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Abstract— Accurate estimation of orientation based on data 

from small low-cost strapdown inertial and magnetic sensors is 
often inaccurate during highly dynamic motion or when trying to 
track movements that include two or more periods characterized 
by significantly different frequencies. This paper presents a 
complementary filtering algorithm for estimating orientation 
based on inertial/magnetic sensor measurements.  The algorithm 
takes advantage of the complementary nature of the information 
offered by high-frequency angular rate sensor data and low-
frequency accelerometers and magnetometers.  The filtering 
algorithm utilizes a single gain that can be adaptively adjusted to 
achieve satisfactory performance while tracking two or more 
different types of motion.  An additional feature of our approach 
involves the simple estimation of the gyro bias during periods 
exhibiting low dynamics and its subsequent use to correct the 
instantaneous gyro measurements.  Simulation and experimental 
results are presented that demonstrate the performance of the 
algorithm during slow or nearly static movements, as well as, 
those which are highly dynamic.  Experimental results indicate 
that the algorithm is able to track pitch and roll during dynamic 
motion with an RMS error of less than two degrees.  This is 
believed to be superior to current proprietary commercial 
algorithms. 
 

Index Terms—Accelerometers, inertial sensors, magnetic 
sensors, complementary filter, orientation estimation. 

I. INTRODUCTION 

REINTATION estimation based on the use of Micro 
Electro-Mechanical Systems (MEMS) sensors has 

resulted in applications in diverse areas, such as, cell phones, 
computer gaming, human posture tracking, robotics, and 
navigation [1][2][3].  Recently, commercial manufacturers 
have integrated MEMS accelerometers and gyros, along with 
magnetoresistive-type magnetometers, into a miniature 
strapdown inertial/magnetic measurement unit (IMMU).  
Applications involving these strapdown IMMUs can benefit 
from their small size, light weight, low power, and low cost.  
Additionally, orientation estimation derived from the IMMU 
has the advantage of utilizing measurements from naturally 
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occurring references, such as the earth’s magnetic field and 
gravity, and body angular rates of rotation.  All of which do 
not require line-of-sight to some installed infrastructure which 
would lead to a limited range of use.  Examples of 
commercially available IMMUs include the Intersense 
InertiaCube 2+ [4], the Xsens MTx [5], the Microstrain 3DM-
GX3-25 [6], and the MEMSense nIMU [7].  Additionally, 
several of these manufactures currently produce an IMMU 
that incorporates embedded proprietary algorithms and are 
capable of three DOF (degree of freedom) orientation 
estimation. 

However, orientation estimation accuracy is negatively 
impacted by physical limitations inherent in the MEMS 
accelerometers and gyros.  These limitations manifest as noise 
present in the output of these sensors and can be quite large 
compared to that of navigation grade accelerometers and gyros 
resulting in undesirable attitude estimation error [8][9][10].  
Calibration error arising from null-bias error, scale-factor 
error, and cross-axis coupling, which can be further influenced 
by the effects of aging and temperature, are also detrimental to 
the resulting attitude estimates [11]. 

Integration of the magnetometer into electronic systems 
results in sensor error that can also negatively affect the yaw 
angle estimate.  Furthermore, these sensors are highly 
susceptible to interference from common everyday objects that 
can generate magnetic fields or influence the direction of the 
earth’s magnetic field further affecting the desired attitude 
estimate [12]. 

Researchers have been attracted to the use of the IMMU for 
the obvious benefits, but have been challenged by the need to 
develop advanced and novel algorithms to mitigate the sensor 
errors.  Algorithm development has evolved along two major 
paths.  One approach incorporates the use of the ubiquitous 
Kalman filter while the other approach consists of the 
complementary filter.  The former is attractive because it 
incorporates some knowledge of the noise statistics and when 
designed properly gives good results.  The latter approach is 
attractive because it is straightforward and rather intuitive. 

