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Abstract— Aerial oil pipeline inspection is a dangerous endeavor 
in the current practice, where a pilot flying in a general aviation 
class aircraft flies slowly at low altitudes while concurrently 
looking at the ground for pipeline hazards with the unaided eye; 
high pilot workload in a dangerous low-speed, low-altitude 
environment results in an unacceptable number of accidents and 
loss of life each year. Automation of image acquisition and 
threat recognition has the potential to reduce pilot workload, 
improving the safety of the pilots and increasing efficiency.  
Towards these goals, this paper describes an image classification 
architecture and algorithm that utilizes several classifiers on 
different features extracted from the image to automate the 
threat detection process.  The resulting classifier meets the 
requirement of greater than 80% accuracy in classification.  The 
results will be discussed, and improvements will be proposed for 
continued research. 
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I. INTRODUCTION 
Oil pipeline operators are mandated by federal regulation 

to monitor oil pipelines on a regular basis.  The current 
practice in the industry is to perform monitoring using piloted 
manned aircraft.  Pilots in general aviation aircraft are 
required to cruise at low-altitude for long durations, ideally 
maximizing the time they are visually inspecting the pipeline 
by looking out the cockpit window.  In general, low altitude 
flight and maneuvering carries a substantially greater risk of 
fatality than flight at higher altitude; pilots face a number of 
challenges, including potential for disorientation due to visual 
illusions, turbulence, decreased response time to correct for 
upset events, and increased pilot workload – pilots must detect 
and avoid ground obstacles, such as trees, power lines, towers 
and mountains. Pilots performing pipeline inspection not only 

operate continuously in this hazardous environment, but the 
operational efficiency of this model dictates maximizing the 
amount of time pilots can keep their eyes off their instruments 
and focus on locations on the ground.  Low-altitude flight 
dangers are exacerbated due to the high pilot workload, and an 
unacceptable number of accidents and loss of life occur each 
year. 

Automation of the inspection process has the potential to 
substantially increase the safety and efficiency of this 
operation. Complete automation of the inspection process (e.g. 
through autonomous robotic aerial survey) is not feasible 
given the current regulatory environment of the FAA.  
Automation has the potential to reduce the workload of pilots 
at low altitudes, allowing pilots to focus on operating their 
aircraft safely.  This technology should be as minimally 
invasive in the cockpit as possible.  It should minimize pilot 
distractions and increase the safety of pilots by reducing their 
workload while maneuvering at low altitudes. 

The purpose of a joint endeavor between NASA Ames 
Research Center and the Pipeline Research Council 
International is to explore advanced autonomous technologies 
that can be fielded on manned aircraft, particularly fixed-wing, 
to provide remote sensing and real-time threat identification.  
A large number of candidate regions are currently being 
produced by an existing coarse-classifier, but the performance 
is not meeting the objectives of the project.  The success of 
this research is determined by achieving a classification 
accuracy rate of greater than 80% on the test data.  This paper 
describes a vision processing algorithm in support of 
automatic identification and classification of pipeline threats.  
This paper aims to present the design of a system to perform 
object classification from aerial images.  This paper will also 
present the results and accuracy statistics on a set of hand 
labeled data and describe follow-on work and improvements 
that can be made to this system. 

A. Related Research 
There is much research interest in vision-based object 

classification as evidenced by a significant amount of 
literature in related applications, such as image recognition 
from satellite sources, traffic flow monitoring and automated 

1936 IEEE SENSORS 2010 ConferenceU.S. Government work not protected by U.S. copyright



car recognition from tower mounted cameras.  Detection and 
classification in aerial imagery is particularly challenging due 
the following characteristics of the domain [1]: 

(1) Rotation variance of targets in the images 

(2) Poorly defined object boundaries that are often buried in 
the background 

(3) Lack of an obvious set of features to be used because of 
the complex and unpredictable characteristics of the 
scene 

