
Object Classification from Aerial Visual Imagery

Corey Ippolito
Intelligent Systems Division

NASA Ames Research Center
Moffett Field, CA 94035, USA

corey.a.ippolito@nasa.gov

Ara Nefian
Carnegie Mellon University Silicon Valley

NASA Ames Research Center
Moffett Field, CA 94035, USA

ara.nefian@nasa.gov

Abstract— Aerial oil pipeline inspection is a dangerous endeavor
in the current practice, where a pilot flying in a general aviation
class aircraft flies slowly at low altitudes while concurrently
looking at the ground for pipeline hazards with the unaided eye;
high pilot workload in a dangerous low-speed, low-altitude
environment results in an unacceptable number of accidents and
loss of life each year. Automation of image acquisition and
threat recognition has the potential to reduce pilot workload,
improving the safety of the pilots and increasing efficiency.
Towards these goals, this paper describes an image classification
architecture and algorithm that utilizes several classifiers on
different features extracted from the image to automate the
threat detection process. The resulting classifier meets the
requirement of greater than 80% accuracy in classification. The
results will be discussed, and improvements will be proposed for
continued research.

TABLE OF CONTENTS

I. Introduction... 1
II. Architecture .. 2
III. Classifiers ... 3
IV. Classifier Training .. 7
V. Combining Classifiers... 8
VI. Conclusion .. 9
References .. 9
Biography... 10

I. INTRODUCTION
Oil pipeline operators are mandated by federal regulation

to monitor oil pipelines on a regular basis. The current
practice in the industry is to perform monitoring using piloted
manned aircraft. Pilots in general aviation aircraft are
required to cruise at low-altitude for long durations, ideally
maximizing the time they are visually inspecting the pipeline
by looking out the cockpit window. In general, low altitude
flight and maneuvering carries a substantially greater risk of
fatality than flight at higher altitude; pilots face a number of
challenges, including potential for disorientation due to visual
illusions, turbulence, decreased response time to correct for
upset events, and increased pilot workload – pilots must detect
and avoid ground obstacles, such as trees, power lines, towers
and mountains. Pilots performing pipeline inspection not only

operate continuously in this hazardous environment, but the
operational efficiency of this model dictates maximizing the
amount of time pilots can keep their eyes off their instruments
and focus on locations on the ground. Low-altitude flight
dangers are exacerbated due to the high pilot workload, and an
unacceptable number of accidents and loss of life occur each
year.

Automation of the inspection process has the potential to
substantially increase the safety and efficiency of this
operation. Complete automation of the inspection process (e.g.
through autonomous robotic aerial survey) is not feasible
given the current regulatory environment of the FAA.
Automation has the potential to reduce the workload of pilots
at low altitudes, allowing pilots to focus on operating their
aircraft safely. This technology should be as minimally
invasive in the cockpit as possible. It should minimize pilot
distractions and increase the safety of pilots by reducing their
workload while maneuvering at low altitudes.

The purpose of a joint endeavor between NASA Ames
Research Center and the Pipeline Research Council
International is to explore advanced autonomous technologies
that can be fielded on manned aircraft, particularly fixed-wing,
to provide remote sensing and real-time threat identification.
A large number of candidate regions are currently being
produced by an existing coarse-classifier, but the performance
is not meeting the objectives of the project. The success of
this research is determined by achieving a classification
accuracy rate of greater than 80% on the test data. This paper
describes a vision processing algorithm in support of
automatic identification and classification of pipeline threats.
This paper aims to present the design of a system to perform
object classification from aerial images. This paper will also
present the results and accuracy statistics on a set of hand
labeled data and describe follow-on work and improvements
that can be made to this system.

A. Related Research
There is much research interest in vision-based object

classification as evidenced by a significant amount of
literature in related applications, such as image recognition
from satellite sources, traffic flow monitoring and automated

1936 IEEE SENSORS 2010 ConferenceU.S. Government work not protected by U.S. copyright

car recognition from tower mounted cameras. Detection and
classification in aerial imagery is particularly challenging due
the following characteristics of the domain [1]:

(1) Rotation variance of targets in the images

(2) Poorly defined object boundaries that are often buried in
the background

(3) Lack of an obvious set of features to be used because of
the complex and unpredictable characteristics of the
scene

(4) Camera vibration and blur

(5) Image congestion

(6) Background variance

(7) Uncertain lighting conditions

(8) Visual variation in targets

Many approaches in the literature utilize a two-stage
processing approach, with a coarse filter that can be applied
quickly to the scene, and a fine filter to perform more exact
classification. Classification is difficult because a single
feature set has not been identified that can produce good
results in object detection from aerial imagery. Most recent
research investigates combining a set of weak classifiers,
where each classifier need only do better than 50%. The goal
is to produce a strong classifier by supervised training over a
labeled set of data that is indicative of the images produced.
Popular ensemble methods include cascaded classifiers and
boosting.