In [13], a solution is presented that incorporates, in a sense, 
two Kalman filters, which are adaptively selected based on 
whether the onset of accelerated motion has been detected.  In 
[14] and also in [15], an extended Kalman filter is utilized.  
Here, as well, the filter is adaptively tuned in response to the 
measured acceleration.   

The alternative approach found in the literature can be 
considered a frequency-based methodology in the form of the 
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Figure 1. Block diagram of the adaptive-gain quaternion-
based complementary filter of inertial and magnetic sensor
measurements. 

complementary filter and has been presented in various 
sources including [16],[17],[18], and [19].  Our approach, as 
well, is based on the complementary filter, but incorporates a 
gain-switching strategy that is shown to give good results in a 
combination of low-dynamic and high-dynamic settings. 

Generally speaking, attitude estimation can be classified 
into two main approaches.  One involves the use of angular 
rate measurements obtained from orthogonally-mounted 
gyros.  This in turn leads to the task of solving a set of 
differential equations involving either the direction cosine 
matrix or the attitude quaternion [20]. 

The alternative method for attitude estimation uses 
accelerometers and magnetometers to make measurements 
relative to gravity and the earth’s magnetic flux density vector.  
Computation of attitude from these measurements is 
straightforward, as shown in [21] and [22]. 

This paper presents a simple complementary filter design 
that produces accurate three DOF estimates of orientation 
using MEMS accelerometers, magnetometers, and angular rate 
sensors.  The filter is able to accurately track orientation 
during dynamic and slow movement.  The filter algorithm 
utilizes a single gain, which is adaptively changed based on 
the type of movement to which the sensors are being 
subjected. Tracking accuracy is demonstrated through 
simulation studies and experiments involving a pendulum 
undergoing a variety of motion types.  The intended 
application of the filter is tracking of foot orientation during 
stance and swing phases in a personal navigation system 
application [23]. However, the adaptive-gain design would be 
appropriate to other applications as well. 

The remainder of this paper is organized as follows: Section 
II provides a description of the adaptive-gain complementary 
filtering algorithm.  Section III describes a simulation study 
and results, which verify the operation of the filter and the 
response of the filter to noise. Experimental results obtained 
while using the filter to track the orientation of a real 
pendulum are described in Section IV.  Section V reviews key 
findings of the paper and directions for future work. 

II. ADAPTIVE-GAIN QUATERNION-BASED COMPLEMENTARY 

FILTERING ALGORITHM 

This section presents an adaptive-gain complementary 
filtering algorithm based on the use of inertial/magnetic sensor 
measurements.  A block diagram of the complementary filter 
is shown in Figure 1.  The complementary filter is designed to 
estimate the orientation of a rigid body, to which an IMMU is 
attached.  The input to this filter are the nine components of 
the inertial/magnetic sensor measurements, which are three 
components of the accelerometer measurement ,a


three 

components of the local magnetic field measurement ,m


and 

three components of the angular rate measurement .  The 
output of the filter is the estimated orientation represented by a 
quaternion ˆ.q  All measurements provided by the 

inertial/magnetic sensor module are relative to the sensor or 
body coordinate frame.  To differentiate the same quantity in 
the body coordinate frame or the earth coordinate frame, a 

superscript is used to indicate the coordinate system.  For 
example,  
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denotes the acceleration and its three components in the body 
coordinate frame. 

The orientation estimation filter is a type of algorithm that 
blends two sources of data in a complementary manner [24].  
Specifically, the complementary filter shown in Figure 1 
blends static information provided by the accelerometers and 
magnetometers, and dynamic information provided by the 
angular rate sensors.  If the body to which the 
inertial/magnetic sensor module is attached is stationary or 
slowly moving, measurements provided by the accelerometer 
and magnetometer are sufficient to estimate the body 
orientation.  However, if the body is subject to movement with 
relatively large linear acceleration, the orientation estimate 
based on the accelerometer and magnetometer measurements 
is no longer accurate.  This is due to the fact that the 
accelerometer output is composed not only of the component 
of gravity measured along the sensor axis, but also the 
accelerated motion along this same axis.  When in this 
dynamic state, the angular rate measurement is used for 
orientation estimation. 

