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DETERMINING SEASONAL DELAY CURVES 
Al Meilus, Federal Aviation Administration, Office of Performance Analysis, Washington, DC 

 
Abstract 

This paper presents an approach to expand on 
the Annual Service Volume (ASV) method for 
estimating air traffic delays. The ASV approach is a 
direct and intuitive method to estimate air traffic 
delays at an airport based on airline scheduled 
demand levels at that particular airport. The Seasonal 
Delay Curve (SDC) approach attempts to build on the 
ASV delay estimates by accounting for seasonal 
capacity variations. The result is an equally intuitive 
method that sheds light on the impact that seasons 
can have on delays at specific airports. This 
improvement helps explain why a particular 
scheduled level of demand can produce different 
amounts of delay in January than in July. This paper 
demonstrates how delay estimates can differ by 
season at airports like SFO and ORD that have 
noticeable seasonality in their arrival and departure 
rates. 

Introduction 
In response to a sudden increase in delays 

experienced in the summer of 2007, the FAA 
committed to taking a pro-active approach to 
monitoring airline scheduling, creating an initiative to 
identify airports forecasted to have chronic delay in 
the next six months [1]. The FAA has since extended 
the effort to project delays up to 12 months in 
advance. This effort also supports a more recent 
requirement, Section 413 of the FAA Reform and 
Modernization Act of 2012 (PL 112-95) enacted on 
February 14, 2012 [2], which mandates that the 
Administrator take steps to reduce schedules when 
operations exceed the maximum departure and arrival 
rate at an airport. To comply with these requirements, 
since 2009, the Air Traffic Organization (ATO) has 
been producing a monthly delay report [3], 
monitoring scheduled operations and delays at the 30 
core airports and noting significant trends over a 12-
month look-ahead period. The report uses demand 
projections to identify airports likely to experience 
significant increase in delays. This paper describes an 
enhancement to one of the methods used by the FAA 
to forecast monthly delays. 

Current Methods 
The ATO uses two models to forecast monthly 

delays. The models use a demand forecast based on 
published airline schedules, a near-term demand 
forecast provided by FAA's Office of Aviation Policy 
and Plans (APO), and historical operational data. The 
resulting demand projections are then combined with 
expected airport capacities to estimate future delays. 
The models estimate delays in two ways. The first 
approach uses a representation of airport capacity, 
called the Annual Service Volume (ASV) [4]. The 
second approach uses detailed simulation of activity 
each day to project delays [5]. This paper discusses a 
potential extension to the ASV approach by 
incorporating seasonal variation in airport capacity.  

 

Figure 1. Annual Service Volume (ASV) Estimates 

As illustrated in Figure 1, ASVs show that the 
expected average delays increase exponentially as the 
number of operations increases. Delays are based on 
the annualized number of operations in the schedule. 
Note that annualization of the data is necessary 
because the independent variable for an ASV is the 
annual number of operations. Once the ASV is 
calculated, its results are intuitive. One could 
interpret the resulting curve to indicate that the 
ultimate capacity of an airport is the point at which 
the ASV begins to increase very quickly with small 
increments in demand. This approach, however, has 
some limitations. 



 

 I5-2 

Limitations of Current Methods 
Annualization of the data is one of the 

limitations. While it captures a variety of factors that 
relate to the operational performance of an airport, 
some of those factors vary seasonally, and delays are 
projected on a monthly basis. For some airports, 
delays are significantly higher in the summer and 
winter than in the spring and fall. For example, if 
airline schedules were to increase significantly in the 
spring, the annualization approach might 
significantly overestimate the delay impact. The 
annualization effect can be modest at some airports, 
but at a few airports, the size of the impact can be 
significant. For example, at San Francisco 
International Airport (SFO), delays are highly 
seasonal because persistent low-lying fog occurs only 
during certain times of the year. When fog is present, 
airport capacity is significantly reduced, leading to 
large delays. ASVs do capture this effect; however, it 
is factored in on an annual basis, leading to possibly 
substantial errors in monthly delay estimates. 

