
  

 

 

Abstract— Small teams of emergency workers/military can 

often find themselves engaged in critical, high exertion work 

conducted under challenging environmental conditions. These 

types of conditions present thermal work strain challenges 

which unmitigated can lead to collapse (heat exhaustion) or 

even death from heat stroke. Physiological measurement of 

these teams provides a mechanism that could be an effective 

tool in preventing thermal injury. While indices of thermal 

work strain have been proposed they suffer from ignoring 

thermoregulatory context and rely on measuring internal 

temperature (IT).  Measurement of IT in free ranging 

ambulatory environments is problematic. In this paper we 

propose a physiology based Dynamic Bayesian Network (DBN) 

model that estimates internal temperature, heat production and 

heat transfer from observations of heart rate, accelerometry, 

and skin heat flux. We learn the model's conditional 

probability distributions from seven volunteers engaged in a 48 

hour military field training exercise. We demonstrate that sum 

of our minute to minute heat production estimates correlate 

well with total daily energy expenditure (TDEE) measured 

using the doubly labeled water technique (r2 = 0.73). We also 

demonstrate that the DBN is able to infer IT in new datasets to 

within ±0.5 °C over 85% of the time. Importantly, the 

additional thermoregulatory context allows critical high IT 

temperature to be estimated better than previous approaches. 

We conclude that the DBN approach shows promise in enabling 

practical real time thermal work strain monitoring applications 

from physiological monitoring systems that exist today. 

I. INTRODUCTION 

MALL teams of emergency workers or military 

personnel can often find themselves engaged in critical, 
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high exertion work conducted under challenging 

environmental conditions. Hot environments pose a risk of 

heat strain particularly when heavy workloads and/or 

protective clothing ensembles are necessary (e.g. see figure 

1). Excessive heat strain can lead to collapse or even death 

from heat stroke [1]. In a team setting these risks can be 

compounded by peer pressure to continue working even if 

the individual is aware of feeling ill [2]. The ability to 

monitor thermal work strain would provide an effective 

safeguard against potential heat illness for these workers.  

 
Fig. 1.  Civil Support Team (CST) engaged in a chemical biological training 

event. Ensuring encapsulated personnel do not overheat is difficult without 

thermal work strain health state monitoring. 

Several heat strain indices have been suggested that 

provide an indication of thermal work strain from 

physiological measures that include both heart rate (HR) and 

internal body temperature (IT) [3], [4]. While these indices 

appear to provide reasonable indications of thermal-work 

strain under most conditions they suffer from several 

drawbacks. 1) These indices do not provide any 

thermoregulatory context. Relying solely on IT and HR can 

be misleading. For example athletes can tolerate high ITs 

(e.g. >40.5 °C) and high HRs when their thermoregulatory 

system is able to successfully transfer enough heat to the 

environment [7]. Conversely, encapsulated workers are 

unable to tolerate even moderately high IT (e.g. >38.5 °C) as 

heat transfer to the environment is compromised [8]. 2) The 

requisite measurement of IT in ambulatory environments is a 

challenge. The traditional thermistor/thermocouple probe-

based methods (i.e., rectal and esophageal) are impractical. 

Other external methods such as insulated skin temperature 

and tympanic membrane temperatures have proven 

unreliable [5], and even ingestible thermometer pills (e.g., 

Vital Sense Pill, Mini Mitter Inc. Bend, OR) suffer from 

several drawbacks that: (1) they cannot be used by all people 
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due to Food and Drug Administration (FDA) 

contraindications; (2) significant errors can occur from fluid 

ingestion up to 10 hrs. after taking the pills [6]. 

In this paper we use a computational physiology approach 

to develop a graphical model of the human thermoregulatory 

system. Graphical models provide an intuitive way to 

express the physiological variables and dependencies that 

form the basis of biological systems. By their nature many 

physiological processes evolve naturally over time and can 

be represented as Dynamic Bayesian Network (DBN) (e.g., 

[9]).  We present a simple DBN model of the human 

thermoregulatory system that allows inference of IT, heat 

production and heat loss, from observations of HR, skin heat 

flux and accelerometry.   

II. METHODS 

A. Dynamic Bayesian Network Model 

Our DBN is represented by the graphical model shown in 

figure 2.  

 
Fig. 2. Physiology-based Dynamic Bayesian Network for 

thermoregulation. IT = internal temperature, HG = heat gain, HL = heat 

loss, HR = heart rate, AC = activity from accelerometry, and HF = heat 

flux. White nodes represent latent variables and gray nodes are observed 

variables. 

This DBN is based upon several constraints specific to our 

problem area of teams of young fit workers engaged in 

physical activity in warm environments. In this setting we 

choose one node to represent heat production or heat gain 

(HG) from work conducted by muscles. This heat production 

mechanism far outweighs heat production from other factors 

such as: basic metabolic rate, the thermic effect of food, or 

circadian rhythms. Similarly, we represent heat transfer/heat 

loss (HL) by one node. This node represents heat transfer 

from the core to the environment through the mechanism of 

skin blood flow and sweat, which in exercise conditions 

overshadows the loss of heat through respiration and the 

passive transfer of heat by conductance. 

