what objects each of the
example’s local variables point to. Thus, under the Livshits
et al. approach, reflection analysis and points-to analysis be-
come mutually recursive, or effectively a single analysis.

This mutual recursion introduces significant complexity.
Fortunately, a large amount of research in points-to analy-
sis has focused on specifying analyses declaratively [Reps
1994; Whaley et al. 2005; Lam et al. 2005; Whaley and Lam
2004; Bravenboer and Smaragdakis 2009b; Kastrinis and
Smaragdakis 2013a; Bravenboer and Smaragdakis 2009a;
Kastrinis and Smaragdakis 2013b; Naik et al. 2006; Liang
and Naik 2011; Guarnieri and Livshits 2009], in the Datalog
programming language. Datalog is ideal for encoding mutu-

ally recursive logic—recursion is the backbone of the lan-
guage. Computation in Datalog consists of monotonic log-
ical inferences that apply to produce more facts until fix-
point. A Datalog rule “C(z, x)← A(x, y), B(y, z).” means
that if A(x, y) and B(y, z) are both true, then C(z, x) can be
inferred. Livshits et al. expressed their joint reflection and
points-to analysis declaratively in Datalog, which is also a
good vehicle for our illustration and further changes.

We consider the core of the analysis algorithm, which
handles the most common features, illustrated in our above
example: creating a reflective object representing a class
(a class object) given a name string (library method
Class.forName), creating a new object given a class ob-
ject (library method Class.newInstance), retrieving a
reflective method object given a class object and a sig-
nature (library method Class.getMethod), and reflec-
tively calling a virtual method on an object (library method
Method.invoke). This treatment ignores several other
APIs, which are handled similarly. These include, for in-
stance, fields, constructors, other kinds of method invoca-
tions (static, special), reflective access to arrays, other ways
to get class objects, and more.
The domains of the analysis include: invocation sites, I;
variables, V ; heap object abstractions (i.e., allocation sites),
H; method signatures, S; types, T ; methods, M ; natural
numbers, N , and strings.

The analysis takes as input the relations (i.e., tables filled
with information from the program text) shown in Figure 2.
Using these inputs, the Livshits et al. reflection analysis can
be expressed as a five-rule addition to any points-to analysis.
The rest of the points-to analysis (not shown here—see e.g.,
[Guarnieri and Livshits 2009; Kastrinis and Smaragdakis
2013b; Whaley et al. 2005]) supplies more rules for com-
puting a relation VARPOINTSTO(v : V, h : H) and a relation
CALLGRAPHEDGE(i : I,m : M). Intuitively, the traditional
points-to part of the joint analysis is responsible for com-
puting how heap objects flow intra- and inter-procedurally
through the program, while the added rules contribute only
the reflection handling. We explain the rules below.

CLASSOBJECT(i, t)←
CALL(i, "Class.forName"), ACTUALARG(i, 0, p),
VARPOINTSTO(p, c), CONSTANTFORCLASS(c, t).

VARPOINTSTO(r, h)←
CLASSOBJECT(i, t), REIFIEDCLASS(t, h),
ASSIGNRETURNVALUE(i, r).

The first two rules, above, work jointly: they model a
forName call, which returns a class object given a string
representing the class name. The first rule says that if the
first argument (0-th parameter, since forName is a static
method) of a forName call points to an object that is a string
constant, then the type corresponding to that constant is re-
trieved and associated with the invocation site in computed
relation CLASSOBJECT. The second rule then uses CLAS-

3 2014/11/15

CALL(i : I, s : string): invocation instruction i in the
program is a call to a method with signature s.

ACTUALARG(i : I, n : N, v : V): at invocation instruc-
tion i, the n-th parameter is local variable v.

ASSIGNRETURNVALUE(i : I, v : V): at invocation in-
struction i, the value returned from the call is assigned to
local variable v.

HEAPTYPE(h : H, t : T): object h has type t.

LOOKUP(sig : S, t : T,m : M): inside type t there is a
method m with method signature sig.

CONSTANTFORCLASS(h : H, t : T): class/type t has a
name represented by the constant string object h in the
program text.

CONSTANTFORMETHOD(h : H, sig : S): method sig-
nature sig has a name represented by the constant string
object h in the program text.

REIFIEDCLASS(t : T, h : H): special object h repre-
sents the class object of type t. Such special objects (i.e.,
unique identifiers representing them in the analysis) are
created up-front and are part of the input.

REIFIEDHEAPALLOCATION(i : I, t : T, h : H): special
object h represents objects of type t that are allocated
with a newInstance call at invocation site i.

REIFIEDMETHOD(sig : S, h : H): special object h
represents the reflection object for method signature sig.

Figure 2: Relations representing the input program and their
informal meaning.

SOBJECT: if the result of the forName call at invocation site
i is assigned to a local variable r, and the reflection object
for the type associated with i is h, then r is inferred to point
to h.

The above rules could easily be combined into one. How-
ever, their split form is more flexible. In later sections we
will add more rules for producing CLASSOBJECT facts—for
instance, instead of constant strings we will have expressions
that still get inferred to resolve to an actual type.

VARPOINTSTO(r, h)←
CALL(i, "Class.newInstance"), ACTUALARG(i, 0, v),
VARPOINTSTO(v, hc), REIFIEDCLASS(t, hc),
ASSIGNRETURNVALUE(i, r),
REIFIEDHEAPALLOCATION(i, t, h).

The above rule reads: if the receiver object, hc, of a
newInstance call is a class object for class t, and the
newInstance call is assigned to variable r, then make r
point to the special allocation site h that designates objects
of type t allocated at the newInstance call site.

VARPOINTSTO(r, hm)←
CALL(i, "Class.getMethod"),
ACTUALARG(i, 0, b), ACTUALARG(i, 1, p),
ASSIGNRETURNVALUE(i, r),
VARPOINTSTO(b, hc), REIFIEDCLASS(t, hc),
VARPOINTSTO(p, c), CONSTANTFORMETHOD(c, s),
LOOKUP(t, s,), REIFIEDMETHOD(s, hm).

