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Abstract— Brain-computer interfaces (BCI) offer potential
for individuals with a variety of motor and sensory disabilities
to control their environment, communicate, and control mobil-
ity aids. However, the key to BCI usability rests in being able
to extract relevant time varying signals that can be classified
into usable commands in real time. This paper reports the
first success of the Strathclyde BCI controlling a wheelchair
on-line in Virtual Reality. Surface EEG recorded during wrist
movement in two different directions were classified and used to
control a wheelchair within a virtual reality environment. While
Principal Component Analysis was used for feature vector
quantiser distances were used for classification. Classification
success rates between 68% and 77% were obtained using these
relatively simple methods.

I. INTRODUCTION

Brain computer interface (BCI) technology has shown

remarkable promise for providing individuals with severe

motor disabilities a means to communicate via computers

and to have command and control over their environment [1].

It is well established from primate studies that neurons

within the motor cortex show directional tuning during

the planning phase of movement [2], [3]. Evidence from

single unit recordings demonstrate that the activity of cells

in the primate motor cortex is highest for movements in

certain directions and lesser when the movement is in other

directions. We are able to make use of information from

the pre-movement EEG, that relates to direction of intended

movement, to predict the direction of intended movement

[4], [5]. Some work [6] have used mental tasks rather than

motor tasks to develop online BCI. While the study by Leeb

[7] presented a single dimensional BCI controlling virtual

wheelchair, the current study investigates the possibility

of extracting a multidimensional control by using motor

potentials relating to wrist movement for real time control

of a wheelchair within a virtual environment.

II. MATERIALS

Fig. 1 illustrates the experimental arrangement of the on-

line Brain Computer Interface (BCI) experiment. The system

comprises a BCI processing workstation and a virtual reality

wheelchair simulator, incorporating in total two computers,

an EEG/EMG signal acquisition system and an immersive

display system. These components are described below.

A. BCI processing workstation

The BCI processing workstation has two major functions:

simulator control and data acquisition and processing.
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Fig. 1: Brain Computer Interface Block Diagram.

1) Simulator Control: The BCI computer interacts with

the VR Wheelchair Simulator through a TCP/IP link (Fig. 1).

The BCI workstation sends control commands to the Simu-

lator to present the directional cues to the user and control

the wheelchair (after classifying the EEG signal).

2) EEG/EMG Acquisition: Signals were acquired using

the Synamps2 EEG/EMG data acquisition system (Com-

pumedics). The software development kit of the system was

used to develop a Matlab toolbox to perform data acquisition

and classification of movement intention. 14 EEG channels

and 2 EMG channels (FCR and ECRL) were acquired at

a sampling rate of 2000 Hz during the BCI experiments

(Montage shown in Fig. 2). AFz was used as the ground

and Cz as the reference electrode. EMG was recorded to

verify movement direction.

Fig. 2: Electrode Montage.

B. Virtual Reality Wheelchair Simulator

Developing a BCI-controlled wheelchair requires a VR

simulator that combines the features of BCI training

with realistic wheelchair behavior. Similarly, equipping the

wheelchair with smart technology can ultimately reduce the

complexity of the BCI task but requires that a viable system

should also have the capacity to integrate a variety of sensor

technologies [8], [9].

In order to maximize the utility of the simulator a set

of objectives has been identified. These include portability,

flexibility regarding user input, extendibility to include sen-

sors and simulate smart wheelchairs, support for versatile

training scenarios, high degree of immersion and realism,
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easy set-up and a relatively low cost. The system described

here addresses most of these objectives.

1) Hardware: To provide a sense of immersion, the VE is

projected on a spherical screen (section of a sphere with 1.5m

radius) providing a 160◦ horizontal field of vision (FOV)

using a projector fitted with a wide-angle lens (Elumens

VisionStation R©). The simulator runs on a dual-core PC with

a gaming-standard dual-view graphics card.
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Fig. 4: A: Multiple views from the wheelchair; B: Spherically
correct image ready for projection on the dome.

