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Abstract—In this paper, we consider a Linear Time-Varying
(LTV) model to describe the dynamics of a leader-follower algo-
rithms with mobile agents. We first develop regularity conditions
on the LTV system matrices, according to a random motion of
the agents and the underlying communication protocol. We then
study the convergence of all agents to the state of the leader,
and show that this requires the underlying LTV system to be
asymptotically stable. We introduce the notion of slices as non-
overlapping partitions of the LTV system matrices, and relate
the convergence of the multi-agent network to the length of these
slices. Finally, we demonstrate the convergence and steady-state
of a dynamic leader-follower network through simulations.

Index Terms—Leader-follower, LTV systems, Asymptotic sta-
bility, Dynamic networks.

I. INTRODUCTION

In leader-follower networks, the leader nodes play the role
of an input, and their influence is propagated throughout the
network. The follower nodes, on the other hand, update their
states according to the information they receive from their
neighbors through an iterative, distributed algorithm, [1]. The
goal is to converge to the state of one leader (or a function of
multiple leaders). A common approach is through weighted
averaging of the states of the neighboring nodes. In this
approach, each follower state is guaranteed to converge to the
leader(s) state(s), if the underlying network graph is connected,
details can be found in [1], [2].

Leader-follower networks have been widely used in many
practical applications such as vehicle formation control, and
robotic systems [3], [4]. The study of leader-follower networks
can also be cast in the context of sensor localization problem,
where only a few sensors in the network, referred to as
anchors, are aware of their exact locations, and steer the entire
network towards finding their locations [5]. A large amount
of research has focused on how to control leader-follower
networks, [6]–[12].

In this paper, we consider a leader-follower network where
the agents move randomly in a bounded region of interest
and exchange information with nearby agents in their com-
munication radius. We assume that only one agent at each
iteration, updates its state as a linear combination of the neigh-
boring states. We consider different update scenarios based on
whether or not there is a leader within the communication

region of the updating sensor, and note that an agent may not
always be able to find a neighbor.

We provide a Linear Time-Varying (LTV) model, which
describes the leader-follower dynamics and show that the
steady-state of the network is independent of the followers’
initial states if the corresponding LTV system is asymptotically
stable. In order to derive this result, we partition the entire
chain of the LTV system matrices into non-overlapping slices.
We define a slice as the product of consecutive system matrices
and link the convergence to the length of the slices.

We now describe the rest of the paper. In Section II, we
formulate the problem and describe the dynamics of a leader-
follower network. In Section III, we provide the sufficient
conditions for the convergence of the network to the state(s)
of the leader(s). We provide simulation results in Section IV,
and finally Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a network of 𝑁 mobile agents, consisting of a set
of 𝑠 leaders denoted by 𝜅, and a set of 𝑛 followers denoted
by Ω. We assume that all of the agents are moving arbitrarily in
a bounded region of interest and have a limited communication
radius, 𝑟. The agents can exchange information if they find
another agent within their communication region. For the 𝑖th
agent, we denote the set of neighbors (not including agent 𝑖)
at time 𝑘 by 𝒩𝑖(𝑘), and define 𝒟𝑖(𝑘) = 𝒩𝑖(𝑘) ∪ {𝑖}.

A. Leader-follower dynamics

Let u(𝑘) ∈ ℝ
𝑠 and x(𝑘) ∈ ℝ

𝑛 be the state of the leaders
and followers at time 𝑘, respectively, concatenated in vectors
of appropriate lengths. We consider the following linear time-
varying system to describe the leader-follower dynamics:

x(𝑘 + 1) = 𝑃𝑘x(𝑘) +𝐵𝑘u(𝑘), 𝑘 ≥ 0, (1)

where 𝑃𝑘 ∈ ℝ
𝑛×𝑛 is the time-varying system matrix,

and 𝐵𝑘 ∈ ℝ
𝑛×𝑠 is the time-varying input matrix. The

leaders inject information to the system, while their states are
unaffected by other agents. Thus, we have

𝑢𝑚(𝑘 + 1) = 𝑢𝑚(𝑘) = 𝑢𝑚(0), (2)

where 𝑢𝑚(𝑘) is the (scalar) state of the 𝑚th leader at time 𝑘.
On the other hand, the state of a follower at each time is
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influenced by its neighboring agents. Note that since all agents
are mobile, the neighboring interactions change over time, and
it is not guaranteed for an agent to find a leader among the
neighboring agents at time 𝑘. It is also possible that an agents
does not find any other agent within its communication radius.
We summarize these state-update scenarios for agent 𝑖 ∈ Ω in
the following:

(i) When there is no neighbor, i.e. 𝒩𝑖(𝑘) = ∅, the agent
maintains its current state, and we have

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘), (3)

in which 𝑥𝑖(𝑘) is the (scalar) state of the 𝑖th follower at time 𝑘.
(ii) When all of the neighboring agents are followers,

i.e. 𝒩𝑖(𝑘) ∩ 𝜅 = ∅, the agent updates its state as a linear
combination of the neighboring states, and we have

𝑥𝑖(𝑘 + 1) =
∑

𝑗∈𝒟𝑖(𝑘)

(𝑃𝑘)𝑖,𝑗𝑥𝑗(𝑘), (4)

where (𝑃𝑘)𝑖,𝑗’s are the updating coefficients assigned to the
neighboring agents at time 𝑘.

(iii) When there is at least one leader among the neighbors,
i.e. 𝒩𝑖(𝑘) ∩ 𝜅 ∕= ∅, the agent update is a linear combination
of the neighboring states, and we have

𝑥𝑖(𝑘 + 1) =
∑

𝑗∈𝒟𝑖(𝑘)∩Ω

(𝑃𝑘)𝑖,𝑗𝑥𝑗(𝑘)

+
∑

𝑚∈𝒟𝑖(𝑘)∩𝜅

(𝐵𝑘)𝑖,𝑚𝑢𝑚(0), (5)

in which (𝐵𝑘)𝑖,𝑚’s are the updating coefficients assigned to
the neighboring leaders at time 𝑘.

B. Assumptions

We now enlist the assumptions made on the above updates:
A0: When there is no leader among the neighbors, an agent
updates its state as a linear-convex combination of the neigh-
boring nodes, and we have∑

𝑗∈𝒟𝑖(𝑘)∩Ω

(𝑃𝑘)𝑖,𝑗 = 1. (6)

A1: The weights assigned to the neighboring nodes can not
be arbitrarily close to zero:

0 < 𝛽1 ≤ (𝑃𝑘)𝑖,𝑗 < 1, ∀𝑗 ∈ 𝒟𝑖(𝑘), 𝛽1 ∈ ℝ. (7)

Also it can be inferred from Eq. (7) that when an update
occurs, a non-zero self-weight is always assigned to the agent’s
current state, which does not let the agent to completely forget
the past information.
A2: When there is a leader among the neighbors, a certain
amount of information is always contributed by the leader,
which on the other hand restricts the amount of (unreliable)
information received from other neighboring nodes, i.e.∑

𝑗∈𝒟𝑖(𝑘)∩Ω

(𝑃𝑘)𝑖,𝑗 ≤ 𝛽2 < 1. (8)

The above assumptions are not uncommon in the related
literature. While stochasticity and non-negativity are standard

in multi-agent fusion and relevant applications, Eqs. (7) and (8)
ensure that no agent may be entrusted with the role of a
leader. Note that under these assumptions, the LTV system
matrices, {𝑃𝑘}’s, are always non-negative, stochastic, or sub-
stochastic. Also, without loss of generality, we assume that
only one agent can update its state at any time. Hence, a system
matrix at time 𝑘 is the identity matrix, except for at most one
row, which can be either stochastic or sub-stochastic.

In the remaining of this paper, we consider a network
containing only one leader, i.e. we assume ∣𝜅∣ = 1. The goal
for the entire network is to converge to the state of the leader,
i.e. we would like

lim
𝑘→∞

x(𝑘) = 1𝑛𝑢, (9)

where x(𝑘) ∈ ℝ
𝑛 collects the states of all of the followers, 𝑢 is

the scalar state of the (single) leader that is known and does not
change over time, and 1𝑛 is the 𝑛×1 column vector of 𝑛 1’s.
It can be verified that when there are multiple leaders, the
agents converge to a linear-convex combination of the leader
states. In the next section, we propose a framework to study the
conditions under which the leader-follower network converges
to the state of a leader.

III. CONVERGENCE

Before we provide our main results, let us start this section
with a brief discussion on the convergence of an infinite
product of stochastic and sub-stochastic matrices to zero,
which we use later to study the convergence of the leader-
follower network.