The above rule gives semantics to getMethod calls. It states
that if such a call is made with receiver b (for “base”) and
first argument p (the string encoding the desired method’s
signature), and if the analysis has already determined the
objects that b and p may point to, then, assuming p points
to a string constant encoding a signature, s, that exists inside
the type that b points to (“ ” stands for “any” value), the
variable r holding the result of the getMethod call points to
the reflective object, hm, for this method signature.

CALLGRAPHEDGE(i,m)←
CALL(i, "Method.invoke"),
ACTUALARG(i, 0, b), ACTUALARG(i, 1, p),
VARPOINTSTO(b, hm), REIFIEDMETHOD(s, hm),
VARPOINTSTO(p, h), HEAPTYPE(h, t),
LOOKUP(t, s,m).

Finally, all reflection information can contribute to infer-
ring more call-graph edges. The last rule encodes that a new
edge can be inferred from the invocation site, i, of a reflec-
tive invoke call to a method m, if the receiver, b, of the
invoke (0th parameter) points to a reflective object encod-
ing a method signature, and the argument, p, of the invoke
(1st parameter) points to an object, h, of a class in which the
lookup of the signature produces the method m.

The above five rules are a small part of a realistic im-
plementation of reflection handling, but they offer a faithful
model of the core of the analysis—other additions handle
more reflective calls and more language types (e.g., arrays)
but represent engineering, rather than conceptual handling.
Having declarative rules allows easy inspection of changes.
Note how much of the logic relies on inter-procedural prop-
erties (i.e., VARPOINTSTO information), and at the same
time produces inter-procedural properties (VARPOINTSTO

and CALLGRAPHEDGE).

3. Techniques for Empirical Soundness
In our work, we define a more liberal reflection inference
algorithm that attempts to improve in terms of empirical
soundness. For instance, we are trying to reasonably over-
approximate the values returned by a forName call—the
main entry point for dynamic information. We next present
our two major techniques.

3.1 Generalizing Reflection Inference via Substring
Analysis

An important way of enhancing the empirical soundness of
our analysis is via richer string flow. The logic discussed in

4 2014/11/15

Section 2 only captures the case of entire string constants
used as parameters to a forName call. The parameter of
forName could be any string expression, however. It is in-
teresting to attempt to deduce whether such an expression
can refer to a class name. Similarly, strings representing field
and method names are used in reflective calls—we already
encountered the getMethod call in Section 2. As shown ear-
lier, in the code example of Figure 1, method names are often
constructed dynamically, with fixed prefixes, such as “set”.

In order to estimate what classes, fields, or methods a
string expression may represent, we implement substring
matching: all strings constants in the program text are tested
for prefix and suffix matching against all known class,
method, and field names. (We use reasonable heuristics to
limit the matches: member prefixes need to be at least 3 char-
acters long, member suffixes at least 5 characters, class suf-
fixes at least 6 characters long. These settings can easily vary
but reflect a balance between expected usage and spurious
matches.)

The strings that may refer to such entities are handled
with more precision than others during analysis. For in-
stance, a points-to analysis (e.g., in the DOOP or WALA
frameworks) will typically merge most strings into a sin-
gle abstract object—otherwise the analysis will incur an
overwhelmingly high cost because of tracking numerous
string constants. Strings that may represent class/interface,
method, or field names are prevented from such merging.
Furthermore, the flow of such strings through factory objects
is tracked.

String concatenation in Java is typically done through
objects of type StringBuffer or StringBuilder. The
source-level concatenation primitive, operator +, reduces to
operations through such factory objects. To evaluate whether
reflection-related substrings may flow into factory objects,
we leverage the points-to analysis itself, pretending that an
object flow into an append method and out of a toString
method is tantamount to an assignment. The logic is quite
straightforward—a simplified version is in the rule below.
(The rule assumes we have already computed relation RE-
FLECTIONOBJECT(h : H), which lists the string constants
that partially match method, field, or class names, as de-
scribed above. It also takes an extra input relation STRING-
FACTORYVAR(vf : V) that captures which variables are of a
string factory type.)

VARPOINTSTO(r, h)←
CALL(ia, "append"),
ACTUALARG(ia, 0, vf), ACTUALARG(ia, 1, v),
STRINGFACTORYVAR(vf),
CALL(it, "toString"),
ACTUALARG(it, 0, uf), ASSIGNRETURNVALUE(it, r),
VARPOINTSTO(vf , hf), VARPOINTSTO(uf , hf),
VARPOINTSTO(v, h), REFLECTIONOBJECT(h).

In words: if a call to append and a call to toString are over
the same factory object, hf , (accessed by different vars, vf
and uf , at possibly disparate parts of the program) then all
the potentially reflection-related objects that are pointed to
by the parameter, v, of append are inferred to be pointed by
the variable r that accepts the result of the toString call.

In this way, the flow of partial string expressions through
the program is tracked. By then appropriately adjusting the
CONSTANTFORCLASS and CONSTANTFORMETHOD predi-
cates of Section 2 (to also map from partial strings to their
matching types) we can estimate which reflective entities
can be returned at the site of a forName or getMethod

call. In this way, the joint points-to and reflection analysis
is enhanced with substring reasoning without requiring any
changes to the base logic of Section 2. Namely, string flow
through buffers becomes just an enhancement of the points-
to logic, which is already leveraged by reflection analysis.

An interesting aspect of the above approach is that it is
easily configurable, in commony desirable ways. Our above
rule for handling partial string flow through string factory
objects does not concern itself with how string factory ob-
jects (hf) are represented inside the analysis. Indeed, string
factory objects are often as numerous as strings themselves,
since they are implicitly allocated on every use of the + op-
erator over strings in a Java program. Therefore, a pointer
analysis will often merge string factory objects.2 The rule
for string flow through factories is unaffected by this treat-
ment. Although precision is lost if all string factory ob-
jects are merged into one abstract object, the joint points-
to and reflection analysis still computes a fairly precise out-
come: “does a partial string that matches some class/method-
/field name flow into some string factory’s append method,
and does some string factory’s toString result flow into
a reflection operation?” If both conditions are satisfied, the
class/method/field name matched by the partial string is con-
sidered to flow into the reflection operation.