A popular approach derived from Viola and Jones [2]
utilizes classifiers that are trained on features extracted from
fast simple filters such as Haar-like features [2][3]. This
approach is very popular for facial object recognition due its
speed and performance in controlled environments, but it is
challenging for aerial recognition due to variability of features
[4]. Authors have explored similar techniques using
additional filters in different domains, including triangle
filters, Gabor filters [5], and Gaussian derivative filters, with
moderate success [4]. Zernike moments and integral polar
space transforms have been applied towards rotational
invariance [1]. In most approaches, single classifiers do not
provide acceptable results, and ensemble techniques on
several classifiers are required to reach acceptable accuracy
[6][7][8].

II. ARCHITECTURE
A coarse processing algorithm already exists that can

identify regions of likely objects which will then be the input
into a fine processing stage. The goal of this research is to
develop a second fine processing stage that will produce
greater than 80% accuracy. The overall pipeline is shown in
Figure 1.

Coarse
Processing

Stage

Fine
Processing

Stage

Raw
Image

>80%
Detection

Rate
Regions

Figure 1. Processing Pipeline

To classify the images, the following feature sets were
considered.

TABLE I. LIST OF FEATURE SETS

Description ID

Gradient Orientation Distribution GOD

Gradient Magnitude Distribution GMD

Canny Edge Orientation Distribution COD

Distributions Entropies ED

Canny Pixel Ratio CPR

Spatial Moments SM

Central Moments CM

Hu Moments HM

Haar-Like Features HLF

The following classification sets were created and utilized
throughout the training.

TABLE II. LIST OF CLASSIFICATIONS

Classifier ID Classifier Description

V Vehicle

B Background

T Tractor

Unfortunately there were an insufficient number of tractors
identified in the test images. In these tests, all tractors were
classified as vehicles.

A. Demonstrative Test Image Example
The following test image is referred to in this document as

the Demonstrative Test Image (DTI) example. The DTI was
used to develop and test the algorithms, as it contains a
number of vehicles and a number of false positive images.
The hand-labeled image is shown below. A second set of data
was also created for testing. This test set is comprised of
actual identified regions from the coarse-classifier.

1937

Figure 2. Demonstrative Test Image (DTI) Example

Figure 3. Regions in the DTI Training Set

Figure 4. Regions in the DTI Test Set

B. Data Sets
The classifiers were trained and tested on a set of labeled

data. The full data set included 185 vehicle regions and 1552
background regions. The vehicles and background images
were stored in two separate data sets. The remaining vehicle
regions and background regions were incorporated into a
mixed training set. This training set included the DTI regions
and had a total 53 vehicle regions, with 584 regions in total.

III. CLASSIFIERS

A. Gradient Images
The gradient orientation histogram (GOH) filter calculates

a gradient image in the x and y directions, then processes the
images to characterize the overall gradients in the image.

The GOH algorithm converts the region image to
grayscale, and then computes the gradients using a Sobel
filter. A Sobel filter utilizes a convolution kernel applied on a

per-pixel basis to quickly produce the gradient images. The
results of a 3x3 and 7x7 kernel matrix were compared and an
L2 norm was used to compute the magnitude. As a result of
the testing, a 3x3 matrix was utilized, as the 7x7 didn‟t
produce noticeably better results.

pImage = cvLoadImage (pFilename, 1);

cvSetImageROI(pImage, cvRect(x, y, w, h));

pRegionImage = cvCreateImage (...);

cvCopyImage (pRawImage, pRegionImage);

cvConvertImage(pRegionImage, pCannyImg);

cvSobel (pCannyImg, dx, 1, 0, gAptr);

cvSobel (pCannyImg, dy, 0, 1, gAptr);

Figure 5. Gradient Filter Images.

Showing color region image (left), grayscale image (left-center), gradient x
image (right-center) and gradient y image (righ-center).