2) Software: Addressing several of the design objectives,

the simulator relies on the Unreal Engine 2.5 and the Karma

physics engine to, respectively, maintain and render the

virtual environment and model the physical behavior of its

elements. Unreal Engine is a commercial game engine that

ships with the Unreal Tournament 2004 (UT2004) game.

This approach was developed by the Urban Search and

Rescue Simulator (USARSim) [10] open-source community.

USARSim provides a modification to UT2004 that allows

placing robots in the game. It employs Microsoft Detours

[11] technology to capture backbuffer images from UT2004.

Importantly, UT2004 operates as a TCP/IP server, allowing

physical separation of the computer running the simulation

and any BCI-related hardware, while all communication

occurs over the network. Overall software architecture is

presented in Fig. 3.

Correct immersive 3D display on the VisionStation is

ensured by the SPIClops OpenGL-based API provided by

the manufacturer, which requires four orthogonal views of a

scene to stitch into a single frame (Fig. 4). To satisfy this

requirement, USARSim’s use of the Detours technology has

been extended to allow greater resolution of the captured im-

ages. The average frame rate is above 30 FPS at a resolution

of 1024× 768 (maximum supported by the projector).

A GUI application has been developed in VisualC++ that

integrates UT2004, USARSim and SPIClops. This allows the

choice of map, vehicle, and method of control, and provides

logging capabilities for debugging purposes. All communi-

cation between the application (client) and the game server

is recorded, including periodic status information about the

wheelchair’s position and velocity. This information is saved

for offline analysis of user performance. A Matlab toolbox

has also been developed providing analogous functionality.

3) Wheelchair Model: The simulator features a simpli-

fied 3D model of the Invacare SpectraPlus wheelchair (see

(a) INVACARE R© SpectraPlus (b) 3D model as seen in
UT2004

Fig. 5: Wheelchair model and the real wheelchair (image from
INVACARE R© product brochure).
Fig. 5). This particular wheelchair was chosen as one of the

more commonly prescribed indoor/outdoor EPWs in Scot-

land for which relatively good documentation was available.

The 3D model was built in Maya 7.0 PLE based on images

available from the manufacturer’s website and exported to

UnrealEd as separate static meshes using the unEditor plugin

available on Unreal Developer Network. The model was

then added to USARSim by writing appropriate UnrealScript

classes and modifying the USARSim configuration file. The

model features fully autonomous castor wheels, a functional

curb climber and four orthogonal simulated cameras. Since

parts of the wheelchair (e.g. footrests) may come into view

on the dome, a human avatar was placed on the wheelchair,

but it does not influence the simulation.

An important factor affecting the simulation of any model

in UT2004 is its mass distribution and associated inertial

properties. These were calculated using estimated masses

of the different parts of the chair (since they were not

available in the documentation) and literature values for

average human body parameters [12], [13]. Thus obtained

center of mass and tensor of inertia were used to calculate

the torque required for the two simulated motors using the

manufacturer’s product specification as a guideline.

III. METHODS

A. Experimental Protocol

During the experiments the subject participated in three

different sessions which are described below. Each session

presented to the subject in the VE lasts about 100s and

comprises 20 5s trials. 2s into each trial, the subject is

presented with one of the two different directional visual

cues. The visual cues projected on the dome are arrows

pointing to the right or left. The post-cue EEG is classified

and the classification results are sent as control commands

to the virtual wheelchair.

1) Visual Only Session: In this session the subjects were

presented with the directional cues but were instructed only

to observe them. The data recorded from this session will be

used to check for the presence of visual evoked responses

within the epochs

2) BCI Training Session: In this session the subjects were

asked to move their wrist as quickly as possible to the

direction indicated by the directional cue. The data recorded
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in this session will be used as the training dataset for

the online BCI session. The data is initially pre-processed

to identify which of the EEG channels provided the best

classification result.