3.2 Use-Based Reflection Analysis
Our second technique for statically analyzing reflection calls
leverages the way objects returned by reflective calls are
later used in the program. We call the approach use-based
reflection analysis and it integrates two sub-techniques: a
back-propagation mechanism and an object invention mech-
anism. We discuss these next.

3.2.1 Inter-procedural Back-Propagation
An important observation regarding reflection handling is
that it is one of the few parts of a static analysis that are
typically under-approximate rather than over-approximate.
A static points-to analysis is primarily a may analysis: it
computes a conservative over-approximation of the ana-

2 For instance, this is enabled with the flag SMUSH STRINGS in the WALA
framework [Fink et al.] or the flag MERGE STRING BUFFERS in the
DOOP framework. Both flags are on by default for precise (i.e., costly)
analyses.

5 2014/11/15

lyzed program’s behavior. This is usually impossible to do
in the presence of reflection: the analysis cannot know all
the values that a string expression can assume. Of course,
the analysis could over-approximate such values (e.g., as-
sume that any string is possible) but such treatment is
catastrophic for precision and scalability: a single reflec-
tive call would lead to vast imprecision propagating through
the program. No practical whole-program analysis attempts
such over-approximation [Livshits et al. 2013]. Instead,
analyses choose to purposely treat reflective calls under-
approximately: when the arguments of the reflection call are
possible to infer, they are taken into account; other potential
values are ignored.

Our first use-based reflection analysis technique back-
propagates information from the use-site of a reflective result
to the original reflection call that got under-approximated.
Such an under-approximated call could be one of several:
• A Class.forName call, as seen earlier: returns a dy-

namic representation of a class, given a string.
• A Class.get[Declared]Method call, as seen earlier:

returns a dynamic representation of a method, given a
class and a string.
• A Class.get[Declared]Field call: returns a dy-

namic representation of a field, given a class and a string.
• A Class.get[Declared]Methods call: returns all (or

all public) methods of a class.
• A Class.get[Declared]Fields call: returns all (or

all public) fields of a class.
Let us consider again the example in the Introduction,

showing how the use of a non-reflection object can inform
a reflection call’s analysis:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Object o1 = c2.newInstance();3

... // o2 aliases o14

e = (Event) o2;5

Typically (e.g., when className does not point to
a known constant) the forName call will be under-
approximated (rather than, e.g., assuming it will return any
class in the system). The idea is to then treat the cast as a
hint: it suggests that the earlier forName call should have
returned a class object for Event. This reasoning, however,
should be inter-procedural with an understanding of heap
behavior. The above statements could be in distant parts of
the program (separate methods) and aliasing is part of the
conditions in the above pattern. Further, note that the related
objects are twice-removed: we see a cast on an instance ob-
ject and need to infer something about the forName site that
may have been used to create the class that got used to al-
locate that object. This propagation should be as precise as
possible: lack of precision will lead to too many class objects
returned at the forName call site, affecting scalability.

Therefore, we see again the need to employ points-to
analysis, this time in order to detect the relationship between

cast sites and forName sites, so that the latter can be better
resolved and we can improve the points-to analysis itself—
a mutual recursion pattern. The high-level structure of our
technique (for this pattern) is as follows:
• At the site of a forName call, create a special, place-

holder object (of type java.lang.Class), to stand for
all unknown objects that the invocation may return.
• The special object flows freely through the points-to anal-

ysis, taking full advantage of inter-procedural reasoning
facilities.
• At the site of a newInstance invocation, if the receiver

is our special object, the result of newInstance is also
a special object (of type java.lang.Object this time)
that remembers its forName origins.
• This second special object also flows freely through

the points-to analysis, taking full advantage of inter-
procedural reasoning facilities.
• If the second special object (of type java.lang.Object)

reaches the site of a cast, then the original forName invo-
cation is retrieved and augmented to return the cast type
or its subtypes as class objects.
The algorithm for the above treatment can be ele-

gantly expressed via rules that are mutually recursive with
the base points-to analysis. The rules for the forName-
newInstance-cast pattern are representative. We use extra
input relations REIFIEDUNKNOWNFORNAME(i : I, h : H),
and REIFIEDUNKNOWNNEWINSTANCE(i : I, h : H), anal-
ogous to our earlier “REIFIED...” relations. The first rela-
tion gives, for each forName invocation site, i, a special ob-
ject, h, that identifies the invocation site. The second relation
gives a special object, h, that stands for all unknown objects
returned by a newInstance call, which was, in turn, per-
formed on the special object returned by a forName call, at
invocation site i. The rules then become:

VARPOINTSTO(v, h)←
CALL(i, "Class.forName"), ASSIGNRETURNVALUE(i, v),
REIFIEDUNKNOWNFORNAME(i, h).

In words: the variable that was assigned the result of a
forName invocation points to the special object representing
all missing objects from this invocation site. In this way,
the special object can then propagate through the points-to
analysis.

VARPOINTSTO(r, hn)←
CALL(in, "Class.newInstance"),
ACTUALARG(in, 0, v), ASSIGNRETURNVALUE(in, r),
VARPOINTSTO(v, h),
REIFIEDUNKNOWNFORNAME(i, h),
REIFIEDUNKNOWNNEWINSTANCE(i, hn).

According to this rule, when analyzing a newInstance

call, if the receiver is a special object that was pro-
duced by a forName invocation, i, then the result
of the newInstance will be another special object
(of appropriate type—determined by the contents of

6 2014/11/15

ReifiedUnknownNewInstance) that will identify the
original forName call.

The final rule uses input relation CAST(v′ : V, v : V, t :
T) (with v′ being the variable to which the cast result is
stored and v the variable being cast) and SUBTYPE(t : T, u :
T) with its expected meaning:

CLASSOBJECT(i, t′)←
CAST(, v, t), SUBTYPE(t′, t), VARPOINTSTO(v, hn),
REIFIEDUNKNOWNNEWINSTANCE(i, hn).