A second limitation relates to the shapes of 
airline schedules by time-of-day. ASVs are calculated 
using a specific time-of-day profile for airport 
demand. While the latest information is used when 
the ASVs are computed, if the underlying schedule 
profile changes, without significantly changing 
overall demand, the ASV approach would not 
recognize any potential for change in delay. Airlines 
can adjust the shape of their schedules in response to 
a variety of changing economic circumstances in 
order to optimize their operations [6]. Figure 2 shows 
an example of arrival and departure schedules for two 
different days at ATL, where one is significantly 
more peaked than the other. Even though the more 
peaked schedule has fewer operations, it is more 
prone to delay than the less peaked schedule. An 
analysis based solely on ASVs would lead to an 
incorrect conclusion about delays for these two 
demand sets. 

ATL Departures
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Figure 2. Scheduled Operations by Time of Day 

A third limitation is due to delay propagation. 
ASV analysis focuses on queuing delays at individual 
airports. However, delays at one airport often 
propagate to other airports downstream. For example, 
Figure 3 shows that delays at St. Louis Lambert Field 
(STL) are better correlated with delays at John F. 
Kennedy International Airport (JFK) than they are 
with traffic at STL itself. While it is important to 
understand the first order delay dynamics at 
individual airports, it is also important to know their 
impact system-wide.  
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Figure 3. Operations and Delay History at STL 
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Addressing Modeling Limitations 
The FAA addresses these three limitations with 

a detailed simulation using a NAS-wide model called 
SimCore. While SimCore is a very detailed and fully 
functional delay model, it has some limitations as 
well. It is not able to capture every aspect of the NAS 
that can affect delays, like convective weather, 
TMI’s, GDP’s, or flight cancellations. In addition, it 
is depends on detailed schedule data.  

In addition to the above-mentioned limitations, 
each delay models depends on an accurate demand 
projection. Airlines release their schedules up to a 
year in advance of the day on which a flight is 
operated. While the detailed information for close-in 
schedules is very useful, there are issues with 
schedules more than a couple of months in advance 
of a flight. We have found that, the details of 
schedules more than three months out are less 
reliable than those of close-in schedules. Airlines 
often continue to optimize their schedules up to one 
to two months out due to changing economic 
conditions. 

Taking into consideration the dynamic nature of 
airline schedules beyond three months out, we have 
collaborated with the FAA’s Office of Aviation 
Policy and Plans (APO) to supplement the airline 
schedules with a demand forecast for each airport 4 
to 12 months out. Since APO is responsible for 
generating the FAA’s Terminal Area Forecast (TAF) 
[7], they have designed a methodology to provide the 
Performance Analysis office with a similar product 
focused on the near-term of 4 to 12 months, on a 
monthly basis. Although APO’s near-term forecast 
provides us with a reasonable guide for overall near-
term demand, it does not provide the level of detail 
that is included in a schedule. In particular, it does 
not provide flight-level details, but instead provides 
station level monthly estimates of demand. While the 
level of detail provided in the APO forecast data is 
not sufficient to run SimCore, it is sufficient for using 
an ASV or SDC type of model. 

To take advantage of the strengths of each 
model and quality of available data, it seems most 
appropriate to use SimCore for projecting delays for 
months that are close-in, and using an ASV or SDC 
approach to model delays for months that are farther 
out in the future. Since the SDC approach addresses 
only the first limitation, it may be most suitably used 

for airports where seasonal variations matter. For 
airports where seasonal variations are not likely to be 
a factor in delays, the ASV method is completely 
adequate. 

Seasonal Delay Curve 
There are four fundamental steps to generating 

SDCs: 

1. Identifying airports of interest 
2. Grouping months into seasons based on 

similar Airport Arrival Rate (AAR - the 
published number of landings per hour that 
can be made at an airport based on specific 
conditions) and Airport Departure Rate 
(ADR - the published number of departures 
per hour that can be made from an airport 
based on specific conditions) 

3. Estimating delay as a response to schedule 
levels by simulating the arrival and departure 
queues using the published AARs and ADRs 
for the identified seasons 