The orientation and magnitude from gradient images dx
and dy were then computed. The orientations and magnitudes
were processed into a histogram of frequencies.

ori_deg = (atan2 (_dy, _dx) + CV_PI) *

180.0 / CV_PI

mag = sqrt (_dy*_dy + _dx*_dx)

binIndex = (value – valuemin) *

(nbins / valuerange)

B. Gradient Orientation Distribution (GOD)
The probability distribution of gradient orientations was

utilized as a feature for classification. The gradient orientation
angles were assembled into a histogram. The histogram
contained k=18 buckets, where each bucket is assigned 20
degrees for a total range of 360 degrees. To avoid problems
with zero observations, a pseudo count was added to each bin.
Effectively this assumes a flat prior distribution over the
orientations before the observations are added, and each added
observation moves the distribution closer to the observed
distribution. The distribution was computed by normalizing
the histograms over the total number of observations, yielding
a probability distribution satisfying:

 (1)

Here, p(i) is the probability of a particular orientation i
occurring, N is the total number of observations, and ni is the
occurrence of observation occurrences with orientation i.
The feature vector is given by

 (2)

C. Gradient Magnitude Distribution (GMD)
Similar to the gradient orientation distribution, the

magnitudes of the gradients over the image were calculated.

𝑝 𝜃𝑖 =
𝑛𝜃𝑖

𝑁
 ; 𝑝 𝜃𝑖 = 1

𝐾

𝑖=1

 ; 𝑝 𝜃𝑖 > 0

𝑉𝑔𝑜𝑑 = 𝑝 𝜃1 . . . 𝑝 𝜃𝑘

1938

These gradients were accumulated into a histogram with k=18
buckets and converted to a probability distribution in the same
manner as mentioned previously. Let p(mi) be the probability
of a gradient magnitude falling into bin I, then the feature
vector is given by

 (3)

The VGMD filter was tested on the DTI training set. The
following parameters were used.

Number Of Bins: 18

cfil:gCannyAptr: 3

cfil:gCannyLoPos: 15.0

cfil:gCannyHiPos: 40.0

cfil:theshold_Lo: 135.0

cfil:theshold_Hi: 360.0

cfil:gMagRangeMin: 101.3

cfil:gMagRangeMax: 432.0

cfil:gMagRangeRange: 330.8

The magnitude histograms that resulted from the vehicles
(positive) and the background (negative) are shown below.
Qualitatively, the gradient magnitudes in background images
are not as large as in vehicle images, and consequently this
classifier does well in identifying natural background
characteristics (such as grass and foliage).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10 12 14 16 18

O
cc

u
ra

n
ce

 P
ro

b
ab

ili
ty

Magnitude (18 buckets)

Magnitude Histogram
Positive Regions in DTI

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18

O
cc

u
ra

n
ce

 P
ro

b
ab

ili
ty

Magnitude (18 buckets)

Magnitude Histogram
Negative Regions in DTI

Figure 6. Magnitude Probability Distribution.

These graphs compare positive vehicle images (top) and negative
background images (bottom) on the DTI

D. Canny Edge Orientation Distribution (COD)
The gradient orientation and magnitude histograms

computed in the GOD above were used to compute the
orientation probabilities over the entire image. Images with
man-made objects, such as cars, typically have rectangular
edges, and the orientation of these edges can be utilized as a
feature. The Canny edge detection algorithm is a popular
method for quickly determining edges in an image. The
Canny edge detection algorithm implemented in OpenCV
utilizes the same Sobel operators as mentioned above.
However, it has a number of additional features, including a
hysteresis threshold implemented in the function cvCanny,

non-maxima suppression, and a stack implementation for
checking neighboring cells to find edges. The Canny edge
filter applied to an image is shown in Figure 7.

Figure 7. Canny Edge Detection

It is algorithmically expensive to extract edge directions.
Instead, a Canny edge detector was used to find edges. The
distribution was created exactly the same as the GOD feature,
except only the gradients at vertices that coincide with Canny
edges were considered. The effect of the Sobel kernel size did
not have a noticeable qualitative difference in the resulting
image (Figure 8), so a smaller 3x3 kernel was selected.

3x3 Kernel

Lo=27*AS2, Hi=40*AS2

7x7 Kernel
Lo=618*AS2, Hi=875*AS2

3x3 Kernel

Lo=27*AS2, Hi=40*AS2

7x7 Kernel
Lo=618*AS2, Hi=875*AS2

Figure 8. Canny Edge Detection Comparison of a 3x3 and 7x7 Sobel Kernel.

The resulting classification vector is given by the
following, where is the probability of an edge gradient
occurring in bin i.

 (4)

The orientation probability distribution in Figure 9 was
generated from regions in the DTI example. Qualitatively, the
resulting probability distribution over the background test
cases exhibits a flatter distribution than that over vehicles.
The distribution over vehicles in the DTI showed a distinct
likelihood for having lines aligned at certain orientations. The
DTI example contained vehicles that were all oriented in the
same direction, which is why all the lines tended to group in
two main locations with such strong correlation.

