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Abstract 

A real-time robot vision system is described which 
uses only the divergence of the optical $ow field for 
both steering control and collision detection. The 
robot has wandered about the lab at 20 c d s  for as 
long as 26 minutes without collision. The entire sys- 
tem is implemented on a single ordinary UNIX 
workstation without the benefit of real-time operat- 
ing system support. Dense opticaljlow data are cal- 
culated in real-time across the entire wide-angle 
image. The divergence of this optical $ow field is 
calculated everywhere and used to control steering 
and collision behaviol: Divergence alone has 
proven sufJicient for steering past objects and 
detecting imminent collision. The m j o r  contribu- 
tion is the demonstration of a simple, robust, mini- 
mal system that uses $ow-derived measures to 
control steering and speed to avoid collision in real 
time for extended periods. Such a system can be 
embedded in a general, multi-level perceptiodcon- 
trol system. 

1. Introduction 
Mobile robots that drive at reasonable speeds (e.g., 20 

c d s  indoors) must robustly sense and avoid obstacles in 
real-time. Image motion provides powerful cues for under- 
standing scene structure. Divergence of image flow (the 
sum of image flow derivatives in two perpendicular direc- 
tions) is theoretically not affected by camera rotation, so it 
gives a robust measure of scene structure for a moving ob- 
server. The robot system described here uses flow diver- 
gence to steer around obstacles while it attempts to achieve 
a goal (which for now is simply to drive straight ahead). 
When the obstacle avoidance is insufficient to avoid colli- 
sion, the divergence data warn the robot of the impending 
collision. The robot stops, turns, and resumes wandering 
straight ahead in the new direction. These integrated behav- 
iors have driven the robot around the lab at 20 c d s  for as 
long as 26 minutes without collision. Because this wander- 
ing behavior is already a real-time capability, there is prom- 
ise that future increases in computational power will fuel 
development of both increasingly robust basic skills and ad- 
ditional behaviors for robots. 

The simplicity of the system improves robustness and 
makes it easier to extend. The system uses only a single 
framegrabber, a single processor, a single image stream, and 

a single low-level percept for all control functions. Simple 
robust filters are chosen in lieu of complex filters that re- 
quire sensitive system modeling and synchronization. 
These filters enable the system to ignore momentary noise 
and artifacts that result from module interactions, and this 
in turn enables modules to cooperate without delicate syn- 
chronization. 

In addition, the obstacle avoidance system is extensi- 
ble. Egocentric hazard maps are derived from divergence 
data, goals, and steering history, and a composite hazard 
map is used to steer the vehicle. This design supports the 
use of multiple cues, which can be incorporated with addi- 
tional hazard maps. 

Our approach achieves real-time intelligent behavior 
by using minimalist visually-derived representations. In 
such representations, a minimal amount of information re- 
quired to achieve the given task is extracted from the imag- 
ery [2][4]. The representations contain only task-relevant 
information (i.e., relevant to obstacle avoidance) and the 
information is represented in 2-D image coordinates only. 
The control algorithms directly use observable image in- 
formation represented in the 2-D image sequence: a 3-D re- 
construction is not required 1171. It is therefore simpler and 
faster. Such an approach is particularly useful in closing 
control loops with vision at lower levels of a multi-level 
control system[ 11 (Figure 1). 

Figure 1 sketches the obstacle avoidance system. Vid- 
eo images are obtained from an on-board uncalibrated cam- 
era with a 115" field of view. The robot's view from this 
camera is shown in Figure 6(b). The images are subsam- 
pled and full flow is computed. Flow divergence is estimat- 
ed and spatio-temporal median filters are applied to reduce 
momentary fluctuations in the divergence field. Hazard 
maps are derived from the divergence field, the previous 
steering decision, and the goal direction. A composite haz- 
ard map is used to steer the robot around objects as it drives 
in the goal direction. Using active gaze control, the camera 
is rotationally stabilized to reduce the magnitude of the 
flows in the image stream. When the camera points too far 
away from the heading, a saccade is made toward the head- 
ing. These saccades introduce momentary disturbances of 
the flow data, but the temporal median filter effectively 
eliminates disruptive effects. When divergence data indi- 
cate imminent collision ahead, the robot stops, turns away, 
and resumes wandering. The inputs to the body and gaze 
controllers consist of driving, steering, and gaze velocities. 
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2. Real-Time Control System (RCS) 
The obstacle avoidance system we describe in this pa- 

per is designed in accordance with the Real-Time Control 
System (RCS) hierarchical architecture described in [ 11. 
RCS decomposes goals both spatially and temporally to 
meet system objectives. It monitors its environment with 
sensors and updates models of the states of the system itself 
and the world. Figure 1 maps the functionality of the obsta- 
cle avoidance system into the first three levels of the RCS 
hierarchy. 