(4) Camera vibration and blur 

(5) Image congestion 

(6) Background variance 

(7) Uncertain lighting conditions 

(8) Visual variation in targets 

Many approaches in the literature utilize a two-stage 
processing approach, with a coarse filter that can be applied 
quickly to the scene, and a fine filter to perform more exact 
classification.  Classification is difficult because a single 
feature set has not been identified that can produce good 
results in object detection from aerial imagery.  Most recent 
research investigates combining a set of weak classifiers, 
where each classifier need only do better than 50%.  The goal 
is to produce a strong classifier by supervised training over a 
labeled set of data that is indicative of the images produced. 
Popular ensemble methods include cascaded classifiers and 
boosting. 

A popular approach derived from Viola and Jones [2] 
utilizes classifiers that are trained on features extracted from 
fast simple filters such as Haar-like features [2][3].  This 
approach is very popular for facial object recognition due its 
speed and performance in controlled environments, but it is 
challenging for aerial recognition due to variability of features 
[4].  Authors have explored similar techniques using 
additional filters in different domains, including triangle 
filters, Gabor filters [5], and Gaussian derivative filters, with 
moderate success [4].  Zernike moments and integral polar 
space transforms have been applied towards rotational 
invariance [1].  In most approaches, single classifiers do not 
provide acceptable results, and ensemble techniques on 
several classifiers are required to reach acceptable accuracy 
[6][7][8]. 

II. ARCHITECTURE 
A coarse processing algorithm already exists that can 

identify regions of likely objects which will then be the input 
into a fine processing stage.  The goal of this research is to 
develop a second fine processing stage that will produce 
greater than 80% accuracy.  The overall pipeline is shown in 
Figure 1. 
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Figure 1.  Processing Pipeline 

To classify the images, the following feature sets were 
considered. 

TABLE I.  LIST OF FEATURE SETS 

Description ID 

Gradient Orientation Distribution GOD 

Gradient Magnitude Distribution GMD 

Canny Edge Orientation Distribution COD 

Distributions Entropies ED 

Canny Pixel Ratio CPR 

Spatial Moments SM 

Central Moments CM 

Hu Moments HM 

Haar-Like Features HLF 

 

The following classification sets were created and utilized 
throughout the training. 

TABLE II.  LIST OF CLASSIFICATIONS 

Classifier ID Classifier Description 

V Vehicle 

B Background 

T Tractor 

 

Unfortunately there were an insufficient number of tractors 
identified in the test images.  In these tests, all tractors were 
classified as vehicles. 

A. Demonstrative Test Image Example 
The following test image is referred to in this document as 

the Demonstrative Test Image (DTI) example.  The DTI was 
used to develop and test the algorithms, as it contains a 
number of vehicles and a number of false positive images.  
The hand-labeled image is shown below.  A second set of data 
was also created for testing.  This test set is comprised of 
actual identified regions from the coarse-classifier. 
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Figure 2.  Demonstrative Test Image (DTI) Example 

 
Figure 3.  Regions in the DTI Training Set 

 
Figure 4.  Regions in the DTI Test Set 

B. Data Sets 
The classifiers were trained and tested on a set of labeled 

data.  The full data set included 185 vehicle regions and 1552 
background regions.  The vehicles and background images 
were stored in two separate data sets.  The remaining vehicle 
regions and background regions were incorporated into a 
mixed training set.  This training set included the DTI regions 
and had a total 53 vehicle regions, with 584 regions in total. 

III. CLASSIFIERS 

A. Gradient Images 
The gradient orientation histogram (GOH) filter calculates 

a gradient image in the x and y directions, then processes the 
images to characterize the overall gradients in the image. 