The rule ties the logic together: if a cast to type t is found,
where the cast variable points to a special object, hn, then
retrieve the object’s forName invocation site, i, and infer
that this invocation site returns a class object of type t′,
where t′ is a subtype of t.

Other use-cases. As seen above, the back-propagation
logic involves the result of several inter-procedural queries
(e.g., points-to information at possibly distant call sites).
In fact, there are use-based back-propagation patterns with
even longer chains of reasoning. One such is below:
Class c1 = Class.forName(className);1

... // c2 aliases c12

Constructor[] cons1 =3

c2.getConstructors(types);4

... // cons2 aliases cons15

Object o1 = cons2[i].newInstance(args);6

... // o2 aliases o17

e = (Event) o2;8

In this case, the cast of o2 informs the return value of
forName, three reflection calls back!

Interestingly, the back-propagation analysis can exploit
not just cast information but also strings (including partial
strings, transparently, per our substring/string-flow analysis
of Section 3.1). When retrieving a member from a reflec-
tively discovered class, the string name supplied may contain
enough information to disambiguate what this class may be.
Consider the pattern:
Class c1 = Class.forName(className);1

... // c2 aliases c12

Field f = c2.getField(fieldName);3

In this case, the value of the fieldName string can in-
form the analysis result for the earlier forName call. We ap-
ply this idea to the 4 API calls Class.get[Declared]Method
and Class.get[Declared]Field.

Contrasting approaches. Our back-propagating reflection
analysis has some close relatives in the literature. Livshits
et al. [2005]; Livshits [2006] also examined using future
casts as hints for forName calls, as an alternative to regu-
lar string inference. Li et al. [2014] generalize the Livshits
approach to many more reflection calls. There are, however,
important ways in which our techniques differ:

• Our analysis is inter-procedural, whereas other ap-
proaches have several intra-procedural elements. In our

earlier example, both the Livshits et al. and the Li et
al. approaches require for the cast to post-dominate the
newInstance call. Thus, the pattern becomes signifi-
cantly less general:

Class c1 = Class.forName(className);1

... // c2 aliases c12

e = (Event) c2.newInstance();3

The result of such a restriction is that the potential for
imprecision is diminished, yet the ability to achieve em-
pirical soundness is also scaled back. There are several
cases where the cast will not post-dominate the inter-
mediate reflection call, yet could yield useful informa-
tion. This is precisely what Livshits et al. encountered
experimentally—a direct quote illustrates:

The high number of unresolved calls in the JDK
is due to the fact that reflection use in libraries
tends to be highly generic and it is common to
have ’Class.newInstancewrappers’—methods
that accept a class name as a string and return
an object of that class, which is later cast to an
appropriate type in the caller method. Since we
rely on intraprocedural post-dominance, resolving
these calls is beyond our scope. [Livshits et al.
2005]

Our approach aims for empirical soundness and uses
other mechanisms for controlling the potential impreci-
sion of the back-propagating analysis, as we will see in
Section 3.3.
• The ability to back-propagate string information and

not just cast information (i.e., exploit the use of
get[Declared]{Method,Field} calls to resolve ear-
lier forName calls) has not been exploited in other ap-
proaches. This feature also benefits from other elements
of our overall analysis, namely substring matching and
substring flow analysis (Section 3.1).

Precision vs. Scalability. A final note on the back-
propagation technique concerns its precision and scalabil-
ity. The fully inter-procedural tracking of reflection results
is good for achieving empirical soundness: many possibil-
ities are explored and the results are conservatively propa-
gated to the original reflection site, from where they will flow
down again to all other dependent reflection calls. However,
this can introduce imprecision and, as a result, impact scal-
ability. For instance, a cast may be to a type with numerous
subtypes. If all of them are considered to be the result of a
common forName call, then the back-propagation inference
will be imprecise. If, in turn, this forName call has its re-
sult propagated to many program points, then the analysis
precision and scalability are likely to suffer. Therefore, it is
desirable to control when and how back-propagation will ap-
ply. We discuss this topic in Section 3.3, but first we consider
alternatives to back-propagation.

7 2014/11/15

3.2.2 Inventing Objects
Our second use-based reflection analysis technique is a for-
ward propagation technique. It consists of inventing objects
of the appropriate type at the point of a cast operation that
has received the result of a reflection call. Consider again our
forName-newInstance-cast example:

Class c1 = Class.forName(className);1

... // c2 aliases c12

Object o1 = c2.newInstance();3

... // o2 aliases o14

e = (Event) o2;5

As discussed earlier, one issue with back-propagation is
that its results may adversely affect precision. The informa-
tion will flow back to the site of the forName call, and from
there to multiple other program points—not just to the point
of the cast operation (line 5), or even to the point of the
newInstance operation (line 3) in the example.

The object invention technique offers the converse com-
promise. Whenever a special, unknown reflective object
flows to the point of a cast, instead of informing the result
of forName, the technique invents a new, regular object of
the right type (Event, in this case) that starts its existence
at the cast site. The “invented” object does not necessarily
abstract actual run-time objects. Instead, it exploits the fact
that a points-to analysis is fundamentally a may-analysis: it
is designed to possibly yield over-approximate results, in ad-
dition to those arising in real executions. Thus, an invented
value does not impact the correctness of the analysis (since
having extra values in points-to sets is acceptable), yet it may
enable it to explore possibilities that would not exist without
the invented value. These possibilities are, however, strongly
hinted by the existence of a cast in the code, over an object
derived from reflection operations.

The algorithm for object invention in the analy-
sis is again recursive with the main points-to logic.
We illustrate for the case of Class.newInstance, al-
though similar logic applies to reflection calls such as
Constructor.newInstance, as well as Method.invoke
and Field.get.

As in the back-propagating analysis, we use special
placeholder objects. These are represented by input relations
REIFIEDMARKERNEWINSTANCE(i : I, h : H), and REI-
FIEDINVENTEDOBJECT(i : I, t : T, h : H). The first relation
gives, for each newInstance invocation site, i, a special ob-
ject, h, that identifies the invocation site. The second relation
gives an invented object, h of type t, for each newInstance
invocation site, i, and type t that appears in a cast. The algo-
rithm is captured by two rules:

VARPOINTSTO(v, h)←
CALL(i, "Class.newInstance"),
ASSIGNRETURNVALUE(i, v),
REIFIEDMARKERNEWINSTANCE(i, h).