SP WM BG 

SERVO 

t I 
wide-angle video motors 

Figure 1. ObstacIe Avoidance Architecture 

RCS is composed of three parallel legs, sensory pro- 
cessing (SP), world modeling (WM), and behavior genera- 
tion (BG) that interact to control complex systems. The hi- 
erarchical levels run in parallel and are labelled, from high- 
est to lowest, tribe, group, task, e-move (elemental-move), 
prim brimitive) and servo. The BG modules control phys- 
ical devices. The WM modules supply information to both 
the BG hierarchy and the SP hierarchy. It maintains a data- 
base of system variables and filters and analyzes data using 
support modules. The SP modules monitor and analyze 
sensory information from multiple sources in order to rec- 
ognize objects, detect events and filter and integrate infor- 
mation. The world model uses this information to maintain 
the system’s best estimate of the past and current states of 
the world and to predict future states of the world. 

3. Full image flow estimation 
Robust, real-time optical flow has become a practical 

means of robotic perception given new fast algorithms and 
increasingly faster scientific workstations. Given that our 
entire system (flow, divergence, and body control) is im- 
plemented on a sjngle workstation without the benefit of a 
real-time operating system, it is important to have suffi- 
cient processor idle time available to buffer the overhead of 
the operating system, otherwise the image capture frame 
rate could vary from frame to frame. Camus [6] describes a 
robust, real-time correlation-based optical flow algorithm 
which returns dense data even in areas of low texture. This 
algorithm is the starting point of our new implementation. 

In correlation-based flow such as in [5] the motion for 
the pixel at [x,y] in one frame to a successive frame is de- 
fined to be the determined motion of the patch P, of 
v x v pixels centered at [x,y], out of (2q + 1) x (2q + 1) 
possible displacements (where is an arbitrary parameter 

dependent on the maximum expected motion in the image). 
If $ represents a matching function which returns a value 
proportional to the match of two given features (such as the 
absolute difference between the two pixels’ intensity val- 
ues E ,  and E, respectively), then the match strength 
M(x,y;u,w) for a point [x,y] and displacement (u,w) is cal- 
culated by taking the sum of the match values between each 
pixel in the displaced patch P, in the first image and the 
corresponding pixel in the actual patch in the second im- 
age: 

V(U> w ) M ( x ,  y ; w )  (1) 

= C $ ( ~ ~ ( i ,  i> - E2(i + U, i + w > >  
( i , j ) E  P, 

The actual motion of the pixel is taken to be that of the 
particular displacement, out of (2q + 1) x (2q + 1)  possi- 
ble displacements, with the maximum neighborhood match 
strength (equivalently minimum patch difference); thus 
this is called a “winner-take-all” algorithm. 
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Figure 2: Parabolic and roof estimation methods. 
One limitation with the traditional correlation-based 

algorithm is that its time complexity grows quadratically 
with the maximum possible displacement allowed for the 
pixel [5] [7] .  Intuitively, as the speed of the object being 
tracked doubles, the time taken to search for its motion qua- 
druples, because the area over which we have to search is 
equal to a circle centered at the pixel with a radius equal to 
the maximum speed we wish to detect. However, note the 
simple relationship between velocity, distance and time: 
vel = (6dist)/(6time).  Normally, in order to search for 
variable velocities, we keep the inter-frame delay & con- 
stant and search over variable distances (pixel shifts): 
AV = (Ad)/(&), d < q  . However, doing so results in an 
algorithm that is quadratic in the range of velocities 
present. Alternatively, we can keep the shift distance Fd 
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constant and search over variable time delays: 
AV = ( W ) / ( A t )  . In this case, we generally prefer to 

keep 6d as small as possible in order to avoid the quadratic 
increase in search area. This time-space trade-off results in 
a very fast algorithm: optical flow can be computed on 
32x64 images (subsampled from 256x5 12), calculating 5 
speeds per frame, at up to 35 frames per second on a 80 
MHz HyperSPARC’ computer. 