The GOH algorithm converts the region image to 
grayscale, and then computes the gradients using a Sobel 
filter.  A Sobel filter utilizes a convolution kernel applied on a 

per-pixel basis to quickly produce the gradient images.  The 
results of a 3x3 and 7x7 kernel matrix were compared and an 
L2 norm was used to compute the magnitude.  As a result of 
the testing, a 3x3 matrix was utilized, as the 7x7 didn‟t 
produce noticeably better results. 

pImage = cvLoadImage ( pFilename, 1 ); 

cvSetImageROI( pImage, cvRect( x, y, w, h ) ); 

pRegionImage = cvCreateImage ( ... ); 

cvCopyImage ( pRawImage, pRegionImage ); 

cvConvertImage( pRegionImage, pCannyImg); 

cvSobel ( pCannyImg, dx, 1, 0, gAptr ); 

cvSobel ( pCannyImg, dy, 0, 1, gAptr ); 

 

 
Figure 5.  Gradient Filter Images. 

Showing color region image (left), grayscale image (left-center), gradient x 
image (right-center) and gradient y image (righ-center). 

The orientation and magnitude from gradient images dx 
and dy were then computed.  The orientations and magnitudes 
were processed into a histogram of frequencies. 

ori_deg = (atan2 ( _dy, _dx ) + CV_PI) * 

180.0 / CV_PI 

mag = sqrt ( _dy*_dy + _dx*_dx ) 

binIndex = ( value – valuemin ) * 

( nbins / valuerange ) 

B. Gradient Orientation Distribution (GOD) 
The probability distribution of gradient orientations was 

utilized as a feature for classification.  The gradient orientation 
angles were assembled into a histogram.  The histogram 
contained k=18 buckets, where each bucket is assigned 20 
degrees for a total range of 360 degrees.  To avoid problems 
with zero observations, a pseudo count was added to each bin.  
Effectively this assumes a flat prior distribution over the 
orientations before the observations are added, and each added 
observation moves the distribution closer to the observed 
distribution. The distribution was computed by normalizing 
the histograms over the total number of observations, yielding 
a probability distribution satisfying: 

  (1) 

Here, p(i) is the probability of a particular orientation i  
occurring, N is the total number of observations, and ni is the 
occurrence of observation occurrences with orientation i.  
The feature vector is given by 

  (2) 

C. Gradient Magnitude Distribution (GMD) 
Similar to the gradient orientation distribution, the 

magnitudes of the gradients over the image were calculated. 

𝑝 𝜃𝑖 =
𝑛𝜃𝑖

𝑁
    ;     𝑝 𝜃𝑖 = 1

𝐾

𝑖=1

    ;    𝑝 𝜃𝑖 > 0 

𝑉𝑔𝑜𝑑 =  𝑝 𝜃1 . . . 𝑝 𝜃𝑘   
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These gradients were accumulated into a histogram with k=18 
buckets and converted to a probability distribution in the same 
manner as mentioned previously.  Let p(mi) be the probability 
of a gradient magnitude falling into bin I, then the feature 
vector is given by 

  (3) 

The VGMD filter was tested on the DTI training set.  The 
following parameters were used. 

Number Of Bins:  18 

cfil:gCannyAptr:  3 

cfil:gCannyLoPos:  15.0 

cfil:gCannyHiPos:  40.0 

cfil:theshold_Lo:  135.0 

cfil:theshold_Hi:  360.0 

cfil:gMagRangeMin:  101.3 

cfil:gMagRangeMax:  432.0 

cfil:gMagRangeRange:  330.8 

The magnitude histograms that resulted from the vehicles 
(positive) and the background (negative) are shown below.  
Qualitatively, the gradient magnitudes in background images 
are not as large as in vehicle images, and consequently this 
classifier does well in identifying natural background 
characteristics (such as grass and foliage). 
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Figure 6.  Magnitude Probability Distribution. 

These graphs compare positive vehicle images (top) and negative 
background images (bottom) on the DTI 

D. Canny Edge Orientation Distribution (COD) 
The gradient orientation and magnitude histograms 

computed in the GOD above were used to compute the 
orientation probabilities over the entire image.  Images with 
man-made objects, such as cars, typically have rectangular 
edges, and the orientation of these edges can be utilized as a 
feature.  The Canny edge detection algorithm is a popular 
method for quickly determining edges in an image.  The 
Canny edge detection algorithm implemented in OpenCV 
utilizes the same Sobel operators as mentioned above.  
However, it has a number of additional features, including a 
hysteresis threshold implemented in the function cvCanny, 

non-maxima suppression, and a stack implementation for 
checking neighboring cells to find edges.  The Canny edge 
filter applied to an image is shown in Figure 7. 

