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ABSTRACT 
 

Remotely sensed data in the reflective optical domain function as a 
unique cost-effective source for providing spatially and temporally 
distributed information on key biophysical and biochemical 
parameters of land surface vegetation. The challenging task of 
estimating leaf chlorophyll content (Cab) and leaf area index (LAI) 
is here undertaken for crop systems in Maryland using a 
REGularized canopy reflectance (REGFLEC) modeling tool, 
which couples leaf optics (PROSPECT), canopy reflectance 
(ACRM), and atmospheric radiative transfer (6SV1) models. Using 
10-m resolution SPOT-5 imagery, REGFLEC effectuated robust 
retrievals of Cab and LAI for a diversity of agricultural fields 
characterized by a wide range in leaf chlorophyll and LAI levels 
with relative root-mean-square deviations on the order of 11 % and 
15 %, respectively. REGFLEC is made entirely image-based by 
incorporating radiometric information from pixels belonging to the 
same land cover class during a LUT-based model inversion 
approach. 

 
1. INTRODUCTION 

 
Leaf area index (LAI) is a critical structural variable for 
understanding biophysical processes of vegetation canopies and for 
quantifying exchange processes of energy and matter between the 
land surface and the lower atmosphere [1]. Total leaf chlorophyll 
content (Cab) can assist in determining photosynthetic capacity and 
productivity [2,3]. Cab is also a good indicator of vegetation stress 
[4], is strongly related to leaf nitrogen content [5] and could 
therefore prove valuable for precision crop management [6]. 

Remote sensing techniques for estimating vegetation 
characteristics from reflective optical measurements have either 
been based on the empirical-statistical approach that links 
vegetation indices (VI) and vegetation parameters using 
experimental data, or on the inversion of a physical canopy 
reflectance (CR) model. While the empirical approach is simple 
and computationally efficient, there is no unique relationship 
between a sought vegetation parameter and a VI of choice, but 
rather a family of relationships, each a function of canopy 
characteristics, soil background effects and external conditions 
[7,8]. Physically-based models have proven to be a promising 
alternative as they describe the transfer and interaction of radiation 
inside the canopy based on physical laws and thus provide an 
explicit connection between the biophysical variables and the 
canopy reflectance. 

The inversion process is ill-posed by nature due to 
measurement and model uncertainties and because different 
combinations of model parameters may correspond to almost 
identical spectra [9]. As a result, additional information is needed 

to accurately estimate the vegetation parameters. While the use of a 
priori knowledge (e.g. canopy type and architecture, model 
parameter ranges) has been shown to be an efficient way to solve 
ill-posed inverse problems [9,10], this regularization technique 
typically relies on the existence of experimental data collected at 
the site of interest. [7] demonstrated how the temporal evolution of 
LAI could be utilized as another way of regularizing the inverse 
problem and [11, 12, 13] demonstrated how to take advantage of 
the spectral radiometric information of pixels belonging to the 
same land cover type.  

In this paper the Cab and LAI retrieval capabilities of the 
REGularized canopy reflectance (REGFLEC) modeling tool [13] 
are demonstrated for crop systems in Maryland.  

 
 

2. METHODS 
 

A schematic diagram of the REGularized canopy reflectance 
(REGLEC) modeling tool [13], linking atmospheric radiative 
transfer (6SV1) and inverse canopy reflectance modeling (ACRM-
PROSPECT), is given in Fig. 1. Given inputs of remotely sensed 
at-sensor radiance observations in the green ( green), red ( red) and 
near-infrared ( nir) wavebands, a few atmospheric state parameters, 
and pre-generated soil and land cover classifications, the model 
computes key biophysical properties (Cab and LAI) by considering 
fairly wide variations in leaf structure (N), vegetation clumping 
(Sz), leaf inclination angle ( l), fraction of senescent vegetation (fB) 
and soil reflectance (s1).  

The vector version of 6S (Second Simulation of the Satellite 
Signal in the Solar Spectrum) atmospheric radiative transfer model 
(6SV1) [14,15] is in REGFLEC used to convert at-sensor radiance 
to directional surface reflectance. 6SV1 input parameters include 
sun zenith ( s), satellite view zenith ( v) and relative azimuth ( raz) 
angles, total column ozone content (O3), total precipitable water 
(TPW), aerosol optical depth at 550 nm ( 550), and type of aerosol 
model ( type) (Fig. 1). 

The biophysical parameter retrievals are facilitated using a 
LUT-based inversion approach. The turbid medium Markov chain 
canopy reflectance model, ACRM [16] coupled to the leaf optics 
model PROSPECT [17] is run in forward mode with site-specific 
view-sun angles to generate LUTs with a suite of simulated LAI – 

nir, LAI – NDVI, LAI – GNDVI, and Cab – green relationships 
across the model parameter distribution space [13], where GNDVI 
is the NDVI using the green rather than the red spectral band. 
These spectral relationships vary considerably as a function of 
canopy characteristics and soil background effects [12,13], which 
much be effectively corrected for in order to estimte Cab and LAI 
accurately using the stored LUT-based relationships.  
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Ancillary information on the spatial distribution of soil types 
is used to aid the determination of background effects. At low 
vegetation coverage, a  mismatch in LAI estimated using 
observations of nir (LAI – nir), NDVI (LAI – NDVI) and GNDVI 
(LAI – GNDVI), respectively is most likely due to erroneous soil 
reflectance (s1) values, as the relationships are minorly influenced 
by canopy characteristics (when the vegetation amount is low) but 
differ distinctly in their response to variations in soil reflectance 
[13]. As the LAI estimates generated as a function of observed nir, 
NDVI and GNDVI, respectively should coincide if the background 
effect is properly accounted for, s1 is adjusted to cause matching 
LAI values for each low vegetation density pixel. The LUT-based 
retrievals of s1 are then averaged for each soil type and 
extrapolated to pixels with intermediate to high vegetation 
coverage using the soil map. 