The complementary filter has two branches: the static 
quaternion branch sq and the dynamic quaternion branch .dq   

The static quaternion sq is computed using the Factored 

Quaternion Algorithm (FQA) [25].  In the dynamic branch, a 
quaternion rate dq  is computed from the angular rate 

measurement   and the most recent quaternion estimate q̂  

using the well-known quaternion equation [26]: 

 
1

ˆ
2dq q  


  (2) 

where the product between q̂  and   is the quaternion 

multiplication and the angular rate   is cast into the form of a 
pure quaternion with the scalar part being equal to zero.   

The FQA is a geometrically intuitive algorithm for 
determining orientation of a static or slow-moving body from 
measured acceleration and local magnetic field vectors.  It is a 
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single-frame algorithm that takes measured acceleration and 
local magnetic field vectors at a given time and generates an 
orientation estimate without memory effect.  The output 
orientation is represented by a quaternion.  In this paper, the 
FQA is used in the static branch of the complementary filter to 
produce static quaternion .sq  

The filter gain k  has the effect of adjusting the relative 
weight of the static and dynamic branches.  The static 
quaternion sq  is compared with the most recent orientation 

estimate, ˆ,q to produce a quaternion error ˆ( ) ( ) ( ).se t q t q t    

The quaternion error ( )e t  is multiplied by the feedback gain 

,k  which is then used to correct the dynamic quaternion rate 
( ).dq t   The corrected quaternion rate is then integrated to 

yield the estimated orientation in quaternion form.  Though 
not shown in Figure 1, the estimated quaternion is 
immediately normalized to unit length.  

The complementary nature of the orientation filter can be 
analyzed using the Laplace transform.  Applying the principle 
of superposition and assuming that the input to the dynamic 
branch is zero, the transfer function from the static quaternion 

( ) { ( )}s sQ s q t L  to the estimated output quaternion 

ˆ ˆ( ) { ( )}Q s q t L  is given by: 
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s
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
. (3) 

Now assuming that the input to the static branch is zero, the 
transfer function for the dynamic branch is given by: 
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Equation (3) is a first-order low-pass filter with the corner 
frequency at c k   and with a unit gain at very low or DC 

frequencies.  On the other hand, equation (4) is a first-order 
high-pass filter with the same corner frequency .c k    Thus, 

at lower frequencies, the filter output relies more on the static 
quaternion ( )sq t  computed by FQA using the acceleration and 

local magnetic field measurements.  At higher frequencies, the 
filter output relies more on the dynamic information provided 
by the angular rate measurements.  At or near the corner 
frequency, the filter output is a fusion of both static and 
dynamic information.  The corner frequency is determined by 
the choice of the feedback gain .k   The optimal value for the 
filter gain depends on the application or motions, to which the 
sensor module is subjected.  In general, if the sensor module is 
subjected to relatively slow motions, a larger filter gain is 
preferred.  Conversely, if the sensor module is to experience 
relatively fast motions, a smaller filter gain is chosen.   

The frequency response of the two branches of the 
complementary filter for three values of the filter gain 

0.01, 0.1,k  and 1.0 is shown in Figure 2.  The response of 

the static branch shown in solid line is a low-pass filter, and 
the response of the dynamic branch shown in dashed line is a 
high-pass filter.  The total output of the complementary filter 
is the sum of these two branches.  It can be clearly seen that at 
lower frequencies the output of the complementary filter is 
dominated by the response of the static branch.  At higher 

frequencies the total output is primarily contributed by the 
dynamic branch.  At or near the corner frequency, the total 
output contains contributions from both branches.  Depending 
upon the application in which the complementary filter is to be 
used, the filter gain can be optimized offline or adjusted in real 
time.  For example, if the filter is used to estimate foot 
orientation during normal walking, foot motion alternates 
between a stance phase and a swing phase.  During the stance 
phase, the foot is in a static or slow moving state and in the 
swing phase, the foot is in a dynamic state.  Thus, it would be 
appropriate to use a large gain value while in the stance phase 
and a small gain value while in the swing phase when the foot 
is subject to fast movement.  If the gain value is changed 
based on the gait phase, the filter can be expected to 
accurately estimate orientation through the entire gait cycle as 
documented in [27].  