 
Figure 7.  Canny Edge Detection 

It is algorithmically expensive to extract edge directions.  
Instead, a Canny edge detector was used to find edges.  The 
distribution was created exactly the same as the GOD feature, 
except only the gradients at vertices that coincide with Canny 
edges were considered.  The effect of the Sobel kernel size did 
not have a noticeable qualitative difference in the resulting 
image (Figure 8), so a smaller 3x3 kernel was selected. 

3x3 Kernel

Lo=27*AS2, Hi=40*AS2

7x7 Kernel 
Lo=618*AS2, Hi=875*AS2

3x3 Kernel

Lo=27*AS2, Hi=40*AS2

7x7 Kernel 
Lo=618*AS2, Hi=875*AS2

 
Figure 8.  Canny Edge Detection Comparison of a 3x3 and 7x7 Sobel Kernel. 

The resulting classification vector is given by the 
following, where  is the probability of an edge gradient 
occurring in bin i. 

  (4) 

The orientation probability distribution in Figure 9 was 
generated from regions in the DTI example.  Qualitatively, the 
resulting probability distribution over the background test 
cases exhibits a flatter distribution than that over vehicles.  
The distribution over vehicles in the DTI showed a distinct 
likelihood for having lines aligned at certain orientations.  The 
DTI example contained vehicles that were all oriented in the 
same direction, which is why all the lines tended to group in 
two main locations with such strong correlation. 

𝑉𝐺𝑀𝐷 =  𝑝 𝑚1 . . . 𝑝 𝑚𝑘   

𝑉𝐶𝑂𝐷 =  𝑝 𝜃 1 …𝑝(𝜃 𝑘)  
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Figure 9.  Canny Edge Orientation Distributions 

The negative image distribution shows a few samples that 
correlate between edge direction and probability of 
occurrence.  For instance, some of the negative regions 
contained man-made objects (see Figure 3), and the histogram 
reflected the trend for the edges to be aligned. 

The orientation distributions performed well in identifying 
vehicles, but man-made objects in the scene would cause the 
error rate to increase. 

The classifier was trained on the training data images.  The 
training and the classification were performed with the 
following settings. 

CFilter Properties: 

  cfil:gCannyAptr:      3 

  cfil:gCannyLoPos:     15 

  cfil:gCannyHiPos:     40 

  cfil:theshold_Lo:     135 

  cfil:theshold_Hi:     360 

  cfil:gMagRangeMin:    101.250000 

  cfil:gMagRangeMax:    432.000031 

  cfil:gMagRangeRange:  330.750031 

  cfil:CannyFilterKnnK: 10 

The results are shown below. 

TABLE III.  RESULTS OF CLASSIFICATION 

Set Matches Mismatches Score 

Train 323 36 89.97% 
Vehicles Only 146 30 82.95% 

Mixed 307 115 72.75% 
 

E. Canny Pixel Distribution (CPD) 
The Canny Pixel Distribution is computed from a 

histogram over the image, comparing the ratio of edge pixels 
to the ratio of non-edge pixels in areas on the image.  The 
pixel ratio Rc here is defined by 

  (5) 

Here Pedge(i,j) and Ptotal(i,j) are the number of pixels 
located in a Canny edge and the number of total pixels in the 
image, respectively, in the (i,j) bin.  In these tests we set 
I=J=5, for a total of 25 bins evenly distributed across the 
image, as shown in Figure 10. 
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Figure 10.  Pixel Ratio Histogram 

The histogram is then converted to a normalized 
distribution.  The feature vector is given by the twenty five 
elements in the distribution matrix. 

