Scott Lucchini

Mentor: Steve Saar

Harvard-Smithsonian Center for Astrophysics 2012 Solar REU Program

From Blankets into Ropes

Active Region Canopies and their Filaments

Outline

- What are Canopies?
- How to Find Them
- Problems we Encountered
- Some Results
 - Evolution of Canopies into Filaments
 - Temperature Mappings from DEM Analysis
- Future Work

- Active Regions have large extending loops
- These loops reconnect to form low-lying, horizontal field lines
- These field lines cover the Canopy regions
- They contain fibril structures surrounding Active Regions
- Line up with Polarity Inversion Lines (PILs)

AIA 171-Angstrom

How to Find Them!

- Decreased emission from lower temperature lines (AIA Fe IX 17.1 nm)
- Normal emission from higher temperature lines (AIA Fe XII 19.3 nm)

How to Find Them!

Image Source: Wang et al, 2011

- Rosner, Tucker & Vaiana, 1978
- $T \propto (PL)^{1/3}$
- Constant pressure
- $T \propto L^{1/3}$

Ranking the Canopies

Not all canopies are created equal

- Ranking
 - Active Regions
 - Bright Points
 - Coronal Holes
 - Quiet Sun

Ranking the Canopies

Problems

- All images are different
 - Each requires different levels to define QS, ARs, CHs, Canopies
- Found peak of histogram to determine baseline for all levels

Problems

 Used 193-defined QS to find base level for 171 QS

Results

 We have lots of info on canopies for any image – Locations, AIA fluxes, Physical Properties, etc.

Used these programs over time to track regions and Canopies

 Learn about the properties and evolution of Canopies

Evolution

- Noticed a few clear cases of transformation from canopy to quiescent filament
- Programs show this as well!

March 29, 2011

April 25, 2011

May 22, 2011

May 22, 2011

June 18, 2011

June 18, 2011

June 18, 2011

July 15, 2011

August 11, 2011

DEM

- Differential Emission Measure (DEM)
- Uses flux values (average intensities) in multiple wavelengths to determine the amount of emission at each temperature
- Issues due to abundances and response functions
- But, we got preliminary results

Conclusions

- Canopies are regions of low-lying horizontal magnetic field
 - Fibril structures seen in Fe IX (17.1 nm) AIA images
- Wrote programs to find them using discrepancies in luminosity between low and high temperature wavelength images
- Tracked evolution of canopies into filaments
- By using DEM analysis, we found that canopies seem to be a combination of QS and ARs.
 - Showing hot AR loops with cool fibrils underneath

Future Work

- More analysis of the data looking for more examples of canopy evolution
- Use Stereo A/B for full sun 360 degree canopy tracking
- Use SoHO EIT to look much further back in time
- Get correct temperature response functions for DEM and try to get more accurate temperature mappings

References

Wang, Y.-M., Robbrecht, E., & Muglach, K., 2011, ApJ, 733, 20

Rosner, R., Tocker, W. H., & Vaiana, G.S., 1978, ApJ, 220, 643

Acknowledgements

Harvard-Smithsonian Center for Astrophysics CfA Summer Solar REU Program Made possible by NSF Grant ATM-0851866

Thank you to: Steve Saar Kathy Reeves All of the CfA Scientists and Staff My Fellow Solar REU Interns

Thank you