Figure 2.  Magnitude Bode plot of the complementary filter 
with k=0.01, 0.1, and 1.  The low-pass static branch is 
shown in solid line, and the high-pass dynamic branch is 
shown in dashed line 

III. SIMULATION RESULTS 

The effectiveness of the complementary filter while 
changing the gain value based on dynamic state has been 
validated through simulation and physical experiments.  In this 
section, simulation results are presented.  Experimental results 
are described in the next section.  

For simulation evaluation, a model of the vertical pendulum 
is introduced.  The purpose of this model is to generate data to 
aid in the study of the performance of the complementary 
filter.  In the model, an inertial/magnetic sensor module is 
attached at the swinging end of a pendulum.  Theoretical 
expressions for the sensor data are derived that model the 
output of each sensor component when the pendulum was set 
into motion.  In this manner, all of the real-world sensor 
artifacts, such as gyro bias, accelerometer offset, and motion-
induced acceleration, which are understood to influence the 
orientation estimate, could be controlled and examined. 

Figure 3 depicts a pendulum of length .L   The angle of the 
pendulum is denoted by ,  with the positive rotation in the 
clockwise direction.  An inertial/magnetic sensor module is 
considered to be attached to point A.  A sensor or body 
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coordinate frame is shown in the figure, and is denoted by 

.b b bx y z    The inertial/magnetic sensor module is considered 

to have three orthogonally-mounted accelerometers, three 
orthogonally-mounted magnetometers, and three orthogonally-
mounted angular rate sensors.  When the accelerometers are 
subject to pendulum motion, in the absence of noise and 
misalignment errors, their outputs are characterized by [27]: 
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In the above equations, the values of , , and are obtained 
from simulated pendulum motion.  As for the angular rate 
sensors, since the pendulum is constrained to swing in the 

b bx z plane, only the angular rate sensor aligned with the 
by axis senses rotational motion.  As such, the outputs of the 

three angular rate sensors are: 
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The magnetometers measure the earth’s magnetic flux 
density that is projected onto the sensor body axes.  Assuming 
that the plane of the pendulum motion is aligned with 
magnetic north, the outputs of the magnetometers are given 
by: 

 

cos( )

0

sin( )

x e

y

z e

m B

m

m B

 

 

 



 




 

where the vector eB


is the earth magnetic flux density and 

 is the angle of inclination.  The flux density vector and 

inclination angle vary over the time and from one location to 
another on the surface of the earth.  In Monterey, CA, where 
the experiment was conducted, 0.486eB 


gauss and 

60.483  degrees, which were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) website.    
The first simulation is designed to validate filter 

performance while using idealized sensors with no 
measurement noise.  In particular, the angular rate sensors 
were assumed to be free of any noise or drift.  In this case, 
with the filter gain 0,k  the filter is able to perfectly track the 
pendulum motion.  Next, noise was introduced into the 
angular rate sensor measurement in the form of a small bias 
error.  As expected with a filter gain 0,k   the estimated 
pitch angle tracked the true angle during the first few cycles, 
but began to drift away from the true track towards the end of 
the motion period.  While the estimated roll and yaw angles 
were zero in the noiseless case, they now exhibited an error 
that grew without bound.  The unbounded error with 0k  is 
the result of relying solely on the integration of angular rate 
measurements.   

Next, the value of k is gradually increased to determine the 

effect of the FQA on the overall performance of the 
complementary filter.  With the value of k on the order of 50, 
the unbounded error growth in the estimated roll and yaw 
angles is capped to a small constant error on the order of 0.002 
degrees.  However, the estimated pitch angle is unable to track 
the pendulum motion.  This is due to the fact that 
accelerometers sense not only acceleration due to gravity, but 
also centripetal and tangential acceleration of the pendulum.  
With k set to a relatively high value, the complementary filter 
relies almost exclusively on accelerometer measurements 
processed by the FQA.  This indicates that a gain value of 50 
is too large.   