  (6) 
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Figure 11.  CPD Distributions of Test Image Regions. 

The CPD distributions are shown in Figure 11 above for 
the first ten vehicles and background images in the test image. 

F. Distribution Entropy (DE) 
The entropy of the various distributions was computed, 

where entropy is given by the following: 

𝑅𝑐(𝑖, 𝑗) =
𝑃𝑒𝑑𝑔𝑒 (𝑖, 𝑗)

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑖, 𝑗)
 

𝑉𝐶𝑃𝑅 =  𝑅𝑐 0,0 . . 𝑅𝑐(5,5)  

1940



  (7) 

The resulting classification vector is given by the VDE 
below, where Ev is the entropy over a vector V. 

  (8) 

The following image shows the entropy values for EVGOD 
as computed over regions in the DTI, shown in Figure 12.  
Vehicle regions tended to have consistent entropy, whereas 
background objects had entropy measures that fluctuated. 
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Figure 12.  Entropy Comparison for Regions in the DTI 

The entropy classifier was tested on the training set and a 
mixed test set.  The results are shown below. 

TABLE IV.  RESULTS OF ENTROPY CLASSIFIER 

Set Matches Mismatches Score 

Train 276 83 76.88% 

Mixed 287 135 68.01% 

 

G. Integral Spatial Moment Feature (SM) 
Integral moments are a weighted average of pixel 

intensities integrated over an image.  Consider an image 
whose intensity value f(x,y) is given over pixel location (x,y), 
then the moment over an image is given by 

  (9) 

For instance, the value of m00 is the sum of intensities over 
the image.  The feature vector for the „Spatial Moment Filter‟ 
is created by considering the following set: 

 
    (10) 

H. Integral Central Moment Feature (CM) 
Central moments refer to the intensity integral relative to a 

point C=(xc,yc), where the central point C is located at the 
„center of intensity‟.  About a point, the moment is specified by 

  (11) 

  (12) 

The feature vector is composed of 

  (13) 

I. Hu Moment Features (HM) 
The preceding moment integrals will change when an 

image is translated, rotated or scaled, but can be used to 
compute the Hu moments [9] that are invariant to these 
transforms.  The Hu moments are given by: 

𝐼1 = 𝜂20 + 𝜂02  

𝐼2 =  𝜂20 − 𝜂02 2 + 4𝜂112 

𝐼3 =  𝜂30 − 3𝜂12 2 +   3𝜂21 − 𝜂03 2 

𝐼4 =  𝜂30 + 𝜂12 2 +  𝜂21 + 𝜂03 2 

𝐼5 =  𝜂30 − 3𝜂12  𝜂30 + 𝜂12   𝜂30 + 𝜂12 2

− 3 𝜂21 + 𝜂03 2 

+  3𝜂21 − 𝜂03  𝜂21

+ 𝜂03  3 𝜂30 + 𝜂12 2

−  𝜂21 + 𝜂03 2  

𝐼6 =  𝜂20 − 𝜂02   𝜂30 + 𝜂12 2 −   𝜂21 + 𝜂03 2 

+ 4𝜂11 𝜂30 + 𝜂12  𝜂21 + 𝜂03  

𝐼7 = (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)² − (𝜂21

+ 𝜂03)²] − (𝜂30 − 3𝜂12)(𝜂21

+ 𝜂03)[3(𝜂30 + 𝜂12)² − (𝜂21

+ 𝜂03)²]  (14) 

These set of moments are captured in the Hu moment 
feature vector: 

  (15) 

J. Haar-Like Features 
Utilizing Haar-like features in a boosted, cascaded 

classifier is a very popular approach for fast object detection 
and has been very successful in detecting human faces.  The 
original algorithm suggested by Viola and Jones has been 
extended over larger sets of basis features many places in the 
literature [4][5][10][11].  Our choice of implementation for a 
boosted cascade of simple features is predicated on the 
availability of the algorithm in common open source 
repositories, particularly in OpenCV. 