4. Fitting a representative curve to estimated 
delays as a response to demand 

Focus on Watch List Airports 
We performed seasonal grouping of months for 

each of the Core 30 airports to test the validity of this 
approach and found that months at most airports 
could be grouped into two or three seasons. While 
applying this technique was useful in terms of 
validating the notion that airports have seasonal 
performance characteristics, we believe that it is 
practical to apply the seasonal delay analysis to 
airports where demand approaches capacity, e.g., the 
most delay prone airports. As such, we focus our 
attention on eight key airports that are among the 
busiest in the country and have demand that at times 
pushes up against the limits of their capacity. This is 
demonstrated by their historic delay profiles reported 
in the FAA’s Operational Network (OPSNET) [8]. 
The airports that are of most interest are ATL, BOS, 
EWR, JFK, LGA, ORD, PHL and SFO. These 
airports were selected to be on the watch list because 
either they are the most prone to delays or because 
they handle such large volumes of demand. Figure 4 
shows the monthly delay trends for these airports as 
reported in OPSNET. 
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Monthly Average OPSNET Delay at Watch List Airports
Jan 2009 - Dec 2012

-

2.5

5.0

7.5

10.0

12.5

15.0

ATL BOS EWR JFK LGA ORD PHL SFO

M
in

ut
es

 o
f D

el
ay

 

Figure 4. Monthly Average OPSNET Delays 

Grouping Similar Months into Seasons 
For each of the Core 30 airports, we identified 

months to group into seasons by applying pair-wise 
Kolmogorov-Smirnov tests on the sum of hourly 
called arrival rates (AAR) and departure rates (ADR). 
Initially the seasonal grouping analysis included all 
hours of the day. However, we found that it is more 
appropriate to apply the grouping analysis only for 
key operating hours at the airports, typically 6:00 to 
23:00. Basing the grouping decision on the most 
relevant times of day made differing months more 
distinct from each other and helped identify similar 
months. 

Kolmogorov–Smirnov Testing 
The Kolmogorov–Smirnov (KS) test is a 

nonparametric test for comparing continuous, one-
dimensional probability distributions. The KS test 
can be used to compare a sample to a reference 
probability distribution (one-sample KS test), or to 
compare two samples (two-sample KS test). The two-
sample KS test is sensitive to differences in both 
location (mean and median) and shape (variance and 
skewness) of the empirical cumulative distribution 
functions (CDFs) of the two samples, making it a 
very compelling method for comparing two samples. 
[9]  

To conduct the tests, we collected 5 years of 
hourly called rates (AAR+ADR) for the core 30 
airports. Each hour was a data point within a monthly 
data set. We treated all five years of data for the same 
month as a single data set. The initial grouping of the 
five years of data generates 12 data sets, one for each 
month of the year. For each airport, we applied the 

two-sample KS test on all pair combinations of each 
airport’s 12 monthly data sets. 

The two graphs in Figure 5 and Figure 6 below 
show the CDFs of called rates for different months at 
SFO to illustrate how similar months and dissimilar 
months appear in the KS-test.  
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Figure 5. CDFs for Mar and Sep at SFO 
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Figure 6. CDFs for Feb and Dec at SFO 

We set thresholds for the KS testing at three 
levels: 0.075, 0.150, and 0.225. At some airports, 
0.075 was practical to use, while at others, 0.150 
made more sense. In the grouping exercise, some 
month pairs were allowed to exceed the selected 
threshold – primarily because variation is higher at 
some airports than others. However, we did not allow 
groupings to include pairs of months where the KS 
test exceeded 0.225. For example, if a successive 
string of months seemed to be similar, but one month 
in the sequence was a little bit off, we allowed it to 
remain within the season. Table 1 illustrates how the 
KS test results are used to group similar months for 
SFO.  
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Table 1. K-S Testing to Identify Similar Months 

SFO
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 0.00 0.05 0.07 0.13 0.12 0.14 0.22 0.18 0.22 0.22 0.18 0.05
Feb 0.05 0.00 0.05 0.10 0.11 0.13 0.21 0.17 0.22 0.21 0.17 0.02
Mar 0.07 0.05 0.00 0.12 0.12 0.10 0.19 0.15 0.23 0.19 0.18 0.05
Apr 0.13 0.10 0.12 0.00 0.05 0.05 0.16 0.11 0.19 0.16 0.14 0.09
May 0.12 0.11 0.12 0.05 0.00 0.05 0.16 0.11 0.19 0.16 0.14 0.09
Jun 0.14 0.13 0.10 0.05 0.05 0.00 0.12 0.08 0.15 0.12 0.11 0.12
Jul 0.22 0.21 0.19 0.16 0.16 0.12 0.00 0.05 0.04 0.00 0.10 0.20