𝑉𝐺𝑀𝐷 = 𝑝 𝑚1 . . . 𝑝 𝑚𝑘

𝑉𝐶𝑂𝐷 = 𝑝 𝜃 1 …𝑝(𝜃 𝑘)

1939

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400

O
cc

ur
an

ce
 P

ro
ba

bi
lit

y

Angle Bucket (in degrees, 20 degrees per bucket)

Orientat ion Dist ribut ion
Vehicle Regions in t he Test Image

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 50 100 150 200 250 300 350

O
cc

ur
an

ce
 P

ro
ba

bi
lit

y

Angle Bucket (in degrees, 20 degrees per bucket)

Orientat ion Dist ribut ion
Bacground Regions in Test Image

Figure 9. Canny Edge Orientation Distributions

The negative image distribution shows a few samples that
correlate between edge direction and probability of
occurrence. For instance, some of the negative regions
contained man-made objects (see Figure 3), and the histogram
reflected the trend for the edges to be aligned.

The orientation distributions performed well in identifying
vehicles, but man-made objects in the scene would cause the
error rate to increase.

The classifier was trained on the training data images. The
training and the classification were performed with the
following settings.

CFilter Properties:

 cfil:gCannyAptr: 3

 cfil:gCannyLoPos: 15

 cfil:gCannyHiPos: 40

 cfil:theshold_Lo: 135

 cfil:theshold_Hi: 360

 cfil:gMagRangeMin: 101.250000

 cfil:gMagRangeMax: 432.000031

 cfil:gMagRangeRange: 330.750031

 cfil:CannyFilterKnnK: 10

The results are shown below.

TABLE III. RESULTS OF CLASSIFICATION

Set Matches Mismatches Score

Train 323 36 89.97%
Vehicles Only 146 30 82.95%

Mixed 307 115 72.75%

E. Canny Pixel Distribution (CPD)
The Canny Pixel Distribution is computed from a

histogram over the image, comparing the ratio of edge pixels
to the ratio of non-edge pixels in areas on the image. The
pixel ratio Rc here is defined by

 (5)

Here Pedge(i,j) and Ptotal(i,j) are the number of pixels
located in a Canny edge and the number of total pixels in the
image, respectively, in the (i,j) bin. In these tests we set
I=J=5, for a total of 25 bins evenly distributed across the
image, as shown in Figure 10.

(0,0)

(4,4)

(0,1) (0,2)

(1,0)

(2,0)

(4,0)

(3,0)

(0,3) (0,4)

Figure 10. Pixel Ratio Histogram

The histogram is then converted to a normalized
distribution. The feature vector is given by the twenty five
elements in the distribution matrix.

 (6)

-30

-10

10

30

50

70

90

110

130

150

0.00 5.00 10.00 15.00 20.00 25.00

O
cc

ur
an

ce
 P

ro
ba

bi
lit

y

CPD Bucket (0 to 25)

Canny Edge Pixel Rat io Dist ribut ion (CPD)
(Vehicle Regions from DTI)

-30

-10

10

30

50

70

90

110

130

150

0.00 5.00 10.00 15.00 20.00 25.00

O
cc

ur
an

ce
 P

ro
ba

bi
lit

y

CPD Bucket (0 to 25)

Canny Edge Pixel Rat io Dist ribut ion (CPD)
(Background Regions from DT I)

Figure 11. CPD Distributions of Test Image Regions.

The CPD distributions are shown in Figure 11 above for
the first ten vehicles and background images in the test image.

F. Distribution Entropy (DE)
The entropy of the various distributions was computed,

where entropy is given by the following:

𝑅𝑐(𝑖, 𝑗) =
𝑃𝑒𝑑𝑔𝑒 (𝑖, 𝑗)

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑖, 𝑗)

𝑉𝐶𝑃𝑅 = 𝑅𝑐 0,0 . . 𝑅𝑐(5,5)

1940

 (7)

The resulting classification vector is given by the VDE
below, where Ev is the entropy over a vector V.

 (8)

The following image shows the entropy values for EVGOD
as computed over regions in the DTI, shown in Figure 12.
Vehicle regions tended to have consistent entropy, whereas
background objects had entropy measures that fluctuated.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 5 10 15 20 25 30

En
tr

o
p

y
(p

T*
lo

gP
)

Data Set ID

Entropy on Data Sets

Positive and Negative Regions in DTI

Vehicles

Background

Figure 12. Entropy Comparison for Regions in the DTI

The entropy classifier was tested on the training set and a
mixed test set. The results are shown below.