This project implements a boosted cascade of simple Haar-
like filters using the OpenCV implementation.  Each classifier 
provides a yes/no decision based on boosting, which 
implements a weighted voting approach.  Our implementation 
uses Gentle Adaboost implementation.  The following features 
are supported through the library.  Our implementation 
follows the standard established by the authors of the library. 

𝐸(𝑥) =  𝑝 𝑥 𝑇 log2 𝑝 𝑥  

𝑥

 

𝑉𝐷𝐸 =  𝐸𝑉𝐺𝑂𝐷
, 𝐸𝑉𝐺𝑀𝐷

, 𝐸𝑉𝐶𝑂𝐷
, 𝐸𝑉𝐶𝑃𝐷

  

𝑚𝑝 ,𝑞 =  𝑥𝑝𝑦𝑞𝑓 𝑥, 𝑦 

𝑥 ,𝑦∈𝐼𝑚𝑎𝑔𝑒

 

𝑉𝑠𝑚 = {𝑚00 , 𝑚10 , 𝑚01 , 𝑚20 , 𝑚11 , 𝑚02 , 𝑚30 , 𝑚21 , 𝑚12 , 𝑚03} 

𝜇𝑝 ,𝑞 =  (𝑥 − 𝑥𝑐)𝑝 𝑦 − 𝑦𝑐 
𝑞𝑓 𝑥, 𝑦 

𝑥 ,𝑦∈𝐼𝑚𝑎𝑔𝑒

 

𝑥𝑐 =
𝑚10

𝑚00
    ;     𝑦𝑐 =

𝑚01

𝑚00
 

𝑉𝑐𝑚 =  𝜇20 , 𝜇11 , 𝜇02 , 𝜇30 , 𝜇21 , 𝜇12 , 𝜇03  

𝑉𝑚 =  𝐼1 , 𝐼2, 𝐼3 , 𝐼4 , 𝐼5, 𝐼6 , 𝐼7  
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Figure 13.  Set of Haar-Like Features [12] 

IV. CLASSIFIER TRAINING 
A K-nearest neighbor classifier was created based on the 

three classification types in Table II.  There were an 
insufficient number of tractors to include in the training 
dataset, but it was included in the classification. 

This algorithm has the option of setting parameters in the 
nearest neighbors search which has an effect on the accuracy 
of the results.  The sensitivity of the results to K nearest 
neighbors are shown below.  The test was performed by 
training on the DTI set, and then retesting on the same DTI 
set, a set of reduced positives, and a set of reduced negatives.  
The value of K was changed from 1 to 32, and the accuracy of 
the results are shown below.  Interestingly, the negative set 
has better accuracy using less neighbors, while the positive set 
has better accuracy with increased K.  A value of K=10 was 
chosen, which is the value of K where the accuracy begins to 
flatten out for both the positive and negative sets. 
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Figure 14.  Sensitivity of Accuracy to K 

A. Rotation Variance 
Although our classifier includes a few rotation invariant 

metrics, several of the better performing classifiers, such as 
the orientation distributions, are not invariant. 

To address rotation variance, each image was rotated by a 
number of rotations over a full 360 degree range.   With a Knn 
classifier, we expect the addition of rotational images to 
provide better matches when vehicles are rotated with respect 
to the training images.  This also has a beneficial effect of 
increasing the number of training samples by an order of 
magnitude.  The number of rotations was set to 10, with 36 
degrees per rotation. 

 
Figure 15.  Rotation of Sample Image and Processing 

The rotation data gave a way of testing the orientation 
histogram processing algorithms.  Given the image rotated by 
36 degrees per image, the edge histogram should reflect this 
by showing a translation of the histogram curve by 36 degrees, 
or 2 buckets (since each bucket is 18 degrees).  This is 
reflected in the resulting histogram for the image in Figure 15 
above. 
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Figure 16.  Edge Orientation Histogram with Rotation 

The resulting matches resulted in a much better result from 
the gradient orientation classifier, as shown in Table V. 