HR is helpful in estimating metabolic rate from work by 

muscles because of the well-known relationship of oxygen 

consumption to cardiac output derived from the Fick 

principle [10] where the rate of oxygen consumption is equal 

to the cardiac output (HR x stroke volume) multiplied by the 

arterio-venous difference in blood oxygen concentration. 

Similarly, heat transfer from the core to the skin by skin 

blood flow is dependent on the rate of blood flow to the 

skin (i.e. HR x stroke volume). Finally, HR has been 

shown to provide an indication of steady state IT [11], 

[12] Finally, we provide independent observations of HG 

through accelerometry (AC) and HL by heat flux (HF). 

As our DBN is a directed acyclic graph, the joint 

distribution across all random variables (Y) can be factored 

by the chain rule for Bayesian networks to provide the 

following factors:        

                                          

                                   . 

Our model then can be defined by the conditional 

probability distributions (CPDs) of these factors. By 

assuming that our CPD are Gaussian we can make use of the 

Kalman filter [13] algorithm to iteratively compute the latent 

variable probability density functions (PDF) for a given 

series of observations. The Kalman filter is defined by the 

following PDFs: 

                                  (1) 

                                (2) 

Our DBN model can be defined in terms of the Kalman 

filter PDF's, where our latent variable vector zt = [HGt, HLt, 

ITt], and our observation vector xt = [ACt, HRt, HFt,]. The 

Kalman filter PDFs are defined by the following matrices: 
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At each time step the Kalman filter uses (1) a prediction 

step that estimates current latent variable estimates (   ) and 

their associated variances (  
 ) based upon the previous time 

step, and (2) an update step where these estimates are 

updated based upon the current observations. The prediction 

and update steps follow the basic Kalman filter equations as 

outlined by [14]: 

(1) Prediction step:             

            
        

     

(2) Update step:                       ) 

                   )   
  

               
       

          
While the Kalman filter provides the basis for our 

inference, the model parameters θ = {A, Γ, C, Σ} must be 

learned. Expectation - Maximization (EM) [15] is an 

iterative algorithm that finds the maximum likelihood 

estimates of model parameters in cases where some of the 

variables are unobserved.  The algorithm uses a two step 

process. In the first step or E-step the expected values of the 

latent variables (Z) are estimated using a current set of 

model parameters and observed data (X). In the second step, 

the M-Step, the model parameters are maximized according 

to the complete-data log likelihood P(Z,X|θ) with respect to 

the posterior distribution P(Z|X,θ). Bishop [16] provides an 
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overview of the EM approach for linear dynamical systems. 

Initial states for our latent variables (defined by z0 and V0) 

are assumed to take starting values typical of those found in 

a resting human. 

B. Experimental Data Sets 

Two distinct data sets were used for our experiments with 

a total of 15 volunteers. The training data set (Train) consists 

of physiological data collected from 7 male volunteers (age 

26.8±2.1 yrs., height 1.78±0.08 m, and weight 85.7±6.2 Kg), 

collected continuously over a 48 hour military training 

exercise (air temp: 21-23.5 °C, relative humidity 77-86 %). 

The validation data set (A and B) consists of physiological 

data collected from 8 male volunteers (age 27.7±6.0 yrs., 

height 1.95±0.09 m, and weight 85.7±14.2 Kg) collected 

during two military field training events. Event A was a 5 

Km road march conducted in fully encapsulating personal 

protective equipment (air temp. 18°C, relative humidity 

72%), and Event B was a simulated patrol and ambush (air 

temp. 15 – 20°C, relative humidity 85 – 65%). 

C. Measures and Statistics 

 In all data sets both observable model parameters (AC, 

HR, and HF) and the latent variable IT were collected. Table 

1 presents the details of each of these studies. IT data were 

collected using an ingestible thermometer pill (Jonah™ Core 

Temp. Pill, Mini Mitter, Bend, OR), while the non-invasive 

measures of AC, HR, and HF were collected using a chest 

worn physiological monitor (Equivital I, Hidalgo Ltd., 

Cambridge UK). Data set A was used for parameter and 

model learning. The DBN model CPD's were learned using 

Maximum Likelihood (ML), or EM. These CPD's were then 

used in the Kalman filter to infer IT given a sequence of AC, 

HR, and HF observations. Differences between the Kalman 

filter IT estimate and the observed IT were examined using 

summary statistics of root mean square error (RMSE), and 

non-parametric Bland-Altman percentage (BAP) [17]. The 

BAP calculates the percentage of estimated IT points falling 

within an a priori zone of the actual IT (± 0.5 ºC was used in 

this analysis). Differences between summary statistics are 

examined by a paired Student’s t-test.  