Aug 0.18 0.17 0.15 0.11 0.11 0.08 0.05 0.00 0.08 0.05 0.07 0.17
Sep 0.22 0.22 0.23 0.19 0.19 0.15 0.04 0.08 0.00 0.04 0.09 0.20
Oct 0.22 0.21 0.19 0.16 0.16 0.12 0.00 0.05 0.04 0.00 0.10 0.20
Nov 0.18 0.17 0.18 0.14 0.14 0.11 0.10 0.07 0.09 0.10 0.00 0.16
Dec 0.05 0.02 0.05 0.09 0.09 0.12 0.20 0.17 0.20 0.20 0.16 0.00  

In this particular example, SFO appears to have 
three distinct groups of months or seasons based on 
its AARs and ADRs: Apr – Jun, Jul – Nov and Dec – 
Mar. This seems intuitively correct, as SFO typically 
experiences morning fog in the winter and spring, but 
not as much in the summer. 

Groupings for most of the Core 30 airports were 
reasonable, typically dividing the year into two to 
four seasons. In some airports looked like they would 
be better represented with more than four seasons, 
while others like SAN with just one season. To 
validate this part of the analysis we checked if 
airports in similar regions had the same seasonal 
groupings. Interestingly, this was not always the case. 
For example, the airports around New York City do 
not have identical seasonal groupings, but their 
groupings do have similarities. In addition, ORD and 
MDW appear to have very similar seasons, as do 
ATL and CLT. It appears that seasonal weather 
patterns may not be the only factor driving the 
seasonal groupings at the airports. There may be 
some local factors influencing seasonal capacity 
variations at airports, but it does seem that seasonal 
weather is the dominant factor. This is a useful 
validation step in the process. The two-sample KS 
test provided intuitively acceptable seasonal grouping 
results. 

Table 2 shows a sample of the seasonal grouping 
results from KS testing AAR + ADR distributions for 
the watch list airports. 

Table 2. Seasonality at Watch List Airports 
 Spring Summer Winter 

ATL  Jun - Oct Nov – May 
BOS Mar - Jun Jul - Nov Dec – Feb 
EWR  Jun - Oct Nov – May 
JFK Mar - Jun Jul - Feb  
LGA Feb - May + 

Nov 
Jun - Oct Dec – Jan 

ORD Mar - May Jun - Nov Dec – Feb 
PHL  Aug - Sep Oct – Jul 
SFO Apr - Jun Jul - Nov Dec - Mar 
 

Note that while LGA has three seasons, 
“Spring” actually represents a split season, Feb 
through May plus Nov. The rates used at LGA in 
Nov closely match the rates called in Feb through 
May. The seasons at other airports are composed of 
contiguous months. 

Estimating Delays as a Response to Levels of 
Demand 

Once airport capacity has been grouped by 
season, the next step is to estimate the delays at the 
watch list airports by season using a set of schedules 
that span a broad range of demand. This entails 
simulating arrival and departure queuing at the 
airports based on scheduled arrival and departure 
times.  

The criteria for selecting these days was 
twofold. First, the schedules need to be relatively 
recent, to minimize influence of structural change 
within the industry. Secondly, the schedules need to 
span a broad enough range of demand to be 
conducive to fitting a response curve to the data. We 
collected a set of 21 daily schedules for each watch 
list airport. The days used to simulate demand for 
each airport are listed in Table 3. 
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Table 3. Scheduled Demand Used in Simulation 

ATL BOS EWR JFK
Date Total Ops Date Total Ops Date Total Ops Date Total Ops

20111124 1650 20111203 591 20101125 702 20101125 935
20110917 2117 20120101 706 20121027 872 20101106 1025
20120219 2218 20110226 781 20110312 950 20101204 1037
20120124 2430 20110423 842 20120129 1011 20110119 1056
20111004 2483 20110123 856 20110208 1124 20101005 1102
20110424 2487 20110313 912 20110209 1132 20101006 1109
20101212 2525 20111202 958 20110225 1137 20110109 1112
20101214 2585 20110424 964 20101004 1154 20101004 1114
20101017 2593 20111031 982 20101116 1163 20110323 1115
20110412 2596 20120313 1012 20101110 1182 20101018 1118
20101201 2604 20101215 1018 20101130 1182 20110101 1126
20101220 2621 20110704 1032 20101103 1186 20101130 1131
20101123 2657 20101104 1063 20110426 1211 20101001 1137
20101006 2662 20101007 1072 20110411 1214 20101122 1143
20101029 2670 20110328 1079 20110512 1217 20110418 1174
20101022 2687 20101014 1084 20110309 1219 20110102 1184
20101004 2693 20101202 1086 20101216 1252 20101216 1199
20101021 2718 20110407 1142 20110817 1253 20110618 1218
20110617 2764 20110520 1142 20110627 1254 20110726 1261
20110720 2779 20110713 1196 20110630 1288 20110812 1279
20120720 2789 20110812 1217 20120719 1311 20110623 1284  