The optimal value of k depends on motions of the 
pendulum.  With a slow moving pendulum, a large value for 
k is more appropriate.  Conversely, a smaller value for k is 
more appropriate for a fast-moving pendulum.  Figure 4 shows 
the output of the complementary filter with 1.k    The 
estimation error in the pitch angle is less than one degree, and 
the error in the roll and yaw angles is about 0.1 degrees.  The 
roll and yaw angle error is due to the presence of angular rate 
bias introduced into the measurement.  

 
Figure 4. Complementary filter output (red) and the true 
pendulum angle (blue). 

A 

Gravity 


L 

bx

bz

Figure 3.  Schematic of the pendulum used in the
simulation study. 
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Extensive simulations validated the design concept and the 
complementary nature of the proposed filter.  The 
performance of the filter can be optimized by adjusting the 
single filter gain.  Further testing of the filter with real sensor 
data is described in the next section. 

IV. EXPERIMENTAL RESULTS 

In this section, experimental results of the complementary 
filter using real sensor data are presented.  To validate the 
performance of the complementary filter from real sensor data, 
an experimental apparatus shown in Figure 5 was constructed.  
It is a free-swinging pendulum with a MicroStrain 3DM-GX3-
25 inertial/magnetic sensor module attached to the end.  A 16-
bit absolute optical encoder is positioned at the rotational axis 
to measure the pendulum motion.  The readings from the 
encoder have an accuracy of 0.0055 degrees and are used as 
an angular reference.  The apparatus is constructed of wood 
and placed on a wood tabletop to minimize magnetic 
interference.  A LabView data acquisition program was 
developed for the National Instruments cRIO-9012 Real-Time 
Controller, which was an embedded computer that enabled 
more accurate program timing over a PC-based data 
acquisition system.  The real-time controller read the raw 
counts from the 16-bit shaft encoder, as well as, the 
accelerometer, magnetometer, and gyro sensor data from the 
attached IMMU.  All the data was arranged into a time-
stamped array and written to a data file on the controller’s 
hard drive.  Later, the data file was imported into MATLAB 
for processing and analysis using our adaptive-gain 
complementary filter. 

 

 
 
Figure 5. Pendulum apparatus constructed from wood 
materials to minimize the magnetic interference. 
 
The complementary filter adaptively switched between two 

filter gain values during the experiment.  For low dynamic 
motion, 2.0k  , and for high dynamic motion, 0.00075.k    
These values were chosen experimentally to give satisfactory 
performance.  Since the output of the complementary filter is a 
quaternion and not intuitively visualized, the result was 

converted into Euler angles.  The corresponding roll, pitch, 
and yaw angles are plotted in Figure 6 for easy visualization. 

 

Figure 6. Estimated pendulum motion by the 
complementary filer in comparison with the reference 
provided by the encoder. 
 
 
The sensor module is mounted at the end of the pendulum in 

such a way that the roll angle is aligned with the pendulum 
rotational axis.  Figure 6 shows the roll, pitch, yaw angles of 
the pendulum when it is pushed back and forth manually (it is 
not swinging freely).  The reference for the roll angle is 
provided by the encoder, whereas the reference for the pitch 
and yaw angles were taken to be those measured at the 
beginning of the experiment.  It is seen that the estimated pitch 
and yaw angles are within 0.5 degrees of the assumed 
reference.  It is not easy to see both the estimated roll angle 
and the reference roll angle as they are virtually on top of each 
other.   

The difference between the estimated roll angle provided by 
the complementary filter and the reference roll angle provided 
by the encoder is shown in Figure 7.  It is noted that the static 
error of the complementary filter (prior to the excited 
pendulum motion in the period of 0 to 4 seconds and after the 
excited motion in the period of 16 to 20 seconds) is virtually 
zero.  The peak dynamic error is about 1.5 degrees.  The root-
mean-square (RMS) error of the estimated roll angle alone 
over the entire period is 0.35 degrees, and the RMS error for 
the estimated roll, pitch, and yaw angles is 0.49 degrees.   