The above algorithm retums quantized optical flow 
values. Although this is sufficient for various robotics vi- 
sion tasks [6][10][ 113, it is not sufficient for our application 
since the calculation of divergence requires that the spatial 
derivatives of the optical flow can be measured. Because 
the quantized optical flow is basically a step function, these 
derivatives do not exist. Smoothing the optical flow field 
would require extremely large masks and would therefore 
likely cover multiple objects simultaneously. This would 
be especially problematic since a wide-angle lens is used 
and individual objects do not occupy more than a small 
fraction of the visual field. Calculating a least-squares best 
fit to the correlation surface such as in [3] was ruled out due 
to real-time performance requirements. 

vectorS adjacent to 
direction of best match n direction of best matching 

vector along with the two 
adjacent magnitude vectors 

’ \ flow vector 
estimated 

vectors adjacent to 
direction of best match 

Figure 3: Angular estimation of flow vector. 

In order to avoid a computationally expensive search 
for the true flow, the 2-dimensional search space was de- 
composed into two l-dimensional searches, the first esti- 
mating the magnitude of the flow vector and the second es- 
timating the precise angle of the true flow vector. (The ac- 
tual flow is returned as the X and Y components of the 
flow. Converting to polar coordinates can be done in the 
usual way.) Both the directional component as well as the 
magnitude component of the flow are quantized. The first 
one-dimensional interpolation is along the magnitude com- 
ponent of the flow. The correlation match values for the 
best motion of a given pixel along with the match yalues for 
the flow vectors of “adjacent” magnitudes in the same di- 
rection (i.e., of plus and minus one time delay in frames) 

1. Certain commercial equipment, instruments, or materials 
are identified in this paper in order to adequately specify the 
experimental procedure. Such identification does not imply 
recommendation or endorsement by NIST, nor does it imply 
that the materials or equipment identified are necessarily best 
for the purpose. 

are used. Roof interpolation is used to find the total time 
delay corresponding to the minimum correlation match 
value as shown in Figure 2. Two lines are formed with the 
best correlation match strength and the match strengths 
corresponding to those two time delays which immediately 
bracket the time delay with the best match. Substituting the 
steeper of the two slopes for the more gradual of the two re- 
sults in a single intersection of the two lines: the abscissa of 
this point is taken as the new interpolated magnitude com- 
ponent of the flow. 

The second interpolation is along the angular compo- 
nent of the flow. We wish to calculate the corresponding 
match values for flow vectors of neighboring vector direc- 
tions but of the same magnitude as just calculated for that 
pixel. (Since we only calculate the correlation march values 
for eight directions of motion, this means that each neigh- 
boring direction is 45 degrees from that motion vector with 
the best correlation match.) This interpolation is not trivial 
since the magnitude of the motion along the diagonals is 
the f i  times that of motion along the N E W S directions 
for a given velocity (time delay). In order to perform the 
second 1-dimensional interpolation it is necessary to esti- 
mate the correlation matches values of the neighboring di- 
rection at the same magnitude as the best matching flow 
vector. Although the roof interpolation was slightly more 
effective than parabolic interpolation for finding a real-val- 
ued magnitude for a given optical flow vector, it was found 
to have the disadvantage of not returning as accurate a cor- 
relation match value estimate. A more accurate correlation 
match value estimate was instead found by calculating the 
coefficients of an interpolating parabola and taking the cor- 
relation match value at the same magnitude as found during 
the roof interpolation stage. The following formulas for the 
parabola coefficients were derived given a parabola 
ax2 + b x +  c : 

a =  
( Y 2  -Yo>  + (xo - X Z ) ( Y ,  - Y , ) / ( X ,  - X I ) )  

- (x0l2 + (xo - x2)((x1)2 - (xo>2) / (x1  - xo) ’ 

Y1 - Y o - a ( ( x 1 ) 2 - ( x o ) 2 )  
b =  

X I  -xo 
c = yg - c z ( x ~ ) ~  - bxo . 