LGA ORD PHL SFO
Date Total Ops Date Total Ops Date Total Ops Date Total Ops

20111225 525 20111124 1565 20101004 1289 20101125 767
20101106 610 20111008 1972 20101005 1268 20110319 927
20110430 634 20101120 2088 20101008 1326 20110116 999
20120728 731 20120131 2228 20101010 1214 20101214 1056
20110123 965 20101121 2304 20101111 1318 20101103 1086
20101107 984 20110111 2362 20101123 1336 20101222 1088
20120729 1016 20110918 2406 20101207 1252 20101012 1105
20120110 1125 20101123 2440 20101210 1244 20101021 1105
20111031 1128 20110113 2476 20101220 1294 20110516 1122
20101214 1156 20101109 2520 20110101 1131 20101011 1123
20101122 1165 20101210 2520 20110107 1233 20111023 1129
20101006 1175 20101118 2529 20110216 1283 20120501 1154
20101102 1179 20101005 2546 20110303 1333 20110519 1164
20101004 1181 20101006 2588 20110410 1199 20111005 1164
20101001 1182 20110612 2592 20110507 1058 20110627 1195
20101110 1184 20110824 2640 20110522 1160 20120503 1195
20101206 1192 20110509 2644 20110603 1313 20110710 1196
20110214 1194 20120730 2677 20110628 1351 20110706 1202
20101124 1197 20110519 2683 20111029 1003 20120913 1243
20110722 1202 20110629 2745 20111125 509 20120618 1278
20110210 1220 20110708 2769 20111227 1326 20120727 1303  

We ran these schedules through a queuing 
simulation against five years of each season 
identified for each of the eight airports respectively. 
The queuing simulation called Airport Capacity and 
Slot Assignment Tool (ACASAT), developed by 
Metron Aviation for the office of Performance 
Analysis at the FAA. ACASAT is a stand-alone Java 
tool that models an airport as a single resource. The 
software is currently in Beta. 

The simulations were run in batch mode for each 
season. We filtered the results to exclude extreme 
data points. Extreme points occur on days when the 
weather is particularly challenging. Since we are only 
concerned about excluding extreme points on the 
high side, we identified them as points that are more 
than 3 times the interquartile range away from the 
75th percentile [10]. We took the average delay of all 
operations excluding the extreme values to represent 
the delay associated with a particular schedule for a 

given season. We did this for each of the schedules 
associated with an airport to generate a set of delay 
values each corresponding to a level of demand. 

Since we simulated the delays with a queuing 
model, it is appropriate to use something similar to 
the functional form for a wait queue to fit the 
resulting data. Specifically, we used: 

Wq = τ + λ/(µ (µ - λ)), where τ represents a 
nominal minimum average delay, λ represents the 
arrival rate (e.g., number of scheduled operations per 
day), and µ represents the capacity of the airport 
(daily AAR + ADR). Note that if we subtract τ  from 
Wq, the expression becomes the formula for expected 
waiting time spent in a queue for an M/M/1 system 
from classic queuing theory [11, 12]. We added τ to 
allow for a second parameter to help fit the function 
to the simulated results. One parameter is a location 
parameter (may be interpreted as the minimum 
possible delay time) and the other is a shape 
parameter (may be interpreted as the maximum 
capacity of the airport). ASVs are a two parameter 
function as well. 

Note that one of the simplifying assumptions 
include that (after adjusting by τ) the airport behaves 
similar to an M/M/1 queuing system: 

1. the airports are treated as single server 
queues 

2. the scheduled operations can be represented 
as a Poisson process having rate λ 

3. the service times are exponentially 
distributed with mean 1/µ 

 

The advantage of making these assumptions is 
that it makes the analytical formulas easy to work 
with and interpret. A disadvantage is that in reality 
the Poisson / exponential assumptions may be 
violated. For example, the inter-arrival times may 
have dependencies, particularly at hub airports. This 
is an area that we could be explored further validate 
this method or to suggest an alternative method. For 
the purpose of this study, however, we will proceed 
with the above stated assumptions. 