That is, the variable assigned the result of a newInstance

invocation points to a special object marking that it was
produced by a reflection call. The marker object can then
propagate through the points-to analysis.

The key part of the algorithm is to then invent an object
at a cast site.

VARPOINTSTO(r, h)←
CAST(r, v, t), VARPOINTSTO(v, hm),
REIFIEDMARKERNEWINSTANCE(i, hm),
REIFIEDINVENTEDOBJECT(i, t, h).

In words, if a cast to a type t is found, and the variable, v,
being cast points to an object marking that it was produced
by a newInstance call, then the variable, r, storing the
result of the cast, points to a newly invented object, with the
right type, t.

Note that in terms of coverage (i.e., empirical soundness)
the object invention approach is subsumed by the back-
propagation analysis: if a type is inferred to be produced by
an earlier forName call, it will flow down to the point of the
cast, removing the need for object invention. Nevertheless,
the benefit of object invention is that it allows selectively
turning off back-propagation while still taking advantage of
information from a cast.

3.3 Balancing for Scalability
As discussed in Section 3.2.1, the back-propagating analysis
technique is powerful in terms of achieving empirical sound-
ness (i.e., inferring a large number of potential results of a re-
flection call). At the same time, however, the technique may
suffer in precision, since the result of a reflection call is de-
duced from far away information, which may be highly over-
approximate. Conversely, the object invention technique is
more precise (since the invented object only starts existing
at the point of the cast) but may suffer in terms of sound-
ness. Thus, it can be used to supplement back-propagation
when the latter is applied selectively.

To balance the soundness/precision tradeoff of the
back-propagating analysis, we employ precision thresholds.
Namely, back-propagation is applied only when it is reason-
ably precise in terms of type information. For instance, if
a cast is found, it is used to back-propagate reflective in-
formation only when there are up to a constant, c, class
types that can satisfy the cast (i.e., at most c subtypes of
the cast type). Intuitively, a cast of the form “(Event)” is
much more informative when Event is a class with only
a few subclasses, rather than when Event is an interface
that many tens of classes implement. Similarly, if string in-
formation (e.g., a method name) is used to determine what
class object could have been returned by a Class.forName,
the back-propagation takes place only when the string name
matches methods of at most d different types. This threshold
approach minimizes the potential for noise back-propagating
and polluting all subsequent program paths that depend on
the original reflection call.

8 2014/11/15

A second technique for employing back-propagation
without sacrificing precision and scalability adjusts the flow
of special objects (i.e., objects in REIFIEDUNKNOWNFOR-
NAME or REIFIEDUNKNOWNNEWINSTANCE). Although we
want such objects to flow inter-procedurally, we can dis-
allow their tracking through the heap (i.e., through objects
or arrays), allowing only their flow through local variables.
This is consistent with expected inter-procedural usage pat-
terns of reflection results: although such results will likely
be returned from methods (cf. the quote from [Livshits et al.
2005] in Section 3.2.1), they are less likely to be stored in
heap objects.

We employ both of the above techniques by default in
our analysis (with c = d = 5). The user can configure their
application through input options.

4. Evaluation
We implemented our techniques in the DOOP frame-
work [Bravenboer and Smaragdakis 2009b], together with
numerous engineering improvements (i.e., support for more
API calls) to DOOP’s original reflection handling. The ELF
system [Li et al. 2014] implements similar functionality,
yet without a focus on empirical soundness: ELF explicitly
avoids inferring reflection call targets when it cannot fully
disambiguate them.

We perform the default joint points-to and call-graph
analysis of DOOP, which is an Andersen-style context-
insensitive analysis, with full support for complex Java lan-
guage features, such as class initialization, exceptions, etc.

The evaluation of our techniques aims to answer three
research questions:

RQ1. Do the presented techniques have reasonable running
times?

RQ2. Can these techniques have an impact on the sound-
ness of a points-to analysis?

RQ3. Does an increase in soundness incur a significant loss
in precision?

Experimental Setup. Our evaluation setting uses the Log-
icBlox Datalog engine, v.3.9.0, on a Xeon X5650 2.67GHz
machine with only one thread running at a time and 24GB of
RAM. We have used a JVMTI agent to construct a dynamic
call-graph for each analyzed program.

We analyze 10 benchmark programs from the DaCapo
9.12-Bach suite [Blackburn et al. 2006], with their de-
fault inputs (for the purposes of the dynamic analysis).
Other benchmarks could not be executed or analyzed: trade-
beans/tradesoap from 9.12-Bach do not run with our in-
strumentation agent, hence no dynamic call-graphs can
be extracted for comparison. This is a known, indepen-
dently documented, issue (see http://sourceforge.
net/p/dacapobench/bugs/70/). We have been un-
able to meaningfully analyze fop and tomcat—significant
entry points were missed. This suggests either a packaging

error at determining what makes up the application and li-
brary code of each benchmark (manual repackaging is nec-
essary since no exact boundaries are provided by the Da-
Capo suite), or the extensive use of dynamic loading, which
needs further special handling. We are planning to investi-
gate such instances in the future.

We use Oracle JDK 1.7.0 25 for the analysis. To our
knowledge, this is the most modern version of the JDK to
have been used in the literature of scalable points-to analysis.
In both respects (size of benchmarks and complexity of
the JDK) we stress-test the analysis and our techniques,
inevitably straining scalability. (For comparison, consider
the quote from [Fink et al.] in the Introduction, referring to
the inability to analyze realistic benchmarks with reflection
under the smaller JDK 1.6.)

Empirical soundness metric. Any unsoundness is, in prin-
ciple, bad, so a quantification is treacherous. However, fol-
lowing the example of other work [Ali and Lhoták 2012,
2013; Li et al. 2014; Stancu et al. 2014], we quantify the
unsoundness of the static analysis in terms of missing call-
graph edges, compared to a dynamic call-graph. We consider
only call-graph edges originating from application code,
since library classes contain a fair amount of non-analyzable
native methods. We also filter out some missing edges:

· Class Initializers. DOOP only models which subset of
classes get initialized (without any information about
where the initializer gets called from). We filter out edges
to class initializer methods, if static analysis indicates that
the class has been initialized.