Figure 8 shows the result of another pendulum experiment 
where the pendulum is subjected to semi-random back-and-
forth motion over a period of more than two minutes.  Only 
the roll angle and its corresponding error is shown because the 
pitch and yaw angles are absent of significant motion as seen 
in Figure 6.  In this case, the instantaneous error is more than 
2.0 degrees in the time interval between 110 and 130 seconds. 
The overall RMS error of the estimated roll angle is 1.26 
degrees.  It is also noted that the static error returns to zero as 
soon as the pendulum stops moving in the time interval 
between 150 to 170 seconds, which is a result of switching the 

16-bit encoder 

real-time 
controller 

IMMU 

1920



k to a large value so that the filter uses weighs sq more greatly 

in its output.    

 
Figure 7. The error of the estimated roll angle shown in 
Figure 6. 

 

 
Figure 8. Estimated pendulum roll angle by the 
complementary filter versus the reference provided by the 
encoder (above) and the error of the roll angle (below).  
 
In this and other experiments, the filter gain k is adaptively 

adjusted based on the magnitude of the angular motion 
indicated by the three-dimensional angular rate sensor 
measurement.  While the filter gain could be continuously 
adjusted, a two-value switching strategy proved to be 
sufficient for the pendulum experiment.  A lower k is used 
when the magnitude of the angular rate measurement is larger 
than a specified threshold, and a larger k is used otherwise.   

Although not described in detail, an additional feature of 
our approach was the simple estimation of the gyro bias 
during periods exhibiting low dynamics.  A first-order low 
pass filter estimated the bias based on the gyro measurements 
during the low-dynamic periods and was then used to correct 

the instantaneous gyro measurements provided to the 
complementary filter.   

In summarizing the filter performance, it is noted that the 
dynamic accuracy of our adaptive-gain complementary filter is 
0.485 degrees RMS for the first experiment and 1.264 degrees 
RMS for the second experiment.  The static accuracy was not 
explored, but it is expected to be satisfactory as evidenced 
during the stationary periods of our experiments.  Based on 
this, the dynamic performance of our approach is certainly 
comparable with that stated for the Microstrain 3DM-GX3-25.  
The manufacturer’s stated orientation accuracy is 0.5 degrees 
under static conditions and 2 degrees under dynamic 
conditions using their undisclosed proprietary algorithm [6].  
Our filter performance is also comparable with the dynamic 
accuracy stated for the Xsens MTx, which is 2 degrees RMS 
using their embedded sensor fusion algorithm [5].  We make a 
final comparison with [14], which described an approach 
based on the extended Kalman filter and demonstrated a 
noteworthy dynamic performance that was validated through 
actual experiment.  The stated RMS error ranged from 4.57 to 
9.01 degrees using the InterSense InertiaCube2, but subjected 
to a different type of motion testing.  Arguably, the adaptive-
gain complementary filter performs similarly with the 
additional benefit of requiring the adjustment of only one 
parameter to achieve satisfactory dynamic performance. 

V. CONCLUSION 

This paper presented the design and testing results of a 
quaternion-based complementary filter for estimating three-
dimensional orientation from inertial/magnetic sensor data.  
The filter is simple and suitable for real-time implementation.  
It blends the high-frequency information provided by angular 
rate sensors and the low-frequency information provided by 
accelerometers and magnetometers.  The effect of blending is 
accomplished by a single filter gain, whose value can be 
adaptively adjusted based on the motion to be estimated.  The 
performance of the complementary filter with simulated and 
real pendulum motion data was presented.  In particular, the 
dynamic performance and dynamic accuracy are documented.  
The RMS error of the estimated orientation is less than two 
degrees.  The RMS error of the commercially available, low-
cost MEMS inertial/magnetic sensor modules with proprietary 
algorithms is two degrees at the present time.   
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