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ABSTRACT 

We present a method which allows for the first time to per- 
form automaticaly the detection and the tracking of micro- 
scopic objects directly from three dimensional image data. 
It enables to analyse biological moving objects in three di- 
mensional fluorescence image sequences coming from hi- 
ological immunomicroscopy experiments, and get quantita- 
tive data such as the number of objects, their position, move- 
ment phases and speed. 

After a detection step is performed through the mul- 
tiscale analysis of images using a shirt-invariant wavelet 
transform, the tracking is achieved using a Kalman filter and 
an association which enable the position of the moving ob- 
jects to be predicted, refined and updated. Trajectories are 
analysed in terms of different parameters relevant for the 
motility analysis of biological objects. 

1. INTRODUCTION 

Presently, a considerable part of biological imaging is shift- 
ing towards in vivo multidimensional microscopy, allowing 
for the visualisation of biological processes in real time and 
in living systems. From life-visualisation of host-pathogen 
interactions down to the monitoring ofprotein-protein inter- 
actions, novel microscopy techniques like optical sectioning 
or confocal microscopy, allow for a comprehensive and ef- 
fective documentation of dynamic processes by providing 
three dimensional spatial information and an increased spa- 
tial resolution. The arrival of these new generations of mi- 
croscopes into the laboratory has opened the road to a whole 
series of research perspectives dedicated to the study of cel- 
lular dynamics, and of the links between cellular functions 
and their spatial-temporal localisation. It is therefore of ut- 
most importance to develop image processing and analysis 
methods that, inorder to perform the quantitative analysis of 
temporal image sequences in multidimensional microscopy, 
are able to take into account not only the spatial dimensions, 
but the temporal and multispectral ones as well. 
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Here, for the first time, we report a method which al- 
lows to perform in a fully automatic manner the detection 
and the tracking of microscopic objects directly from three 
dimensional image data. This is in contrast with previously 
reported methods, including ours [2], that were able to prrr 
cess two dimensional data only [SI. 

Within a binlogical context, identification and individu- 
alisation of moving objects is equivalent to tracking in the 
three dimensions several objects that are moving in differ- 
ent directions at different speeds and that can aggregate or 
disappear temporarily. To make that problem tractable, we 
have implemented a two steps procedure: firstly, the ob- 
jects are detected in the image stacks thanks to a three- 
dimensional wavelet transform. In a following step, spatial 
positions are linked in order to compute trajectories by us- 
ing a Kalman filtering step followed by an association pro- 
cedure based on the minimisation of a cost function. 

2. SPOT DETECTION 

Spot detection is based on a multiscale approach that uses 
a shift invariant discrete wavelet transform(SI-DWT)[6, 71 
and on the selective filtering of wavelet coefficients. This 
scheme allows to separate and characterize objects of dif- 
ferent sizes by selecting only a vicinity of detail images 
with corresponding scales adapted to the size of the spots 
[6]. The extraction step consists in retaining the significant 
responses of the locally supported detail signal filter to the 
desired features, at the different scales ofthe wavelet repre- 
sentation. This is accomplished through a denoising tech- 
nique using a threshold value which is image and level de- 
pendent and which can be computed automatically from the 
data. We consider that the input image X is contaminated 
by an additive gaussian noise n, Y = X + n, where Y 
is the observation and after the wavelet transform, we have 
W Y  = W X  + W n  where W is the wavelet transform ma- 
trix. Assuming that the noise is stationary in each scale, we 
used Jeffreys' noninformative threshold[4] as an estimation 
method of the coefficients Wi at a given scale i: 
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where U* is the standard deviation of noise at scale i in 
the wavelet domain. A robust estimation[3] of ui is calcu- 
lated from the median of the absolute value of the wavelet 
coefficients at scale i :  

5 .  - median( 1Wl;l) 
0.6745 I -  

To characterize the spots, we finally compute a correla- 
tion image P8(z,y, z )  which is the direct multiplication of 
s images corresponding to the selected scales: 

j .  

P&,?Az) = n WYi(%Y,Z)+ (3) 
i=j, 

The correlation not only significantly reduces the re- 
maining noise, hut it also increases the contrast between the 
objects and the background. 

3. TRACKING 

Once spot positions have been computed by the detection 
procedure, it is necessary to link the successive spatio tem- 
poral coordinates in order to create valid trajectories. In 
order to do this, at each frame, we need to: I )  create a pre- 
diction of the estimation of each object in the next frame; 
2) match each predicted estimation with a detected ohject 
in the next frame; and 3) update each estimation in order to 
built a better prediction at the next step. In the following, 
we describe the principles of the Kalman filter, the choice 
of  a cinematic model well adapted to our ohjects and the 
association procedure. 