D. Experiments 

1) Model Validation - Heat Production: Our model was 

built assuming that the latent variable HG represents heat 

production as the by product from useful work by from 

muscles. While the model was trained on our observed 

variables (AC, HF, and HR) and our measured latent 

variable IT, the goal was to be able to differentiate both heat 

production and heat loss. Thus, our HG parameter should be 

proportional to a minute to minute estimate of active energy 

expenditure. To examine this relationship we sum our 

minute to minute estimates of HG over the course of our 

training data and perform least squares regression with total 

daily energy expenditure (TDEE) values measured using the 

doubly labeled water technique [18]. This method relies on 

differing rates of expulsion of isotopic water from the 

volunteers, to measure TDEE.  

2) Model Validation – Internal Temperature: To test the 

generalizability of our model for IT estimation we examined 

the RMSE, and BAP with both conditions from the 

validation data set (A and B), and compared these results to 

the performance of our previous model that used HR alone 

[12], [19]. Data set A contains a case where our earlier 

baseline model had difficulty in accurately estimating IT. 

For this scenario the volunteer’s thermoregulatory system 

chose to allow IT to rise while providing limited increase 

blood flow to the skin. This violated our previous underlying 

assumptions and lead to poor performance. We adapted our 

DBN model to identify this scenario using HG and HL. 

III. RESULTS 

A. Model Validation - Heat Production 

Figure 3 shows a scatter plot of ΣHG versus TDEE values 

for the five subjects with TDEE data.  The correlation is 

significant (r
2
 = 0.73, p<0.07). 

  
Fig. 3. Correlation of ΣHG and Total Daily Energy Expenditure from 

doubly labeled water technique.  

B. Model Validation – Internal Temperature 

Overall a RMSE of 0.28±0.16 °C, and correctly estimates 

IT within ± 0.5°C 83.2% for all data points. Table 1 shows 

the RMSE and BAP performance of the DBN model for the 

two validation conditions, along with the performance of our 

previous baseline model.  
TABLE 1 

DBN MODEL PERFORMANCE 

 RMSE  (Mean ± SD °C) BAP (Mean ± SD %) 
Cond. DBN 

Model 
Previous 

Work 
DBN 

Model 
Previous 

Work 
A. 0.28±0.14 0.39±0.11 86.8±15.5 70.0±11.6 
B. 0.28±0.20 0.22±0.07 79.3±25.3 90.3±8.1 
 0.28±0.16 0.30±0.13 83.2±20.7 80.2±14.2 

Overall no significant differences were found between the 

DBN model and our previous work model for both RMSE 

and BAP however, For condition (A) differences in BAP are 

approaching significance (p=0.052). Figure 4 shows the 

observed, DBN, and previous work estimated IT group mean 

responses for the two validation conditions. 
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Fig. 4.  Mean observed, DBN model estimation and previous work 

estimation of IT for the two validation conditions A and B. For observed 

and DBN estimated IT error bars represent ±1 SD. 

IV. DISCUSSION 

Our data show that we were able to learn a DBN model of 

the human thermo-regulation system from a comprehensive 

field data set. The DBN model when applied to new data 

was able to provide internal temperature estimates that 

improved our previously work in critical high IT cases. By 

providing the model with additional information from 

accelerometry and heat flux we demonstrated that it was 

possible to model the heat production and, by inference, heat 

transfer components of thermo-regulation.  

The close correlation of ΣHG and total daily energy 

expenditure (r
2
=0.73) provides confidence that the HG 

estimates are within the realms of reality.  

The DBN model when applied to new data was able to 

provide IT estimates that were statistically no different to 

our well validated previous model. Importantly, the use of 

HG and HL information allows the DBN model to more 

accurately model the rise in IT where our previous work 

failed (condition A).  The improvement in the DBN model 

for this condition is close to significance, but the important 

high ITs are only about one third of the data. For context 

comparisons between "gold standard" methods of measuring 

IT (thermometer pill, rectal and esophageal probes) have 

RMSE a reported difference of 0.23 ± 0.07 ºC [20]. 

Since both HG and ΔIT are accurately estimated it follows 

that HL must also be well estimated.  The HL component of 

the thermoregulatory system can provide insight into aerobic 

performance. Recent work has demonstrated that high skin 

blood flow requirements can lead to a reduction in aerobic 

performance [21].  

V. CONCLUSION 

Using non-invasive measures of heart rate, accelerometry 

and heat flux and our simple thermoregulatory model we 

have been able to infer heat production, heat transfer, and 

internal temperature. Using inferred thermoregulatory state 

information our model was able to improve upon previous 

work at critical high internal temperature peaks. We 

conclude that our thermoregulatory state estimation model 

shows promise for use in real time thermal work strain 

monitoring applications. 
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