TABLE IV. RESULTS OF ENTROPY CLASSIFIER

Set Matches Mismatches Score

Train 276 83 76.88%

Mixed 287 135 68.01%

G. Integral Spatial Moment Feature (SM)
Integral moments are a weighted average of pixel

intensities integrated over an image. Consider an image
whose intensity value f(x,y) is given over pixel location (x,y),
then the moment over an image is given by

 (9)

For instance, the value of m00 is the sum of intensities over
the image. The feature vector for the „Spatial Moment Filter‟
is created by considering the following set:

 (10)

H. Integral Central Moment Feature (CM)
Central moments refer to the intensity integral relative to a

point C=(xc,yc), where the central point C is located at the
„center of intensity‟. About a point, the moment is specified by

 (11)

 (12)

The feature vector is composed of

 (13)

I. Hu Moment Features (HM)
The preceding moment integrals will change when an

image is translated, rotated or scaled, but can be used to
compute the Hu moments [9] that are invariant to these
transforms. The Hu moments are given by:

𝐼1 = 𝜂20 + 𝜂02

𝐼2 = 𝜂20 − 𝜂02 2 + 4𝜂112

𝐼3 = 𝜂30 − 3𝜂12 2 + 3𝜂21 − 𝜂03 2

𝐼4 = 𝜂30 + 𝜂12 2 + 𝜂21 + 𝜂03 2

𝐼5 = 𝜂30 − 3𝜂12 𝜂30 + 𝜂12 𝜂30 + 𝜂12 2

− 3 𝜂21 + 𝜂03 2

+ 3𝜂21 − 𝜂03 𝜂21

+ 𝜂03 3 𝜂30 + 𝜂12 2

− 𝜂21 + 𝜂03 2

𝐼6 = 𝜂20 − 𝜂02 𝜂30 + 𝜂12 2 − 𝜂21 + 𝜂03 2

+ 4𝜂11 𝜂30 + 𝜂12 𝜂21 + 𝜂03

𝐼7 = (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)² − (𝜂21

+ 𝜂03)²] − (𝜂30 − 3𝜂12)(𝜂21

+ 𝜂03)[3(𝜂30 + 𝜂12)² − (𝜂21

+ 𝜂03)²] (14)

These set of moments are captured in the Hu moment
feature vector:

 (15)

J. Haar-Like Features
Utilizing Haar-like features in a boosted, cascaded

classifier is a very popular approach for fast object detection
and has been very successful in detecting human faces. The
original algorithm suggested by Viola and Jones has been
extended over larger sets of basis features many places in the
literature [4][5][10][11]. Our choice of implementation for a
boosted cascade of simple features is predicated on the
availability of the algorithm in common open source
repositories, particularly in OpenCV.

This project implements a boosted cascade of simple Haar-
like filters using the OpenCV implementation. Each classifier
provides a yes/no decision based on boosting, which
implements a weighted voting approach. Our implementation
uses Gentle Adaboost implementation. The following features
are supported through the library. Our implementation
follows the standard established by the authors of the library.

𝐸(𝑥) = 𝑝 𝑥 𝑇 log2 𝑝 𝑥

𝑥

𝑉𝐷𝐸 = 𝐸𝑉𝐺𝑂𝐷
, 𝐸𝑉𝐺𝑀𝐷

, 𝐸𝑉𝐶𝑂𝐷
, 𝐸𝑉𝐶𝑃𝐷

𝑚𝑝,𝑞 = 𝑥𝑝𝑦𝑞𝑓 𝑥, 𝑦

𝑥,𝑦∈𝐼𝑚𝑎𝑔𝑒

𝑉𝑠𝑚 = {𝑚00 , 𝑚10 , 𝑚01 , 𝑚20 , 𝑚11 , 𝑚02 , 𝑚30 , 𝑚21 , 𝑚12 , 𝑚03}

𝜇𝑝,𝑞 = (𝑥 − 𝑥𝑐)𝑝 𝑦 − 𝑦𝑐
𝑞𝑓 𝑥, 𝑦

𝑥,𝑦∈𝐼𝑚𝑎𝑔𝑒

𝑥𝑐 =
𝑚10

𝑚00
 ; 𝑦𝑐 =

𝑚01

𝑚00

𝑉𝑐𝑚 = 𝜇20 , 𝜇11 , 𝜇02 , 𝜇30 , 𝜇21 , 𝜇12 , 𝜇03

𝑉𝑕𝑚 = 𝐼1 , 𝐼2, 𝐼3 , 𝐼4 , 𝐼5, 𝐼6 , 𝐼7

1941

Figure 13. Set of Haar-Like Features [12]

IV. CLASSIFIER TRAINING
A K-nearest neighbor classifier was created based on the

three classification types in Table II. There were an
insufficient number of tractors to include in the training
dataset, but it was included in the classification.