· Native. Native code cannot be analyzed. However, some
library reflection calls are wrappers for native meth-
ods (e.g., forName() and forName0()). Edges to these
methods are, thus, completely extraneous due to our spe-
cial modeling of their effect.

· Class Loader. Method loadClass() is invoked by
the VM when a class needs to be loaded and
checkPackageAccess() is invoked right after loading.

· Synthetic. Edges involving dynamically generated classes
are impossible to obtain by reflection analysis alone, so
we eliminate such instances.

Results. Figure 3 plots the results of our experiments,
combining both analysis time and empirical unsoundness
(in call-graph edges). We compare our techniques to the
ELF system [Li et al. 2014], which also attempts to im-
prove reflection analysis for Java. Missing bars labeled
“n/a” correspond to analyses that did not terminate in
90mins (5400sec). Each chart plots the missing dynamic
call-graph edges that are not discovered by the correspond-
ing static analysis. We use separate bars for the application-
to-application and application-to-library edges.

We show five techniques:

9 2014/11/15

http://sourceforge.net/p/dacapobench/bugs/70/
http://sourceforge.net/p/dacapobench/bugs/70/

avrora
app-to-app app-to-lib time

elf
no substring

substring
+invent

+backwards
0

4

8

12

16

100 sec

600 sec

1100 sec

1600 sec

2100 sec

00 00 00 00 00

14

7 7 7 7

473.39s473.39s

131.11s131.11s

284.63s284.63s

2086.18s2086.18s

404.57s404.57s#
m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

luindex

elf
no substring

substring
+invent

+backwards
0

100

200

300

400

70 sec

80 sec

90 sec

100 sec

110 sec

334

302 302

88 00

242
220 220

159
148

104.56s104.56s

74.40s74.40s

78.86s78.86s
80.91s80.91s

90.03s90.03s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

batik

elf
no substring

substring
+invent

+backwards
0

100

200

300

400

0 sec

1000 sec

2000 sec

3000 sec

4000 sec
394 393 385 378

176

304
291 282 273

1581054.55s1054.55s

188.14s188.14s
437.87s437.87s

2938.13s2938.13s

646.71s646.71s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

lusearch

elf
no substring

substring
+invent

+backwards
0

75

150

225

300

70 sec

76 sec

82 sec

88 sec

94 sec
294

256 256

88 00

144

115 115

56
46

91.96s91.96s

74.24s74.24s
75.57s75.57s

80.36s80.36s

88.29s88.29s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

eclipse

elf
no substring

substring
+invent

+backwards
0

10000

20000

30000

40000

0 sec

600 sec

1200 sec

1800 sec

2400 sec

2909429094 2909929099

97949794 97759775 97939793

59725972 59805980
34653465 34553455 34393439

2293.78s2293.78s

157.75s157.75s

1526.58s1526.58s
1657.58s1657.58s

2106.71s2106.71s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

pmd

elf
no substring

substring
+invent

+backwards
0

150

300

450

600

0 sec

300 sec

600 sec

900 sec

1200 sec

530 530

258 258 258272 261

214 214 214

1015.50s1015.50s

121.71s121.71s 126.88s126.88s 135.40s135.40s 150.37s150.37s#
m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

h2

elf
no substring

substring
+invent

+backwards
0

5

10

15

20

0 sec

1000 sec

2000 sec

3000 sec

4000 sec

00 00 00 00 00

15

8 8 8 8

3042.15s3042.15s

238.83s238.83s 237.50s237.50s 250.84s250.84s

2231.20s2231.20s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

sunflow

elf
no substring

substring
+invent

+backwards
0

4

8

12

16

100 sec

200 sec

300 sec

400 sec

500 sec

00 00 00 00 00

13

7 7 7 7

470.79s470.79s

196.34s196.34s
175.53s175.53s

196.11s196.11s

262.86s262.86s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

jython

elf
no substring

substring
+invent

+backwards
0

600

1200

1800

2400

0 sec

600 sec

1200 sec

1800 sec

2400 sec

22982298 22642264

n/an/a n/an/a n/an/a
437 441

n/an/a n/an/a n/an/a

2373.94s2373.94s

233.38s233.38s#
m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

xalan

elf
no substring

substring
+invent

+backwards
0

50

100

150

200

0 sec

500 sec

1000 sec

1500 sec

2000 sec

158

133

58 58 58

108

68

43 43 39

1717.45s1717.45s

256.28s256.28s 309.36s309.36s 333.24s333.24s

1133.74s1133.74s

m

is
si

ng
 c

al
l-g

ra
ph

 e
dg

es

Figure 3: Unsoundness metrics and running time over the DaCapo benchmarks, for the Li et al. ELF system vs. our four
techniques. The charts plot one point-and-line (for running time—scale on right axis) and two bars (for missing application-to-
application and application-to-library dynamic call-graph edges—scale on left axis). Lower is better for all metrics. N/a entries
correspond to non-termination.

10 2014/11/15

Total Edges Benchmarks

Setting avrora batik eclipse h2 jython luindex lusearch pmd sunflow xalan

elf 19355 31602 10191 38252 19709 4547 4209 8544 4223 35918
no substring 19379 31708 9032 35538 20537 4676 4352 8592 4251 35221

substring 20591 35314 115967 38107 n/a 4682 4362 9533 4285 45160
+invent 26586 47303 116635 38162 n/a 5773 5266 9557 4319 45343

+backwards 20677 37013 117576 43952 n/a 6115 5587 9577 4407 63746

dynamic 4165 8329 40026 4901 13583 3027 1845 4874 2215 6128

Figure 4: Total static and dynamic call-graph edges for the DaCapo 9.12-Bach benchmarks. These include only application-
to-application and application-to-library edges.