In the next step (Fig. 1), leaf structure (N), vegetation 
clumping (Sz) and leaf inclination angle ( l) are estimated as 
described in [13] based on the assumption that they show little 
variability within each land cover class [11]. Only the spectral 
information content from high vegetation density pixels (NDVI > 
0.65) is used for this purpose, thereby maximizing the sensitivity 
of the reflectance signal to the leaf and canopy variables while 
reducing the confounding influence of the background reflectance 
signal. 

Finally, pixel-wise estimates of Cab and LAI are generated by 
accessing (LUT) the appropriate soil and land cover specific 
spectral reflectance relationships and by iteratively adjusting the 
fraction of senescent vegetation (fB) and to a lesser extent s1 to 
provide a match betweem LAI values generated as a function of 
observed nir, NDVI and GNDVI, respectively. 
 

3. FIELD EXPERIMENT 
 

REGFLEC was applied to a non-irrigated agricultural area located 
in proximity to the USDA-ARS Beltsville Agricultural Research 
Center, Maryland (39.02º N, 76.85º W) (Fig. 2). The study focuses 
on data collected during two intensive weeklong campaigns at the 
end of July and August 2007. 
 
3.1 Biophysical measurements 
 
Measurements of LAI and leaf chlorophyll were collected between 
July 27th and August 3rd and August 27tt and August 31st at 40 plots 
within fields of soybean, grass, alfalfa and corn. Each plot was 
approximately circular with a radius of 10 m and geolocated using 
handheld global positioning systems units (accuracy  4 m). Non-
destructive LAI measurements were made shortly after sunrise 
using a LAI-2000 instrument (LiCor, USA). For corn crops, 
readings were made along diagonal transects between the rows as 
suggested in the LAI-2000 manual for row crops. 

Leaf chlorophyll was measured non-destructively with a 
portable SPAD-502 Chlorophyll meter (Spectrum Technologies, 
Inc.). Six separate measurments were made on each leaf to 
properly describe the variability across the leaf and for each plot 
the average of approximately 50 x 6 SPAD readings was used. The 
relationship used to convert the non-dimensional SPAD 
measurements into leaf chlorophyll content (μg cm-2) is based on a 
spectrophotometrical analysis of leaf samples (maize) collected 
during the first field campaign and is given as 

 
15.37)0196.0exp(90.33 SPADCab  (rmsd = 4.1 μg cm-2)       (1) 

 
3.2 Satellite and ancillary observations 
 
Radiance data in the green (500-590 nm), red (610-680 nm) and 
near-infrared (780-790 nm) wavebands were acquired by the 
SPOT-5 High Resolution Geometric imaging instrument (HRG-1) 
on July 27th and August 27th. The SPOT-5 radiances were obtained 
in 10 m resolution at around noon local time for 30x30 km image 
swaths. The data were rectified using nearest-neighbor resampling 
to match a standard cartographic projection (UTM WGS84).  

The level 1.5 Aerosol Robotic NETwork (AERONET) 
aerosol optical depth ( 550) and total precipitable water (TPW) data 
from the nearby NASA GSFC site were used as input to 6SV1 in 
addition to atmospheric ozone measuremenst (O3) from the 
Atmospheric InfraRed Sounder (AIRS) level 2 standard retrieval 
product. 

A land cover classification of the region was generated based 
on visual inspection of the agricultural fields. 
 

4. RESULTS AND CONCLUSIONS 
 
Fig. 2 showcases REGFLEC LAI and Cab retrieval results for a 
subset of the study area. Leaf chlorophyll content shows significant 
spatial heteorogeneity during both SPOT overpasses, varying from 
15 – 85 μg cm-2. High Cab values tend to coincide with high 
amounts of leaf biomass. The low Cab values observed within some 
fields with intermediate to high density vegetation amounts may 
suggest stressed field conditions. The July 27th overpass was at the 
end of a prolonged drought in the region and many fields 
experienced  stressed conditions. At this time the corn fields were 
in a late stage of maturity with beginning leaf senescence in many 

Fig. 1 A schematic diagram of the coupled 6SV1 – ACRM –
PROSPECT biophysical parameter retrieval tool (REGFLEC). 
Parameter descriptions are given in the text. 
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places. The soybean fields were beginning to senescence at the 
August 27th overpass. 

The extreme environmental and plant development conditions 
allowed for model validation over a wide range in LAI and leaf 
chlorophyll content for the complex case of green leaf material 
intermixed with senescent material. The model shows excellent 
capability in reproducing the pattern in LAI (Fig. 3a) and Cab (Fig. 
3b) measured in fields of soybean, grass, alfalfa and corn with 
relative root-mean-square deviations (rmsd) of 15% and 11%, 
respectively. High LAI prediction abilities are observed over the 
entire range of LAI values (0.5 – 6).  

REGFLEC faciliated reliable biophysical parameter retrievals 
using image-based techniques and with moderate input 
requirements: 1) At-sensor radiance data in 3 spectral bands 
available on practically any airborne and satellite based sensor 
system. A key advantage is the direct use of readily available 
radiance data as REGFLEC couples atmospheric correction (6SV1) 
and canopy reflectance modeling routines, 2) Atmospheric state 
parameters that can all be acquired with reasonable accuracy from 
operational satellite products, 3) Land cover classification, and 4) 
Soil map.  

The preliminary insight into REGFLEC LAI and Cab mapping 
capabilities is encouraing. Work is currently in progress to evaluate 
the usefulness and possible limiations of the model for other 
environments and species compositions and for other airborne and 
satellite sensor systems. 
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