Once these coefficients are calculated, it is possible to 
estimate the correlation match strength at any point (mag- 
nitude) in any given direction. In particular, the correlation 
match strengths measured at the same magnitude as the 
best correlation match for that pixel may be estimated at 
those two angles (out of eight measured) which bracket the 
best matching motions direction; this allows the simple ad- 
ditional one-dimensional interpolation to provide the inter- 
polated angle of motion. Figure 3 shows this graphically; 
thin lines represent parabolic interpolations of three given 
correlation match values. 

This double one-dimensional interpolation calculation 
cuts the frame rate approximately in half: real-valued opti- 
cal flow can be computed on 32x64 images, calculating and 
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such templates may be performed extremely quickly using 
a boxjilter as described in [6]. In order to improve the con- 
sistency of the divergence estimates, we apply temporal 
and spatial median filters to the individual divergence cal- 
culations. Figure 4. Flow Divergence Templates 

interpolating 5 speeds per frame, at up to 17 frames per sec- 
ond on a 80 MHz HyperSPARC computer. In practice, the 
flow is run at only about 4 Hz. This consumes from 20-25% 
of the processor's total time and allows the entire system to 
run easily on a single workstation with a consistent frame 
rate and about a 20% processor idle time to buffer unex- 
pected operating system events. 

4. Divergence for Obstacle Avoidance 
Divergence of the flow field is computed in the central 

band of the wide-field camera. Divergence can be used to 
qualitatively estimate time-to-contact (T,). Both theory and 
implementation are discussed here as well as consider- 
ations for employing T,  qualitatively estimated from di- 
vergence for obstacle detection by a moving robot. 

The equations for the x and y components of optical 
flow (Ox, Or) due to general camera motion (arbitrary 
translation and rotation) in a stationary environment are 
ox = ( l / Z ) ( - T x + x T z ) +  x y o x - ( 1 + x  2 ) w  +yo \ 

1 
( 

oy = ( 1 / z ) ( - T y + Y T z ) + ( ( 1 + y  )ox-xyo Y -"az 
y z i  

2 

where Z is the depth of the object in the environment rela- 
tive to the camera, (T,, T,, T,) and (ox, a,,, oz) are the 
translational and rotational motion of the environment rel- 
ative to the camera. The divergence of an optical flow field 

ao, ao, 
ax ay is defined as: Vo( Ox, 0,) = - + - whenever the 

imaged surface is a mostly perpendicular surface or the 
gradient of the imaged surface is perpendicular to the trans- 
verse velocity (T,, T,) . In our experiments, the values of 

(T,, Ty) are qualitatively equal to zero. Divergence can 
qualitatively estimate directly Time-to-Contact [8] 

(2)  
This measurement is particularly useful for obstacle avoid- 
ance during visual navigation because divergence is invari- 
ant under the rotational motion of the sensor that is inevita- 
ble due to imperfect stabilization.Equation (2) suggests that 
divergence has only time as its dimension. The values of di- 
vergence over any significant area represent the inverse of 
the time needed to reach an object at distance 2 with ve- 
locity T ,  in the z direction. Therefore, a family of simple 
fixed flow divergence templates can be applied to any im- 
age sequence to estimate divergence [15]. Each template is 
symmetrically divided into positive and negative halves 
(Figure 4). Flow divergence is calculated by convolving 
the template with a window in the flow image and comput- 
ing the sum of the image flow derivatives in perpendicular 
directions. In particular, the convolution of the first two 

Vo(Ox,  Or> = 2 .  T , /Z .  

5. Simple Robust Filters 
Medians performed on dense two-dimensional data 

can use fast running-histogram methods if the dynamic 
range of the data and desired resolution of the median can 
be specified [12]. That algorithm was intended for finding 
the m e  median and reduces an O(nm) complexity algo- 
rithm to approximately O( n )  per pixel for a n x m filter- 
ing window where n c m . It can however be generalized 
to the separable median [ 141 reducing its complexity from 
O ( n )  to approximately constant time. This approach as- 
sumes that there are only a limited number of bins, which 
would not be the case with floating-point data. In that case 
one could modify the algorithm to first quantize the data 
into 256 bins and then use quicksort-partitioning [16] to 
find the true median within the bin which is known to con- 
tain it. In our case however, divergence data were quan- 
tized to 256 parts in order to reduce data bandwidth so this 
extension is not necessary. Although the separable median 
is not guaranteed to find the true median, the effects of the 
separable median in otherwise reducing noise is almost as 
good as the true median [14]. 