3) Online BCI Session: As in the training session the

subjects were instructed to move their wrist as quickly as

possible to the directional cue. The EEG recorded post-cue

is then classified and this classification result is provided

as a visual feedback to the user by steering the simulated

wheelchair along the same direction as the classification

result.

B. Data Analysis and Classification

1) Comparing Visual-only Trials vs. Training Dataset:

To ensure that the features used for classification of trials

are associated with motor related cortical potentials and

not visual evoked potentials due to the different visual

stimuli presented to the participant time domain averages of

the visual only trials were compared with the time-domain

averages of the trials recorded during BCI training.

2) Processing the Training Set: After ensuring the ab-

sence of visual evoked components in the EEG data, the

training data set is processed to extract the classification rates

obtained from the different channels. This is done by first

splitting the training dataset for each channel into a training

and testing subset. PCA 1 is used to extract features from the

training subset and averages for the two different movement

groups (movements to the right or left) are computed. The

PCA matrix is then used to transform each trial in the testing

subset. Using the Eigen values from the PCA computation

a weighted Euclidean distance between the unclassified trial

(from the transformed testing subset). The groups’ averages

are computed and the new trial is classified to the closest

group. In this manner the classification rate for the EEG from

each electrode is computed and the electrode with the best

classification rate is used to classify the EEG trials during

the online BCI trials.

3) Online Classification Trials: Once the electrode with

the best classification rate for the participant has been

identified the subject participates in the online BCI trials.

Prior to starting these trials the training EEG data from the

best electrode is transformed using PCA and average feature

vectors for the two groups are computed. At the end of each

movement trial the PCA transformation matrix is used to

extract the feature vector from the new trial and a weighted

Euclidean distance based classifier (as described previously)

is used to categorize the new trial. The classification result is

used to control the wheelchair thus providing the user with

feedback of the classification result. The direction cue and

the classification result are then compared and this is used

to compute the classification accuracy of the online trials.

4) Post-Experiment Processing: The post-experiment pro-

cessing was performed with an aim of investigating the

possibility of improving the classification results. The clas-

sification performance was re-calculated with the following

modifications:

1Refer P.C.A by I.T. Joliffe. ISBN 0387954422

TABLE I: Classification rates (RR) of the training set and online
testing experiments.

Training Testing

Best Ch. 2nd Best Ch. Best Ch. 2nd Best Ch.

Subject RR Ch. RR Ch. RR Ch. RR Ch.

1 75.2 C2 72.0 FC5 72.7 FCz 72.7 C2
2 71.4 FC2 70.7 FC5 71.4 FC2 71.4 CP2
3 77.0 FCz 71.0 FC2 68.8 FC5 68.8 FCz
4 74.3 CP5 72.1 FC1 71.4 CP5 67.9 C3
5 73.3 FC1 66.7 FC3 77.8 CP1 72.2 CP3

a) Expanding the Training Set: While feedback of the

classification is presented to the user during the online BCI

trials no feedback is given during the BCI training sessions.

It is to be expected that the feedback provided will affect

the users performance and hence the features that can be

extracted for BCI control which in turn will affect the

classification results. To investigate this, half of the online

BCI trials were included with the original training dataset

and the second half of the online BCI trials were re-classified

with features extracted from the new training set.

b) Extracting Frequency Domain Features: In an at-

tempt to investigate if features extracted from the frequency

domain would provide higher classification rates the spec-

trograms of the data was computed. Using ANOVA time-

frequency points which were significantly different for the

two groups within the training dataset were selected. PCA

is then used to further reduce the dimensionality of feature

vectors. After computing the PCA average feature vector

for the two groups within the training set were computed.