The Kalman filter is a technique used to estimate val- 
ues that vary over time. We now recall its principles[l, 21 
and describe the way we used it in our method. In the fol- 
lowing, the discrete time is denoted t .  Vectors are written 
with lower case hold letters: x ,  matrices are written with 
upper case hold letters F and the transpose is denoted with 
T .  The notations x(t  + l i t)  (vector) and P ( t  + l l t )  (ma- 
trix) denote respectively the conditional expectation of x 
at time t + 1 given Zt and the conditional expectation o f  
i ( t  + l l t ) i ( t  + at time t + 1 given Zf where z' = 
{ z ( j ) , j  = {l, ..., t } } .  The estimation of the vector x at 
timet is writtenf(tlt), thepredictionofthevectorx at time 
t i s  writ teni(t+ll t) ,  the error ofestimationis writteni(t1t) 
(wheref(t1t) = x ( t )  -%(t i t ) )  andthe error ofpredictionis 
written i ( t  + lit) (where %(t + l ( t )  = x(t  + 1) -%(t + lit)). 
The system state is expressed as: 

(4) 
x ( t  + 1) = F( t )x ( t )  + u( t )  

= H(t)x(t) + p ( t )  { 4 t )  

Given the current time t, equation (4) gives the new state 
x( t  + 1) of the system at time t + 1 (the state x contains the 
values that describe an ohject; for instance position, speed, 

intemity, etc...), where x ( t )  is the previous state. F(t) is the 
transition matrix which models the evolution of the system 
and computes the next state fromthe previous one. 
Equation (4) gives also the measurement z, where H is the 
observation matrix. H is an image of the observability of 
the system; it is a diagonal matrix equal to matrix identity 
(denoted I) if the system is fully observable. 

The last term of each equation, v( t )  and p(t), are re- 
spectively the state noise (disturbance on the system) and 
the measurement noise. Both noises are assumed random, 
uncorrelated ( :E[u( i )p( j ) ]  = 0 V i )  and centered (E[v(i)] = 
0, E[p(i)]  = 0 Vi) ;  their covariance is written: 

The algorithm is iterative and each loop has three steps: 
calculation of the initial predictions, selection by the associ- 
ation step ofthe hest adapted measurement z for each object 
(relative to the prediction and to the other objects) and re- 
finement of the estimations. 
There are two predictions: the prediction of states and the 
prediction of the state error covariance matrix. They are 
given respectively by: 

%(t + l ( t )  = E[x(t + l)IZt] (7) 
P ( t  + l i t )  = E[%(t + I)fT(t + l) lZt] (8) 

and can he computed recursively using: 

i ( t  + l l t )  = F(t)%(tlt) (9) 
P(t + lit) = F(t )P( t l t )FT( t )  + Q(t)  ( I O )  

where i ( t l t )  andP(t1t) are the refinedestimations obtained 
at the previous iteration. 

The innovation is given by: 

i(t + l i t )  = ~ ( t  + 1) - H(t + l)%(t + l i t) .  (11) 

The covariance of the innovation S is expressed as: 

S ( t +  1) = H(t+l)P(t+ l l t ) H T ( t +  1) +R(t+ 1) (12) 

This last expression is used to calculate the Kalman gain 
K that will allow the prediction to he refined as shown in 
equations(14) and(l5): 

K(t + 1) = P(t + l l t )HT(t  + l ) S - ' ( t  + 1) (13) 

The refinedestimation i ( t +  l i t +  1) ofthe predictioni(t + 
I l t )  takes into account the observation z(t  + 1); it is given 
by: 

k(t  + lit + 1) = i ( t  + lit) +K(t + 1)i(t + lit) (14) 
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The refinement P(t + llt + 1) of the covariance matrix of 
the errors ofthe state P(t + lit) is: 

P(t + lit  + 1) = [I - K(t + l)H(t + l)]P(t + llt) (15) 

Equation (.14) shows that the refinement of the state predic- 
tion is the addition of the first prcdiction (which trnsts the 
model) and of the innovation (assessment of the prediction 
error) weighted by the gain matrix K. Depending on the 
quality of the model describing the data, the gain matrix 
will allow (or not) the refined estimation to get closer to the 
first prediction. 

A state x ( t )  (respectively a measurement ~ ( t ) ' )  is a vec- 
tor of R" where each coordinate represents a characteristic 
(respectively a measure of a characteristic) of an object, at 
time t. Typically, the three first coordinates represent the 
3D-space location. In our application, two dimensions are 
added to the measurement vector to represent the area (num. 
of pixels) and the intensity (mean intensity on the area) of a 
spot as follows: 

Z( t )T  = [zt,yt,tt,nt,it] (16) 

A model M = (F, H, Q, R) is a set of matrices that 
represent the dynamics, the observation and the noises of 
the process under estimation. For example, one may con- 
sider the following expression for F: 

r r 2 0 0 - 1 0  0 1  

p - q ' = = p :  0 0 1  : 0 : 0 0 
zt-1 

which represents a linear extrapolation of the last two 
points. When there is no a priori information ahout the 
movement of the objects in a sequence, the transition ma- 
trix is best represented by the identity matrix. This means 
that the hest prediction that can he obtained from the com- 
putation is the last estimation itself and that the movement 
is random. 