Fitting a Curve to the Data 
The goal to curve fitting is to identify the 

parameters that make the curve fit the data well. In 
the functional form that we chose, our curve has two 
parameters to estimate. We used the root mean 
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squared error (RMSE) to measure how well the curve 
fit the data and selected a value for the parameter that 
minimized this error. 

Results 
The results in Tables 4 through 6 show the value 

of the parameters that generate the best fit for the 
data for each airport along with a measure of the 
goodness of fit. The optimal parameter, µ, can be 
interpreted as an implied capacity of the airport. The 
optimal parameter, τ, can be interpreted as an implied 
minimum average delay at the airport. The 
minimized error term reflects a measure of how good 
the approximation can be in terms of average minutes 
of delay. 

Table 4. Shape Parameter 

µ: Implied Capacity (operations per day) 
 Spring Summer Winter 

ATL  3059 3073 
BOS 1323 1343 1291 
EWR  1448 1431 
JFK 1424 1397  
LGA 1263 1263 1258 
ORD 3220 3276 3014 
PHL  1696 1737 
SFO 1507 1526 1375 

Table 5. Location Parameter 

τ : Implied Minimum Delay (min) 
 Spring Summer Winter 

ATL  2.9 2.7 
BOS 1.5 1.2 3.6 
EWR  1.5 1.9 
JFK 5.2 6.9  
LGA 5.0 5.8 6.5 
ORD 1.5 1.5 2.1 
PHL  4.6 4.4 
SFO 1.5 1.5 2.8 

Table 6. Goodness of Fit 

RMSE (minutes of delay) 
 Spring Summer Winter 

ATL  1.0 0.9 
BOS 0.9 0.8 2.0 
EWR  0.6 0.8 
JFK 1.4 1.8  
LGA 3.6 4.8 4.2 
ORD 0.3 0.3 0.6 
PHL  0.5 0.5 
SFO 0.3 0.4 1.5 

 

Note that some airports have a higher error 
value, which generally corresponds with an overall 
higher average amount of delay at that airport. This 
effect on error is demonstrated by the three SDCs 
derived for SFO, as shown in Figures 7 through 9. 

SFO Spring Delay Curve
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Figure 7. Estimated Delays at SFO for Spring 

SFO Summer Delay Curve
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Figure 8. Estimated Delays at SFO for Summer 
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SFO Winter Delay Curve
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Figure 9. Estimated Delays at SFO for Winter 

Schedule Anomalies 
The simulation results for summer at ATL 

shown in Figure 10 display an unexpected reduction 
in delay at the very high end of the demand range. 
This type of result can occur when the shape of the 
schedule changes. As an example, the charts in 
Figure 2 show the frequency of arrivals and 
departures at ATL in 15-minute time bins for two of 
the schedules used to simulate demand at ATL. Even 
though the schedule shown in the dark columns 
(10/4/2010) has about 100 fewer operations than the 
schedule in the lightly shaded columns (7/20/2012), 
the schedule for 10/4/2010 is more peaked and results 
in about 2 minutes more delay per flight on average. 
This comparison demonstrates how carriers can 
sometimes help mitigate delays at their hubs without 
reducing their level of operations, and in some cases, 
can even increase the number of operations with no 
adverse effect to delays on average. 
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Figure 10. Estimated Delays at ATL for Winter 

This result adds to the challenge of forecasting 
delays. Currently we are including the schedule data 
in our sample without regard for its shape with the 
assumption that we have a sufficient number of data 
points to represent a reasonable range of possible 
schedule shapes. Thus, the resulting delay estimates 
are reasonable especially when considering that we 
are applying this method to schedules that are farther 
out in the future and their final shape is still 
uncertain. 

Validation 
The SDC model fits the simulated data results 

quite well as shown in Table 7. In fact, the delay 
curves generated by the SDC method fit the 
simulated data better than the ASV. Table 7 shows 
the improvement in the RMSE between using SDC 
and ASV for predicting delays at the watch list 
airports, indicating an improvement for each season 
at each airport. 