The current system first performs a 11x17 (row times 
column) width spatial median filter, with the height of the 
filter smaller due to the flat rectangular images used. A sec- 
ond filtering is performed, with a dimension of 11 in space 
and 11 in time. Since it would be undesirable to have a de- 
lay in a real-time system, we simply localize the temporal 
median filter such that its leading edge includes the current 
data point but no future data points. 

The separable median as well as the true median filter 
both have the desirable property of preserving horizontally 
and vertically aligned edges, which means that unlike 
many other averaging or smoothing filters there is no tem- 
poral hysteresis. Unlike the true median however, the sep- 
arable median has the additional desirable property of pre- 
serving comers [14]. Preserving comers is especially valu- 
able in time-space or other plots, since an erosion of an 
object's full spatial and/or temporal extent could create the 
illusion of open space and cause a collision. 

6. Driving Control 
The robot's task is to avoid obstacles while achieving 

mobility goals. In general, such goals might be specified by 
coordinates in a map, features that uniquely identify a loca- 
tion, or simply features that satisfy a precondition required 
for the next subtask (Le. the mobility goal might be posi- 
tioning the robot to pick up an object.) Ideally, the robot 
would survey the visual data to identify the direction near- 
est its desired path that is also a safe direction in which to 
travel. In these experiments, the goal is to maneuver with- 
out collision using only flow divergence to sense the envi- 
ronment. The robot's behavioral goal is simply to drive for- 
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Figure 5. Body Control Automaton 
ward, steering away from obstacles in its path, and to stop 
and turn when it senses that collision is imminent. 

The robot drives at up to 20 c d s .  The steering policy 
uses the sensed flow divergences to steer around obstacles 
while attempting to steer toward the provided goal direc- 
tion. (In these experiments, the goal direction was always 
simply straight ahead.) Indication of imminent collision in 
the central region of the divergence data causes the robot to 
stop, tum away and resume wandering. This sequencing is 
implemented with a finite state automaton, with a com- 
mand associated with each state (Figure 5). Some state 
transitions are triggered by sensed events, and others mere- 
ly provide command sequencing. 

A view of the robot is provided in Figure 6 (a). It con- 
sists of two cameras mounted on a hollow steel cage at- 
tached to a TRC Labmate platform. Although both cameras 
were used in [8], only the top wide-angle camera is used in 
the current system. The robot’s tether, consisting of video 
cables, the connection to the gaze motor controller, and a 
serial communications line to the Labmate can also be 
seen. 

The steering policy is implemented using hazard maps 
derived from flow divergence, the desired goal direction, 
and the target heading, e,, previously selected by the 
steering policy. Each hazard map is a 1-dimensional vector 
that encodes the “risk” associated with each possible steer- 
ing direction. 

One hazard map is derived from the divergence data (a 
@-element wide vector per sample interval) that indicates 
obstacles and also encodes the cost of crossing “ridges” in 
the divergence vector, starting from the previously selected 
heading. Similarly, another hazard map is derived from the 
desired goal direction and the previously selected heading 
(accounting for the gaze angle). This map is roughly a 
trough centered mid-way between the previously selected 
heading and the goal heading, which has the effect of draw- 
ing the selected heading back to the goal direction in t h e  ab- 
sence of obstacles in this path. 

These hazard maps are combined into a single hazard 
map by adding the component hazard maps. The steering 
policy chooses the direction of minimum hazard in the 
composite map, with a preference for directions nearest the 
previously selected heading in case of a tie. The result in 
general is that if any sensing mode shows strong evidence 
of danger in some direction, it is unlikely that direction will 
be chosen. A composite hazard map is shown in Figure 6(c) 

communications 
time-out turn done 

away 

and the resulting path of the robot appears in (d) for the 
gauntlet of office chairs seen in (b) from the robot’s view- 
point before the trial began. 