This algorithm has the option of setting parameters in the
nearest neighbors search which has an effect on the accuracy
of the results. The sensitivity of the results to K nearest
neighbors are shown below. The test was performed by
training on the DTI set, and then retesting on the same DTI
set, a set of reduced positives, and a set of reduced negatives.
The value of K was changed from 1 to 32, and the accuracy of
the results are shown below. Interestingly, the negative set
has better accuracy using less neighbors, while the positive set
has better accuracy with increased K. A value of K=10 was
chosen, which is the value of K where the accuracy begins to
flatten out for both the positive and negative sets.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

A
cc

u
ra

cy
 %

K

K versus Accuracy
Trained on DTI, Tested on Various Sets

DTI

Reduced Positive Set

Reduced Negative Set

Figure 14. Sensitivity of Accuracy to K

A. Rotation Variance
Although our classifier includes a few rotation invariant

metrics, several of the better performing classifiers, such as
the orientation distributions, are not invariant.

To address rotation variance, each image was rotated by a
number of rotations over a full 360 degree range. With a Knn
classifier, we expect the addition of rotational images to
provide better matches when vehicles are rotated with respect
to the training images. This also has a beneficial effect of
increasing the number of training samples by an order of
magnitude. The number of rotations was set to 10, with 36
degrees per rotation.

Figure 15. Rotation of Sample Image and Processing

The rotation data gave a way of testing the orientation
histogram processing algorithms. Given the image rotated by
36 degrees per image, the edge histogram should reflect this
by showing a translation of the histogram curve by 36 degrees,
or 2 buckets (since each bucket is 18 degrees). This is
reflected in the resulting histogram for the image in Figure 15
above.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10 12 14 16 18

O
cc

u
ra

n
ce

 P
ro

b
ab

ili
ty

Angle Bucket (in degrees, 20 degrees per bucket)

Orientation Histogram
First Five Rotations, Aperture=3

Figure 16. Edge Orientation Histogram with Rotation

The resulting matches resulted in a much better result from
the gradient orientation classifier, as shown in Table V.

TABLE V. MATCHES AND MISMATCHES WITH ROTATION

Set Matches MisMatch Score

Train 570 14 98.12%

Vehicles 175 10 94.59%

Backgrounds 1480 72 95.36%

B. Performance with Real Data Set
The output from the coarse system does not always center

the regions on the object of interest. The coarse system is
based on corner features, and the images tend to be slightly
off-centered. To improve identification rate for off-centered
images, the images were perturbed by 1/3 of the width of the
image in the image x and y directions. Along with rotation of
the images, this provides the additional benefit of enlarging
the training data.

1942

Figure 17. Shifted Image

V. COMBINING CLASSIFIERS
Individually, these classifiers performed with varying

amounts of accuracy and performance; none of the individual
classifiers would consistently meet the requirements of the
project. The next phase of this research was to implement
each possible feature into separate classifiers and combine the
results using an ensemble learning technique.

In this first implementation, each classifier individually is
based on the K nearest neighbor classifier, with an L2 norm
distance specification determining distance to the closest
neighbor over the feature vectors. We consider 10 nearest
neighbors for each classifier.

A. Ensemble Approach
Our current approach to combine classifier outputs utilizes

a weighted voting scheme that is driven by an external
supervisor learning algorithm. The iterative algorithm
generates a set of weights based on historic performance of the
learners. Our ensemble classifier combines the weight of the
vote from a supervised weighting scheme. A simple gradient
descent operates over an L2 norm in an attempt to minimize
the historic classification error. Future work will combine the
rest of the features with the Haar cascaded boosting algorithm.
Until these systems are combined, the results are not expected
to be optimal.

B. Voting Results on the DTI
The first test was performed by training on the DTI

training set. Classification accuracy results are shown in
Table V. The first set of data shows classification results on
the DTI training set, which provides an evaluation of the
training error. The classification results were tested against
the unseen training data for the DTI example.

TABLE VI. VOTING ACCURACY ON DTI
CLASSIFIERS TRAINED ON DTI IMAGE.