TABLE V.  MATCHES AND MISMATCHES WITH ROTATION 

Set Matches MisMatch Score 

Train 570 14 98.12% 

Vehicles 175 10 94.59% 

Backgrounds 1480 72 95.36% 

 

B. Performance with Real Data Set 
The output from the coarse system does not always center 

the regions on the object of interest.  The coarse system is 
based on corner features, and the images tend to be slightly 
off-centered.  To improve identification rate for off-centered 
images, the images were perturbed by 1/3 of the width of the 
image in the image x and y directions.  Along with rotation of 
the images, this provides the additional benefit of enlarging 
the training data.  

1942



 
Figure 17.  Shifted Image 

V. COMBINING CLASSIFIERS 
Individually, these classifiers performed with varying 

amounts of accuracy and performance; none of the individual 
classifiers would consistently meet the requirements of the 
project.   The next phase of this research was to implement 
each possible feature into separate classifiers and combine the 
results using an ensemble learning technique. 

In this first implementation, each classifier individually is 
based on the K nearest neighbor classifier, with an L2 norm 
distance specification determining distance to the closest 
neighbor over the feature vectors.  We consider 10 nearest 
neighbors for each classifier. 

A. Ensemble Approach 
Our current approach to combine classifier outputs utilizes 

a weighted voting scheme that is driven by an external 
supervisor learning algorithm.  The iterative algorithm 
generates a set of weights based on historic performance of the 
learners.  Our ensemble classifier combines the weight of the 
vote from a supervised weighting scheme.  A simple gradient 
descent operates over an L2 norm in an attempt to minimize 
the historic classification error.  Future work will combine the 
rest of the features with the Haar cascaded boosting algorithm.  
Until these systems are combined, the results are not expected 
to be optimal. 

B. Voting Results on the DTI 
The first test was performed by training on the DTI 

training set.  Classification accuracy results are shown in 
Table V.   The first set of data shows classification results on 
the DTI training set, which provides an evaluation of the 
training error.  The classification results were tested against 
the unseen training data for the DTI example. 

TABLE VI.  VOTING ACCURACY ON DTI 
CLASSIFIERS TRAINED ON DTI IMAGE. 

Set Classifier Name + - Accur 
DTI Gradient Mag Distrib 44 2 95.65% 
DTI Gradient Ori Distrib 44 2 95.65% 
DTI Distrib Entropy 44 2 95.65% 
DTI Canny Pixel Ratio 32 14 69.57% 
DTI Canny Ori Histogram 39 7 84.78% 
DTI Spatial Moments 43 3 93.48% 
DTI Central Moments 40 6 86.96% 
DTI Hu Moments 45 1 97.83% 
DTI Voting Scheme 46 0 100.0% 

DTI Test Gradient Mag Distrib 16 0 100.0% 
DTI Test Gradient Ori Distrib 6 10 37.50% 
DTI Test Distrib Entropy 6 10 37.50% 
DTI Test Canny Pixel Ratio 9 7 56.25% 
DTI Test Canny Ori Histogram 11 5 68.75% 
DTI Test Spatial Moments 12 4 75.00% 
DTI Test Central Moments 7 9 43.75% 
DTI Test Hu Moments 12 4 75.00% 
DTI Test Voting Scheme 13 3 81.25% 

 

To characterize the training error, the first test was 
performed against the same set it was tested against, the DTI 
training set.  None of the classifiers by themselves was able to 
perfectly train, showing various amounts of training error.  
However, by applying the voting scheme, the ensemble 
achieved 100% accuracy against the training set. 

Against the DTI testing set, the voting scheme brought the 
overall accuracy to 81%, which was a promising improvement 
from the single classifier.  The most accurate classifier was the 
gradient magnitude histogram.  All other classifiers performed 
marginally to poorly on the unseen test set. 