When a new desired heading is chosen, the robot steers 
smoothly to it with saturated negative visual feedback con- 
trols [9]. Desired change in heading, A8 , is then calculat- 
ed, accounting for the current gaze angle, 8, , with respect 
to heading: A0 = 8, i 8,. The steering control policy is 
simply a saturated steering velocity proportional to the de- 
sired heading: 0 = Saturate(k,  . A8 . l /T, ,s) .  The gain 
k, determines how quickly the steering is servoed to the 
desired heading. Time is normalized to seconds by dividing 
by the body control cycle time, T ,  . Thus angular velocity 
is expressed in degreesls rather than degreeslcycle. For in- 
stance, setting ks = 0.3 will command a velocity that 
would reduce the error by 30% in the next control cycle (as- 
suming nearly instantaneous acceleration). The angular ve- 
locity is saturated at deg/s to limit the peak rotation rate 
to reasonable levels. 

The robot steering and collision detection improve 
when the robot turns relatively slowly for two reasons: (1) 
temporal consistency of spatial samples, and (2) accuracy 

I ‘ ! X  
0.00 200.00 

(d) 
Figure 6: (a) View of the robot; (b) robot’s view of the 
gauntlet of office chairs at the start of the trial; (c) haz- 
ard map (with time increasing upward); (d) XY path 

trace beginning at (0’0). 
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Figure 7. Gaze Control Automaton 

of motion estimates. Therefore, the behavior and motor 
control systems reduce rotation of the cameras. This is ac- 
complished by stabilizing the cameras with active motor 
commands and by limiting rotation of the body so the gaze 
stabilization system is not overstressed. Despite these pre- 
cautions, gaze stabilization is imperfect and some data are 
contaminated. However, the edge-preserving spatio-tem- 
poral median filtering effectively discards intermittent poor 
data. 

7. Gaze Control 
The nonlinear gaze control is a nystagmus, a repetitive 

eye motion of slow phase rotations punctuated by quick 
phase rapid returns. It is also implemented as a finite state 
automaton (Figure 7). The camera is rotated at velocity 

d, = -0 to counter the body rotation and stabilize the 
camera images. The gaze control also checks the deviation 
of the gaze angle, 0, , from the robot’s heading and snaps 
the camera back to the heading if the limit is exceeded. 

The saccades that perform the quick-phase retum to 
realign gaze with the robot’s heading briefly produce ex- 
tremely large image flows. These large flows often are en- 
countered by the flow estimator. Although the resulting di- 
vergence estimates are unusable, the edge-preserving spa- 
tio-temporal median filtering effectively discards them, 
providing only the divergences observed preceding and 
following the saccade. 
8. Experiments and Results 

Experiments with the obstacle avoidance system were 
performed in a laboratory containing office furniture and 
robot and computing equipment. Furniture and equipment 
lined the walls and there was free space roughly 7 m by 4 
m in the center of the lab. Office chairs provided obstacles. 
In addition, there was some space leading to doors in two 
comers of the lab. In all experiments, a single camera with 
a 115’ field of view was used. Only the half height band 
in the center of the image was processed. (See Figure 6 for 
an example of the robot’s view of the lab.) Three set of ex- 
periments where performed. (1) “Crash tests” evaluated the 
system’s ability to detect obstacles and warn of imminent 
collision. (2) The “gauntlet trials” tested the robot’s ability 
to maneuver around obstacles in its environment while 
traveling across the lab. (3) Wandering trials tested the ro- 
bot’s ability to move about for extended periods of time. 

8.1. Crash tests 

Initial experiments tested the robot’s ability to detect 
obstacles and warn of imminent collision. A row of chairs 
was placed across the far end of the lab and the robot drove 
straight toward it at fixed speeds. The system detected ob- 
jects (at divergence levels above the noise level) at ranges 
up to 6 m (the maximum testable distance in the lab) at for- 
ward speeds ranging from 0.1 to 0.8 d s .  The divergence 
signal arising from an object rose reasonably smoothly as 
the object was approached, and the object continued to be 
visible until the robot approached very near. Based on these 
trials, an imminent collision function was derived for robot 
speeds up to 0.8 m/s .  