A weighted Euclidean distance based classifier is used to

classify the unclassified trials and the classification rates were

computed for each electrode.

c) Changing the epoch length: In order to increase the

information transfer rate of the BCI it is necessary to reduce

the length of each trial. To investigate the possibility of

using shorter epoch lengths for classification the length of

the training and testing dataset were increased in steps of

500 ms from 500 ms to 3000 ms and at each stage the data

was reclassified and the classification rates were computed.

IV. RESULTS

Results for five subjects are demonstrated in Tables I, II

and III. Table I presents the recognition rates (RR) from

the BCI training sessions and online BCI sessions, Table II

presents the classification rates obtained by including part of

the online BCI trials with the original training set and reclas-

sifying the remaining trials obtained during the online BCI

sessions. Table III presents the classification rates obtained

by mining frequency domain features which would best help

classify the trials into the different groups. In order to study

the possibility of increasing the “speed” (information transfer

rate) , the epoch length of the data was varied between 500ms

to 3000ms in steps of 500ms and the classification results are

presented in Fig. 6.

V. DISCUSSION

From the results presented in Table I it can be seen

that Strathclyde BCI is capable of classifying in real time
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TABLE II: Testing classification rates obtained after including part
of the online BCI trials into the training set.

Best Channel 2nd Best Channel

Subject RR Channel RR Channel

1 75.5 C2 71.7 FC2
2 74.1 FC5 74.1 FC2
3 78.0 FC3 72.2 C5
4 73.9 C3 73.9 CP5
5 89.0 C1 83.0 CP5

TABLE III: Testing classification rates obtained by extracting
feature from the frequency domain.

Best Channel 2nd Best Channel

Subject RR Channel RR Channel

1 70.0 CPz 65.0 FCz
2 84.0 CP3 76.0 FC1
3 81.3 C5 75.0 FC1
4 78.3 CP1 73.9 C5
5 77.7 C2 72.0 CPz

the movements made by the participant. In all participants

(except subject 5) the electrode which performs best in the

training set provides the best performance during the online

BCI trials while no two subjects sharing the best performing

electrode. This supports our strategy of using a high density

electrode montage to record the EEG and select the best

performing electrode for each subject.

The inclusion of new trials from the online BCI session

into the training set significantly increases the classification

rates for subjects (Table II). With improvements in the

classification rates obtained from best electrode ranging from

2.4% to 11.2%. It can be seen that for all subjects (except

subject 1) there is change in the electrode which provided

the best classification results, confirming our hypothesis that

the feedback provided affects the classifiable features that

can be extracted from the EEG recorded from the different

electrodes.

While simple and robust classification technique adopted

for initial BCI trials provided classification rates higher

than chance. Comparing Table I with Table III shows that

by using more advanced feature extraction techniques the

classification rates for the different subjects (except subject 1

and 5) can be considerably increased, with an overall increase

of 5.83% across all subjects(including S1 and S5).

The results presented in Figure 6 show that there is a

possibility of increasing the “speed” of the current BCI

design by decreasing the epoch length of the EEG trial. It can

be seen that the for the different subjects at certain shorter

epochs performance of the BCI is equal to or greater than

the performance of the BCI when 3000ms (the length used

in the online classification trials) of the EEG data is used for

classification.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced the Strathclyde BCI. It provides

real time classification of wrist movements in 2 directions

using surface EEG and a wheelchair simulator. We have

demonstrated that the classification rates of the BCI can be

improved by including in the training set recent trials and

also by using more advanced feature extraction techniques.
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Fig. 6: Effect of changing epoch length on best electrode classifi-
cation rates in different subjects.
The of ”speed” BCI performance can be improved by de-

creasing the epoch length without loss in the classification

accuracy.

While the current study demonstrates the possibility of

using movement related cortical potentials for real-time

control of a wheelchair within virtual environment further

studies have to be carried out to improve the performance of

the BCI by 1) increasing the number of movement directions;

2) adapting classifiers in real-time to changes due to visual

feedback effects; 3) moving from a cued to a self-paced

protocol; and 4) conducting motor imagery trials.
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