Set Classifier Name + - Accur
DTI Gradient Mag Distrib 44 2 95.65%
DTI Gradient Ori Distrib 44 2 95.65%
DTI Distrib Entropy 44 2 95.65%
DTI Canny Pixel Ratio 32 14 69.57%
DTI Canny Ori Histogram 39 7 84.78%
DTI Spatial Moments 43 3 93.48%
DTI Central Moments 40 6 86.96%
DTI Hu Moments 45 1 97.83%
DTI Voting Scheme 46 0 100.0%

DTI Test Gradient Mag Distrib 16 0 100.0%
DTI Test Gradient Ori Distrib 6 10 37.50%
DTI Test Distrib Entropy 6 10 37.50%
DTI Test Canny Pixel Ratio 9 7 56.25%
DTI Test Canny Ori Histogram 11 5 68.75%
DTI Test Spatial Moments 12 4 75.00%
DTI Test Central Moments 7 9 43.75%
DTI Test Hu Moments 12 4 75.00%
DTI Test Voting Scheme 13 3 81.25%

To characterize the training error, the first test was
performed against the same set it was tested against, the DTI
training set. None of the classifiers by themselves was able to
perfectly train, showing various amounts of training error.
However, by applying the voting scheme, the ensemble
achieved 100% accuracy against the training set.

Against the DTI testing set, the voting scheme brought the
overall accuracy to 81%, which was a promising improvement
from the single classifier. The most accurate classifier was the
gradient magnitude histogram. All other classifiers performed
marginally to poorly on the unseen test set.

C. Voting Results on the Labeled Sets
The voting scheme increased the overall accuracy of the

estimation for the DTI set as compared to the single classifier,
so the test was reapplied to the full labeled data set. The
classifiers were trained against the training set. The trained
classifiers were applied against the same training set, the
labeled vehicle set, and the labeled background set.

The results of the individual classifiers and the voting
ensemble are shown below.

1943

TABLE VII. VOTING ACCURACY ON FULL TEST DATA
CLASSIFIERS TRAINED ON THE TRAINING SET.

Set Classifier Name + - Accur
Train Gradient Mag Distrb 556 28 95.21%
Train Gradient Ori Distrb 571 13 97.77%
Train Distrib Entropy 564 20 96.58%
Train Canny Pixel Ratio 470 114 80.48%

Train Canny Ori
Histogram

488 96 83.56%

Train Spatial Moments 532 52 91.10%
Train Central Moments 524 60 89.73%
Train Hu Moments 482 102 82.53%
Train Voting Scheme 573 11 98.12%

Vehicles Grd Mag Distrib 151 34 81.62%
Vehicles Grd Ori Distrib 173 12 93.51%
Vehicles Distrib Entropy 165 20 89.19%
Vehicles Canny Pixel Ratio 98 87 52.97%
Vehicles Canny Ori Distrib 122 63 65.95%
Vehicles Spatial Moments 150 35 81.08%
Vehicles Central Moments 126 59 68.11%
Vehicles Hu Moments 77 108 41.62%
Vehicles Voting Scheme 169 16 91.35%

Background Grd Mag Distrib 1495 57 96.33%
Background Grd Ori Distrib 1496 56 96.39%
Background Distrib Entropy 1485 67 95.68%
Background Canny Pixel Ratio 1321 231 85.12%
Background Canny Ori Distrib 1319 233 84.99%
Background Spatial Moments 1409 143 90.79%
Background Central Moments 1447 105 93.23%
Background Hu Moments 1368 184 88.14%
Background Voting Scheme 1517 35 97.74%

The voting scheme overall brought the training rates past
90%, and accomplished the goals of this project.

VI. CONCLUSION
Object identification and classification in aerial images is a

challenging problem due to the characteristics of the domain.
Classification needs to be performed quickly, images may be
blurred, there is significant background noise, objects may be
partially hidden, the boundaries may not be well defined, the
background will vary, etc. This project has shown an
approach that gives over 90% success rates over our labeled
set of regions.

The results of any single classifier were insufficient to
meet the consistency and accuracy requirements of this
project. Through combination of multiple classifiers, the
consistency and accuracy were able to meet these objectives.
Unfortunately, the results could only be tested on the limited
data set derived from the relatively small number of actual
aerial images available. Though the results are encouraging,
the training and test set is not large enough to sufficiently
draw conclusions about the algorithm in terms of accuracy or
robustness.

A. Future Work
The success of this initial set of classifiers is encouraging,

but the results need to be verified on a larger test set. In
addition, there are many improvements that will be made to
improve the training accuracy. The ensemble technique will
be improved with automated random selection, towards a
boosting algorithm. The initial implementation of the Haar
classifier in the boosting framework resulted in a successful
algorithm, if not slow, but more work needs to be done to
evaluate its performance on the overall system. Additional
labeled training data must be obtained. Additional classes can
be added once a large enough training set is established. The
system must be tested with additional output from the coarse
filter, to test against more than hand-labeled data. The number
of classifications needs to be increased, and a decision tree
approach might be applied for part of the classifier. For
instance, the orientation distribution features (COD and GOD)
could identify „man-made‟ objects with great accuracy. The
magnitude distribution feature (GMD) was able to identify
natural background objects well. Additional features will also
be investigated.