8.2. Gauntlet trials 

The robot ran a gauntlet of office chairs to demonstrate 
the system’s ability to avoid obstacles while traversing the 
lab. The lab setup and results are shown in Figure 6. In Fig- 
ure 6 (d) each inflection point in the curve represents an 
evasive turn. The robot frrst deflected left to avoid the 
chairs blocking its path and then continued traversing the 
room, deflecting to the right to avoid the opposite row of 
chairs. An MPEG of the second half of this sequence, along 
with simultaneous flow and divergence estimates, is avail- 
able at the first author’s WWW address. In these mals the 
robot traveled at 20 cm/s and steered at a maximum rate of 
8 deg/s. 

Gaze stabilization contributed considerably to the ef- 
fectiveness of the system by reducing the magnitude of the 
image flows while the robot was steering. In control trials 
without gaze stabilization, analysis of the data showed that 
image flows observed while the robot was steering routine- 
ly exceeded the range of the flow estimation system. The 
resulting corrupted data rendered obstacles “invisible” and 
the robot consequently failed to see obstacles as it complet- 
ed evasive maneuvers. The simple memory of the steering 
policy and the spatio-temporal edge-preserving median fil- 
tering of divergence served to commit the robot to a single 
course around an obstacle until it had cleared. 

8.3. Wandering trials 

The third experiment was a test of duration. In the 
wandering trials, the robot was permitted to wander about 
the relatively uncluttered lab one day while the authors pre- 
pared a report of the present work. Throughout the day, 13 
trials were run and data were collected. In these trials, the 
robot was started toward open space from various locations 
in the lab. The longest trial lasted 26 minutes. The path of 
the robot in the final 8 minutes of this trial is shown in Fig- 
ure 8. A moderate length path of about 7 minutes is shown 
entirely in Figure 9. The mean trial length was roughly 7.1 
minutes and the median length was 6.75 minutes. While the 
robot generally drove back and forth along similar paths, it 
also often worked its way out of such limit cycles. These 
results were achieved with extremely simple behavior con- 
trol. More sophisticated behavior control making use of 
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X - Y plot: trial 1, last 8 of 26 minutes of the images used. In addition, our system implements 
both wide-angle and narrow-angle camera functions using Y 

I 

I only one wide-angle camera and a single framegrabber, un- 
I I * I  I i like the two cameras and video channels used in [SI. 
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Figure 8: Wandering trial XY path. 
various mechanisms (e.g., an explicit notion of segmented 
objects, adaptation) to derive or interpret hazard maps can 
be expected to shorten the time to escape such situations. 
The robot also covered a considerable fraction of the lab’s 
open space in the longer trials. The failure mode that most 
commonly terminated these trials with collision are dis- 
cussed in section 9. While this performance falls far short 
of the ideal of limitless collision-free (however crude) mo- 
bility as a base of competence, it is promising enough to be 
considered as a low-level competence in a goal-directed 
mobile robot system. 

9. Discussion 
Some researchers [ 131 [ 181 have proposed using diver- 

gence or flow derivatives for visual cues, but they do not 
provide real-time implementations of these ideas. Nelson 
and Aloimonos [ 151 used directional flow divergence for 
stop-and-look obstacle avoidance (not real-time smooth 
driving). Their environments were much simpler than ours 
and they did not demonstrate extensive robust behavior 
over extended periods of time. 

Duchon and Warren [lo] demonstrated flow and flow- 
derived time-to-contact for free wandering at 5 c d s  as 
long as 5 minutes. Their most robust steering strategy was 
balancing peripheral flows (i.e., “corridor-following”). 
However, this strategy is not easily adapted to goal-orient- 
ed behavior. 

Coombs et ai [8] also used flow to implement “corri- 
dor-following’’ and used divergence to detect imminent 
collision. Our work achieves similar results using diver- 
gence alone and is therefore not limited to “comdor-fol- 
lowing.” Our system supports goal-directed behavior while 
providing local obstacle avoidance. The method of optical 
flow described in this paper has been shown to detect ob- 
stacles as far away as 6 meters under good conditions 
where the flow returned from the PIPE was practically lim- 
ited to a range of about 1 to 2.5 meters due to the difficulty 
of detecting edges of far away surfaces. The range of our 
system is even more remarkable given the coarse resolution 

X - Y plot: trial 0, 7.67 minutes 
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Figure 9: Wandering trial XY path. 