1. Elf. This is the ELF reflection analysis [Li et al. 2014].
It serves as a baseline for the evaluation of the four settings
of our own analysis.

2. No substring. This is our reflection analysis, with en-
gineering enhancements over the original DOOP framework,
but no analysis of partial strings or their flow.

3. Substring. The analysis integrates the substring and
substring flow analysis of Section 3.1.

4. +Invent. This analysis integrates substring analysis as
well as the object invention technique of Section 3.2.2.

5. +Backwards.3 This analysis integrates substring anal-
ysis as well as the back-propagation technique of Sec-
tion 3.2.1.

Our research questions can thus be answered:

RQ1: Do the techniques have reasonable running times?
Although our approach has emphasized empirical sound-
ness, it does not sacrifice scalability. All four of our set-
tings were faster than elf for almost all benchmarks.
Aside from jython, for which only the elf and no sub-
string techniques were able to terminate before timeout,
in all other cases substring and at least one of +invent or
+backwards outperformed elf, while in 7-of-10 bench-
marks all our techniques outperformed elf.

RQ2: Do our techniques impact soundness? In most
benchmarks, more than half (to nearly all) of the miss-
ing application-to-application edges were recovered by
at least one technique. The application-to-library miss-
ing edges also decreased, although not as much. This
suggests that our techniques substantially increase the
soundness of the analysis. In fact, the eclipse benchmark
was hardly being analyzed in the past, since most of the
dynamic call-graph was missing.

RQ3: Do the techniques sacrifice precision? Soundness
could increase by computing a vastly imprecise call-
graph. This is not the case for our techniques. Figure 4
lists the total static and dynamic edges being computed.
On average, +backwards computes the most static edges
(about 4.5 times the number of dynamic edges). On the

3 Note that the +Backwards and +Invent techniques are independent and not
comparable: they are both additions to the substring analysis, but neither
includes the other.

lower end of the spectrum lies no substring, with a min-
imum of 3.4 times the number of dynamic edges being
computed.

5. Related Work
The traditional handling of reflection in static analysis has
been through integration of user input or dynamic informa-
tion. The Tamiflex tool [Bodden et al. 2011] exemplifies the
state of the art. The tool observes the reflective calls in an
actual execution of the program and rewrites the original
code to produce a version without reflection calls. Instead,
all original reflection calls become calls that perform identi-
cally to the observed execution. This is a practical approach,
but results in a blend of dynamic and static analysis. Clearly,
the greatest motivation for static analysis is to capture all
possible program behaviors. It is unrealistic to expect that
uses of reflection will always yield the same results in dif-
ferent dynamic executions—or there would be little reason
to have the reflection (as opposed to static code) in the first
place. Our approach attempts to restore the benefits of static
analysis, with reasonable empirical soundness.

Interesting work on static treatments of reflection is of-
ten in the context of dynamic languages, where resolving
reflective invocations is a necessity. Furr et al. [2009] offer
an analysis of how dynamic features are used in the Ruby
language. Their observations are similar to ours: dynamic
features (reflection in our case) are often used either with
sets of constant arguments (in order to avoid writing ver-
bose, formulaic code), or with known prefixes/suffixes (e.g.,
to re-locate within the file system).

Madsen et al. [2013] employ a use-based analysis tech-
nique in the context of Javascript. When objects are retrieved
from unknown code (typically libraries) the analysis infers
the object’s properties from the way it is used in the client.
In principle, this is a similar approach to our use-based
techniques (both object invention and back-propagation) al-
though the technical specifics differ.

Ali and Lhoták [2012, 2013] offer comparisons of dy-
namic and static call-graph edge metrics. They discover hun-
dreds of missing edges in several of the DaCapo 2006-10-
MR2 benchmarks. However, their experiments do not inte-
grate the vastly improved support for reflection (e.g., mod-

11 2014/11/15

eling of Object.getClass) offered by ELF or our current
work. Our experiments are substantially more representative
in regards to the actual empirical soundness of a joint re-
flection and pointer analysis. Stancu et al. [2014] present an
empirical study that compares profiling data with a points-
to static analysis, but do not support reflection. They target
only the most reflection-light benchmarks of the DaCapo
9.12-Bach suite (avrora, luindex, and lusearch), and patch
the code to avoid reflection entirely.

6. Conclusions
Reflection is of key importance, yet very hard to handle
in static analysis. We presented powerful techniques that
elegantly extend declarative reasoning over reflection calls
and inter-procedural object flow.

References
K. Ali and O. Lhoták. Application-only call graph construc-

tion. In Proc. of the 26th European Conf. on Object-
Oriented Programming, ECOOP ’12, pages 688–712.
Springer, 2012. ISBN 978-3-642-31056-0. doi: 10.
1007/978-3-642-31057-7_30.

K. Ali and O. Lhoták. Averroes: Whole-program analysis
without the whole program. In Proc. of the 27th Eu-
ropean Conf. on Object-Oriented Programming, ECOOP
’13, pages 378–400. Springer, 2013. ISBN 978-3-642-
39037-1. doi: 10.1007/978-3-642-39038-8_16.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B.
Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. Van-
Drunen, D. von Dincklage, and B. Wiedermann. The Da-
Capo benchmarks: Java benchmarking development and
analysis. In Proc. of the 21st Annual ACM SIGPLAN
Conf. on Object Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’06, pages 169–190,
New York, NY, USA, 2006. ACM. ISBN 1-59593-348-4.
doi: 10.1145/1167473.1167488.

E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and
M. Mezini. Taming reflection: Aiding static analysis in
the presence of reflection and custom class loaders. In
Proc. of the 33rd International Conf. on Software Engi-
neering, ICSE ’11, pages 241–250, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0445-0. doi: 10.1145/
1985793.1985827.

M. Bravenboer and Y. Smaragdakis. Exception analysis and
points-to analysis: Better together. In Proc. of the 18th
International Symp. on Software Testing and Analysis, IS-
STA ’09, pages 1–12, New York, NY, USA, 2009a. ACM.
ISBN 978-1-60558-338-9. doi: 10.1145/1572272.
1572274.