REFERENCES
[1] Greenberg S, Guterman H, Rotman S. An unsupervised neural network

classifier for automatic aerial image recognition. Electrical and
Electronics Engineers in Israel, 1996:3-6

[2] P. Viola and M. Jones, "Rapid object detection using a boosted cascade
of simple features," in Accepted Conference on Computer Vision and
Pattern Recognition, 2001.

[3] P. Viola and M. Jones, "Robust real-time face detection", Int. j.
Comput. Vis., vol. 57, no. 2, pp. 137-154, May 2004.

[4] Haselhoff A, Kummert A. A Vehicle Detection System Based on
HAAR and Triangle Features. 2009 IEEE Intelligent Vehicle
Symposium (IVS 2009). 2009:261-266.

[5] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection using
Gabor filters and support vector machines,” presented at the IEEE Int.
Conf. Digital Signal Processing, Santorini, Greece, Jul. 2002.

[6] Tsai L, Hsieh J, Fan K. Vehicle Detection Using Normalized Color and
Edge Map. Image (Rochester, N.Y.). 2007;16(3):850-864.

[7] Nguyen TT, Grabner H, Bischof H, Gruber B. On-line Boosting for Car
Detection from Aerial. October. 2007:87-95.

[8] A. Broggi, P. Cerri, and P. C. Antonello, “Multi-resolution vehicle
detection using artificial vision,” in Proc. IEEE Intelligent Vehicles
Symp., Jun. 2004, pp. 310–314.

[9] M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE
Trans. Info. Theory, vol. IT-8, pp.179–187, 1962

[10] R Lienhart and J Maydt. An Extended Set of Haar-like Features for
Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep.
2002.

[11] Alexander Kuranov, Rainer Lienhart, and Vadim Pisarevsky. An
Empirical Analysis of Boosting Algorithms for Rapid Objects with an
Extended Set of Haar-like Features. Intel Technical Report MRL-TR-
July02-01, 2002.

[12] OpenCV User‟s Manual. Copyright 2009, Willow Garage.
Downloaded January 2010, from
http://opencv.willowgarage.com/documentation/cpp/index.html.

1944

BIOGRAPHY

Corey Ippolito is a research scientist at NASA Ames
Research Center. He leads the Exploration Aerial
Vehicles (EAV) research laboratory and several
research tasks in support of the NASA Fundamental
Aeronautics Program. His research focus includes
intelligent control methods for next-generation and
autonomous vehicle systems. He leads the
Decentralized Control research project, Payload

Directed Flight research project, and Polymorphic Control Systems research
project. He has developed several autonomous vehicle platforms at NASA,
including the Swift UAS, Exploration Aerial Vehicle (EAV), the eXperimental
Sensor Controlled Aerial Vehicle (X-SCAV), and the MAX 5.0A unmanned
ground vehicle. He has created several software applications and libraries,
include the Reflection Architecture Reflection Architecture for autonomous
vehicle systems, NAET-Gen optimization engine, SAVANT-ML for stochastic
fluid modeling, the Perception Engine for physics-based simulation, the Self-
Assembling Brokering Object Architecture, and the Component Graphics
Library. He has received several awards and commendation at NASA,
include a NASA Group Achievement Award, an Award of Excellence, an
Award for Superior Accomplishment, and several recognition awards for
contributions to other programs. Mr. Ippolito is currently pursuing a PhD at
Carnegie Mellon University in Electrical and Computer Engineering, has an
M.S. and B.S. in Aerospace Engineering from the Georgia Institute of
Technology, and a graduate certificate in Space Systems Engineering from
the Stevens Institute of Technology.

Ara Nefian holds a BS from Politehnica University
Bucharest (1993) and a MSEE and PhD from Georgia
Institute of Technology (1999). In the past he was with
the Intel Research Labs in Santa Clara, CA, involved in
several research projects including face and gesture
recognition, audio-visual speech processing, web image
clustering and bioinformatics. In 2005 Dr. Nefian was
part of the computer vision group within the Stanford
racing team (Stanley) that won the DARPA Autonomous

Navigation Grand Challenge. He is currently with the Intelligent Robotics
Group at NASA Ames Research Center working in 3D image modeling from
planetary data. His general interests are in the area of computer vision,
machine learning and robotics. He co-authored more than 30 research
papers and holds ten US and international patents.

1945