System performance depends on many factors. Under- 
lying the divergence estimates are image flow measure- 
ments. Although divergence is theoretically unaffected by 
camera rotation, rotation contributes directly to image 
flow. The system calculates image flow using a correlation 
method, which, like all techniques, has limited spatiotem- 
poral sensitivity. In particular, large flows are underesti- 
mated, so fast camera rotation can cormpt the image flow 
estimates on which the divergence estimates rely. Similar- 
ly, differential measures such as flow and divergence are 
inherently susceptible to noise. 

Our system relies on gaze stabilization and robust data 
filters to cope with these problems. Rotational stabilization 
of the camera reduces flow magnitudes to manageable lev- 
els. The brief disturbances introduced by saccades that re- 
orient the camera to the robot’s heading are ignored by the 
spatial and temporal median filters that also suppress noise 
(in contrast to a non-robust smoothing filter which would 
be affected). This enables the modules to cooperate without 
tight coordination. 

The primary cause of system failure consists of a col- 
lision with an obstacle in one of the lower comers of the 
full-sized image. Currently due to real-time requirements 
only a central 256-pixel band of the 5 12-pixel height image 
is used in calculating flow. Grabbing the bottom 256 rows 
of the 5 12 rows available would enable these objects to be 
seen. However, lowering the visual band taken from the 
full field of view is undesirable since this also lowers the 
top edge of the image and thus limits the maximum visual 
range of the system. Given that the current image size al- 
lows for about a 20% idle time to buffer operating system 
(OS) events, it is likely that a system making use of real- 
time OS facilities could use this available CPU time to pro- 
cess a larger image. 
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It has been argued that there are computational advan- 
tages in keeping the search radius of the optical flow algo- 
rithm as small as one pixel [6] and keep the frame rate high. 
It should be noted that because images are subsampled 
from 256x512 pixels to 32x64 pixels in size, a single pixel 
shift at the new coarser scale is equal to an 8 pixel shift at 
the original resolution. In addition, since sub-pixel flows 
are detected, a magnitude of 1/2 pixels per frame corre- 
sponds to a 4 pixel shift at the old resolution, 1/4 pixels per 
frame corresponds to a 2 pixel shift, etc. Even so, when the 
robot is rotating the optical flow velocities can be extreme- 
ly high. In this application we can easily modify the search 
space so that faster velocities are detected only in the hori- 
zontal directions where the greater flows occur. This would 
allow faster turning velocities without saturating the flows 
but only linearly increase the computational time used. 

10. Conclusions 
A robot system is presented that uses only real-time 

motion divergence to avoid obstacles while driving toward 
a specified goal direction (straight ahead in this demonstra- 
tion) in a lab containing office furniture and robot and com- 
puting equipment. The robot has wandered around the lab 
at 20 c d s  for as long as 26 minutes without collision. To 
our knowledge, this is the first such demonstration of real- 
time smooth wandering using only flow divergence. 

The paper describes how flow divergence is computed 
in real-time to provide the robot’s sense of space and how 
steering, collision detection, and camera gaze control coop- 
erate to avoid obstacles while the robot attempts to drive in 
the specified goal direction. The major contribution is the 
demonstration of a simple, robust, minimal system that 
uses flow-derived measures to control steering and speed to 
avoid collision in real time for extended periods. 

Although image motion has long been considered a 
fundamental element in the perception of space, attempts to 
use it in real-world mobility tasks have always been ham- 
pered by problems such as noise, brittleness, and computa- 
tional complexity. We demonstrate for the first time that 
robust image motion cues can be extracted using a single 
ordinary UNIX workstation to safely move about a com- 
plex environment in real-time for extended periods. These 
results demonstrate that real-time robot vision and control 
can be achieved with careful implementations on ordinary 
computing platforms and environments. Similarly, an ex- 
tensible framework can combine simple robust compo- 
nents in a manner than minimizes requirements for tight 
synchronization. 
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