Table 7. Comparison of Goodness of Fit 

 Spring Summer Winter 
ATL  -0.4 -0.3 
BOS -2.2 -1.5 -4.8 
EWR  -8.3 -7.2 
JFK -3.4 -0.9  
LGA -2.5 -2.7 -4.1 
ORD -3.6 -3.7 -1.5 
PHL  -1.2 -1.4 
SFO -8.2 -8.4 -3.9 

 

While these results are encouraging, we ideally 
want to validate the results against true operational 
data. Three sources of operational data for validation 
are OPSNET, ASPM and U.S. Department of 
Transportation (DOT)’s Airline On-Time Statistics.  

By design, OPSNET tends to understate delays 
because of its 15-minute rule and reporting only 
delays that result from Air Traffic Control (ATC). If 
an operation is delayed less than 15 minutes or for 
other than ATC reasons, it is not considered delayed 
within OPSNET. In fact, airports can have have a 
number of days with zero reported delay within 
OPSNET. On the one hand, the 15-minute limit may 
hinder the comparison, but the ATC reason for delay 
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is probably consistent with the type of delays that we 
are trying to model.  

Alternatively, ASPM data provides two different 
types of delay estimates. Its data allows us to 
compare a flight’s actual performance to an idealized 
duration of flight, or to its scheduled arrival time. An 
idealized duration of flight can vary significantly 
from what is in the published schedules which may 
include some padding. ASPM delay estimates based 
on nominal flight times can over estimate delays 
when compared to delays vs. schedules. 

The third source for validation is the DOT’s 
Airline On-Time Statistics [14]. One draw back with 
this data set is that not all carriers are included. 
Airline on-time data cover the 14 U.S. air carriers 
that have at least 1 percent of total domestic 
scheduled-service passenger revenues, plus one other 
carrier that reports voluntarily.  

Table 8 provides validation results comparing 
SDC delay estimates with each of the above 
mentioned data sources for each of the watch list 
airports. The values listed are the correlation 
coefficients from comparing SDC estimated delays to 
each of the corresponding data sets. 

Table 8. SDC Correlations 

 % 
Delayed 

Schedule 
Delay 

Nominal 
Delay 

OPSNET 
Delay 

ATL 0.44 0.50 0.54 0.43 
BOS 0.25 0.32 0.39 0.01 
EWR 0.61 0.54 0.59 0.58 
JFK 0.59 0.59 0.51 0.60 
LGA 0.30 0.34 0.36 0.18 
ORD 0.58 0.60 0.56 0.53 
PHL 0.32 0.13 0.18 0.14 
SFO 0.35 0.49 0.53 0.51 

 

The correlations shown in Table 8 are calculated 
using data from 2008 to 2012. In general, the ASPM 
data sources provide the best validation results, with 
modeled delay estimates for ATL, EWR, JFK, ORD, 
and SFO having the strongest correlations.  

Three factors that may weaken the correlations 
shown above include severe weather events, changes 
to the shape of the schedule over time, and 
inaccuracies in the data used in building the SDC 
model. Schedule shapes can change over time if a 

dominant carrier changes its scheduling paradigm or 
if there is a significant share shift among carriers at 
the airport.  

Future Work 
We are currently working to develop a better 

understanding of how to use long-term weather 
forecasts and significant weather events to enhance 
our delay prediction capabilities. Significant weather 
event forecasts could enhance the delay forecast 
capability for each of the models currently in use 
today. 

We are also exploring different functional forms 
to represent the delay curves. While it is desirable to 
use functional forms with interpretable parameters, 
one feature the current functional form lacks is going 
through (0, 0). That is a desirable feature because it 
would be consistent with the intuitive expectation 
that as operations go to zero, average delays go to 
zero as well. 

We have also seen that schedule shape can be a 
significant factor in determining delays. Analysis of 
how to measure the shape or the degree to which a 
schedule is peaked may be helpful in forecasting 
delays as well. 

Conclusion 
Delay models are not perfect, but we are 

continually working to refine the models we use. The 
SDC method, based on seasonal called rates at 
airports, seems to be a good complement to the other 
delay models currently in use, providing the analyst 
with a richer toolset to estimate delays. We plan to 
further refine the SDC models and use them to 
enhance the delay forecasts reported in the monthly 
delay report. 
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