The challenge therefore is to find a model M that hest 
matches the dynamics of the process. This is accomplished 
by finding isolated objects which are used to test several 
type of predefined models. The benefit of using isolated 
objects is that the detections do represent the same object 
without ambiguities and therefore that the computed tracks 
are correct. To compare models and select the one which is 
hest adapted, we compute the first two moments of the error 
between the Kalman filter prediction and the real measure- 
ments. The model which minimizes these values is selected. 

The association stage consists of finding the best matches 
between the detectionsand thepredictionsohtdined with the 

Kalman filter. The hest match, however, does not mean that 
an optimal global matching, like Jonker and Volgenant'sal- 
gorithm [ 5 ]  produces, is achieved. This is due to the fact that 
generally the number of predictions never equals the num- 
ber of measurements. Indeed, objects may leave the volume 
and as a consequence the measurements for the tracks asso- 
ciated to them would not he available. Likewise, if an oh- 
ject enters the volume, a new track is to he initiated without 
previous measurements associated to it. Also, if a detec- 
tion originates from noise or spurious data, il should not be 
associated with a track. Accordingly, the assignment proce- 
dure is as follows: first, we compute all the costs between 
measurements { z j ( t +  l ) , j  E (1,". ,n}}  andpredicted 
measurements{i,(t+llt),i E 11,". ,m}},givenhy: 

c =  ... ! cost(P& + l l t ) , Z j ( t  + 1)) 

where cost(a, b) is a generalised distance function, with 
the Euclidian distance being used for the spatial coordi- 
nates. The assignments (QO, ..., a[) (where 1 = min(n, m)) 
are then found according to: 

as = ( i k , j k )  = axg min C ( i , j )  (19) 
( C d c z J k  

with 

Jo = {( i , j ) / i  E {l,... , m } , j  E {l,... ,7L}$20) 

J k + i  = J k \ { ( i , j ) / { i = i b }  U { j  = j k } l  (21) 

The search for assignments stops when either J k  = {a} or 
C(&, j k )  > q. with 1) a fixed threshold which represents the 
maximum cost between a detection and its prediction. This 
assignment technique is a sub optimal one in a global sense, 
that is to say, it may occur that 

WI, .., b m i n c n , m , } i c  W r )  < c(&) (22)  

hut it does produce however much better results than an op- 
timal assignment. 

k b 

4. RESULTS 

In order to assess the quality of our method, we have gener- 
ated sequences with artificial objects whose characteristics 
are as close as possible lo real biological ohiects. The ob- 
jects are represented by 3D Gaussian shapes with different 
random covariance matrices in order to get different shapes 
of different sizes (from 8x8,s to 20x20~20 voxels) and are 
included in a 100x100~15 volumetric image. Several se- 
quences of 50 volumetric images were generated where the 
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objects were made to move randomly following two differ- 
ent models of movement, with an additionnal random mod- 
ification of the covariance matrix with time to make their 
aspect change. Also, white Gaussian noise N( 128, I O )  was 
added to the sequence in order to represent the noise present 
in typical microscopy images. Figure 1 fop shows differ- 
ent views of a frame, where the high density of objects and 
the high level of noise can he appreciated. Figure 1 bot- 
i o i ~  shows the quality of object detection achieved with our 
method. Figure 2 show the trajectories obtained when per- 
forming the tracking on the whole sequence. Finally, Figure 
3 gives a summary of the influence of the number of objects 
within the same volume on the performances of the algo- 
rithm. The results are shown for 10, 20,40 and 60 objects, 
and it  can be appreciated that even at a high density of oh- 
jects the performances of the algorithm are correct. 

5. CONCLUSION 

We have presented a method to detect and track microscopic 
objetcs directly from three dimensional image data in bi- 
ological immunomicroscopy images. The method uses a 
shift-invariant wavelet transform forthe detection and a Kal- 
man filtering technique associated to the minimization of a 
cost function for the tracking. We have shown on generated 
sequences that thanks to a local assigment association J- 
gorithm, it is possible to establish valid trajectories even in 
the cases where the high density of objects gives ambiguous 
detection measurements 
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Fig. 1. Object detection in 3D stack. Top: original noisy 
frame. Bottom: detected objects. On both: angle of view 
45,0,45 

Fig. 2. Tracks of objects in a 3D sequence 

Nb of obj. I % correctly tracked 
10 I 95% 

87% 
71% 
59% 

Fig. 3. Influence of the numher of objects on the quality of 
tracking, in a 100x100~15 voxels volume. 