C. Voting Results on the Labeled Sets 
The voting scheme increased the overall accuracy of the 

estimation for the DTI set as compared to the single classifier, 
so the test was reapplied to the full labeled data set.  The 
classifiers were trained against the training set.  The trained 
classifiers were applied against the same training set, the 
labeled vehicle set, and the labeled background set. 

The results of the individual classifiers and the voting 
ensemble are shown below. 
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TABLE VII.  VOTING ACCURACY ON FULL TEST DATA 
CLASSIFIERS TRAINED ON THE TRAINING SET. 

Set Classifier Name + - Accur 
Train Gradient Mag Distrb 556 28 95.21% 
Train Gradient Ori Distrb 571 13 97.77% 
Train Distrib Entropy 564 20 96.58% 
Train Canny Pixel Ratio 470 114 80.48% 

Train Canny Ori 
Histogram 

488 96 83.56% 

Train Spatial Moments 532 52 91.10% 
Train Central Moments 524 60 89.73% 
Train Hu Moments 482 102 82.53% 
Train Voting Scheme 573 11 98.12% 

Vehicles Grd Mag Distrib 151 34 81.62% 
Vehicles Grd Ori Distrib 173 12 93.51% 
Vehicles Distrib Entropy 165 20 89.19% 
Vehicles Canny Pixel Ratio 98 87 52.97% 
Vehicles Canny Ori Distrib 122 63 65.95% 
Vehicles Spatial Moments 150 35 81.08% 
Vehicles Central Moments 126 59 68.11% 
Vehicles Hu Moments 77 108 41.62% 
Vehicles Voting Scheme 169 16 91.35% 

Background Grd Mag Distrib 1495 57 96.33% 
Background Grd Ori Distrib 1496 56 96.39% 
Background Distrib Entropy 1485 67 95.68% 
Background Canny Pixel Ratio 1321 231 85.12% 
Background Canny Ori Distrib 1319 233 84.99% 
Background Spatial Moments 1409 143 90.79% 
Background Central Moments 1447 105 93.23% 
Background Hu Moments 1368 184 88.14% 
Background Voting Scheme 1517 35 97.74% 

 

The voting scheme overall brought the training rates past 
90%, and accomplished the goals of this project. 

VI. CONCLUSION 
Object identification and classification in aerial images is a 

challenging problem due to the characteristics of the domain. 
Classification needs to be performed quickly, images may be 
blurred, there is significant background noise, objects may be 
partially hidden, the boundaries may not be well defined, the 
background will vary, etc.  This project has shown an 
approach that gives over 90% success rates over our labeled 
set of regions.  

The results of any single classifier were insufficient to 
meet the consistency and accuracy requirements of this 
project.  Through combination of multiple classifiers, the 
consistency and accuracy were able to meet these objectives.  
Unfortunately, the results could only be tested on the limited 
data set derived from the relatively small number of actual 
aerial images available.  Though the results are encouraging, 
the training and test set is not large enough to sufficiently 
draw conclusions about the algorithm in terms of accuracy or 
robustness. 

A. Future Work 
The success of this initial set of classifiers is encouraging, 

but the results need to be verified on a larger test set.  In 
addition, there are many improvements that will be made to 
improve the training accuracy.  The ensemble technique will 
be improved with automated random selection, towards a 
boosting algorithm.  The initial implementation of the Haar 
classifier in the boosting framework resulted in a successful 
algorithm, if not slow, but more work needs to be done to 
evaluate its performance on the overall system.  Additional 
labeled training data must be obtained.  Additional classes can 
be added once a large enough training set is established. The 
system must be tested with additional output from the coarse 
filter, to test against more than hand-labeled data. The number 
of classifications needs to be increased, and a decision tree 
approach might be applied for part of the classifier.  For 
instance, the orientation distribution features (COD and GOD) 
could identify „man-made‟ objects with great accuracy.  The 
magnitude distribution feature (GMD) was able to identify 
natural background objects well.  Additional features will also 
be investigated. 
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