M. Bravenboer and Y. Smaragdakis. Strictly declarative
specification of sophisticated points-to analyses. In Proc.

of the 24th Annual ACM SIGPLAN Conf. on Object Ori-
ented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’09, New York, NY, USA, 2009b. ACM.
ISBN 978-1-60558-766-0.

S. J. Fink et al. WALA UserGuide: PointerAnal-
ysis. http://wala.sourceforge.net/wiki/
index.php/UserGuide:PointerAnalysis.

M. Furr, J. D. An, and J. S. Foster. Profile-guided static
typing for dynamic scripting languages. In Proc. of
the 24th Annual ACM SIGPLAN Conf. on Object Ori-
ented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’09, pages 283–300, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.
1145/1640089.1640110.

S. Guarnieri and B. Livshits. GateKeeper: mostly static en-
forcement of security and reliability policies for Javascript
code. In Proc. of the 18th USENIX Security Symposium,
SSYM’ 09, pages 151–168, Berkeley, CA, USA, 2009.
USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1855768.1855778.

G. Kastrinis and Y. Smaragdakis. Efficient and effective han-
dling of exceptions in Java points-to analysis. In Proc. of
the 22nd International Conf. on Compiler Construction,
CC ’13, pages 41–60. Springer, 2013a. ISBN 978-3-642-
37050-2. doi: 10.1007/978-3-642-37051-9_3.

G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proc. of the 2013 ACM SIG-
PLAN Conf. on Programming Language Design and Im-
plementation, PLDI ’13, New York, NY, USA, 2013b.
ACM. ISBN 978-1-4503-2014-6.

M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program
analysis as database queries. In Proc. of the 24th Symp. on
Principles of Database Systems, PODS ’05, pages 1–12,
New York, NY, USA, 2005. ACM. ISBN 1-59593-062-0.
doi: 10.1145/1065167.1065169.

Y. Li, T. Tan, Y. Sui, and J. Xue. Self-inferencing reflection
resolution for Java. In Proc. of the 28th European Conf. on
Object-Oriented Programming, ECOOP ’14, pages 27–
53. Springer, 2014. ISBN 978-3-662-44201-2.

P. Liang and M. Naik. Scaling abstraction refinement via
pruning. In Proc. of the 2011 ACM SIGPLAN Conf.
on Programming Language Design and Implementation,
PLDI ’11, pages 590–601, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/
1993498.1993567.

B. Livshits. Improving Software Security with Precise Static
and Runtime Analysis. PhD thesis, Stanford University,
December 2006.

B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis
for Java. In Proc. of the 3rd Asian Symp. on Program-
ming Languages and Systems, APLAS ’05, pages 139–

12 2014/11/15

http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-39038-8_16
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1572272.1572274
http://dx.doi.org/10.1145/1572272.1572274
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://dx.doi.org/10.1145/1640089.1640110
http://dx.doi.org/10.1145/1640089.1640110
http://dl.acm.org/citation.cfm?id=1855768.1855778
http://dl.acm.org/citation.cfm?id=1855768.1855778
http://dx.doi.org/10.1007/978-3-642-37051-9_3
http://dx.doi.org/10.1145/1065167.1065169
http://dx.doi.org/10.1145/1993498.1993567
http://dx.doi.org/10.1145/1993498.1993567

160. Springer, 2005. ISBN 3-540-29735-9. doi: 10.
1007/11575467_11.

B. Livshits, M. Sridharan, Y. Smaragdakis, and O. Lhoták.
In defense of unsoundness. PLDI FIT 2013 presentation,
http://www.soundiness.org/, June 2013.

M. Madsen, B. Livshits, and M. Fanning. Practical static
analysis of JavaScript applications in the presence of
frameworks and libraries. In Proc. of the ACM SIG-
SOFT International Symp. on the Foundations of Soft-
ware Engineering, FSE ’13, pages 499–509. ACM, 2013.
ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.
2491417.

M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for java. In Proc. of the 2006 ACM SIGPLAN
Conf. on Programming Language Design and Implemen-
tation, PLDI ’06, pages 308–319, New York, NY, USA,
2006. ACM. ISBN 1-59593-320-4. doi: 10.1145/
1133981.1134018.

T. W. Reps. Demand interprocedural program analysis using
logic databases. In R. Ramakrishnan, editor, Applications
of Logic Databases, pages 163–196. Kluwer Academic
Publishers, 1994.

Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: Understanding object-sensitivity. In Proc.
of the 38th ACM SIGPLAN-SIGACT Symp. on Princi-
ples of Programming Languages, POPL ’11, pages 17–
30, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0490-0.

C. Stancu, C. Wimmer, S. Brunthaler, P. Larsen, and
M. Franz. Comparing points-to static analysis with run-
time recorded profiling data. In Proc. of the 2014 Interna-
tional Conf. on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages and
Tools, PPPJ ’14, pages 157–168. ACM, 2014. ISBN 978-
1-4503-2926-2. doi: 10.1145/2647508.2647524.

J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Proc. of the 2004 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’04, pages
131–144, New York, NY, USA, 2004. ACM. ISBN 1-
58113-807-5. doi: 10.1145/996841.996859.

J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Us-
ing Datalog with binary decision diagrams for program
analysis. In Proc. of the 3rd Asian Symp. on Program-
ming Languages and Systems, APLAS ’05, pages 97–118.
Springer, 2005. ISBN 3-540-29735-9. doi: 10.1007/
11575467_8.

13 2014/11/15

http://dx.doi.org/10.1007/11575467_11
http://dx.doi.org/10.1007/11575467_11
http://www.soundiness.org/
http://dx.doi.org/10.1145/2491411.2491417
http://dx.doi.org/10.1145/2491411.2491417
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/2647508.2647524
http://dx.doi.org/10.1145/996841.996859
http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11575467_8

	Introduction
	Background: Joint Reflection and Points-To Analysis
	Techniques for Empirical Soundness
	Generalizing Reflection Inference via Substring Analysis
	Use-Based Reflection Analysis
	Inter-procedural Back-Propagation
	Inventing Objects

	Balancing for Scalability

	Evaluation
	Related Work
	Conclusions