A. Convergence of an infinite product of stochastic and sub-
stochastic matrices

In the following, we investigate the convergence of

lim
𝑘→∞

𝑃𝑘𝑃𝑘−1 . . . 𝑃0, (10)

in which 𝑃𝑘 is the LTV system matrix at time 𝑘, as described
in Section II. Convergence of an infinite product of (sub-)
stochastic matrices is an ongoing research, and often involves
computation of the Joint Spectral Radius (JSR), [13], of all
matrices in the product, which is an NP-hard problem even in
the case of only two matrices, [14].

In [15], we provide an alternative approach, which links
the norm properties of subsets of system matrices to the
convergence of the infinite product in Eq. (10). In particular,
we divide system matrices into non-overlapping slices. We
define a slice as the smallest product of consecutive systems
matrices such that each slice has a subunit infinity norm, i.e.
all row sums are strictly less than 1, and all slices cover the
entire sequence of system matrices.

Slice representation is depicted in Fig. 1, where the 𝑗th slice
is denoted by 𝑀𝑗 . Each slice is initiated by a sub-stochastic
matrix [15], and the length of the 𝑗th slice is defined as

∣𝑀𝑗 ∣ = 𝑚𝑗 −𝑚𝑗−1, 𝑚−1 = 0. (11)
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Fig. 1. Slice representation

Using the slice notation, we can study the convergence of

lim
𝑡→∞𝑀𝑡𝑀𝑡−1 . . .𝑀0, (12)

instead of Eq. 10, note that 𝑘 > 𝑡. In [15], we provide the
largest upper bound on the infinity norm of a slice, which
is strictly less than one and approaches one as the length of
a slice increases. Thus, the convergence of the product of all
slices (to zero) depends on the size of the slices. The following
theorem summarizes the results in [15]:

Theorem 1. With assumption A0-A2, Eq. (12) converges to
zero in either of the following cases:

(i) The length of each slice is bounded, i.e.

∣𝑀𝑗 ∣ ≤ 𝑁 < ∞, ∀𝑗, 𝑁 ∈ ℕ; (13)

(ii) The length of an infinite subset of slices, denoted by 𝐽1,
is bounded, i.e.

∣𝑀𝑗 ∣ ≤ 𝑁1 < ∞, ∀𝑀𝑗 ∈ 𝐽1, (14)

∣𝑀𝑗 ∣ < ∞, ∀𝑀𝑗 /∈ 𝐽1; (15)

(iii) There exists a subset of slices, denoted by 𝐽2, such that

∃𝑀𝑗 ∈ 𝐽2 : ∣𝑀𝑗 ∣ ≤ 1

ln (𝛽1)
ln

(
1− 𝑒(−𝛾2𝑖

−𝛾1 )

1− 𝛽2

)
+ 1,

(16)
for every 𝑖 ∈ ℕ, and ∣𝑀𝑗 ∣ < ∞, 𝑗 /∈ 𝐽2.

The complete proof is beyond the scope of this paper and
can be found in [15]. We now explain the intuition behind
Theorem 1:

Case (i): The upper bound on the infinity norm of a slice
is a function of the slice length [15]. In this case, a bound
on the length of each slice leads to an upper bound on
the corresponding infinity norm, which is a positive number
strictly less than one. Thus, the infinity norm of the infinite
product of slices converges to zero.

Case (ii): We can partition the entire chain of slices into two
sets: one set includes an infinite number of slices with bounded
length and thus with a subunit infinity norm, whereas the other
set includes the remaining slices with finite but unbounded
length. Similar to the previous case, the product of slices in
the first set converges to zero, which in turn leads to the

convergence of the whole product to zero, i.e. the absolute
asymptotic stability of the system.

Case (iii): When there exist an infinite subset of slices
whose lengths are not bounded, but do not grow faster than
the exponential growth in Eq. (16), we can still guarantee the
asymptotic stability of the system. If the slices in this subset
are such that there exist a slice with length following Eq. (16)
for every 𝑖 ∈ ℕ, the infinite product of slices converges to a
zero, and thus the system is absolutely asymptotically stable.
Note that the order does not necessarily matter in Eq. (16).

In what follows we use the above results to study the con-
vergence of the dynamic leader-follower network, described
by Eq. (3) with the LTV matrix form in Eq. (1), to the state
of a leader, under the assumptions described in Section II.

B. Leader-follower convergence

In this section, we characterize the asymptotic behavior of
the dynamic leader-follower algorithm. When there are multi-
ple leaders in the network, the convergence of the followers to
a linear-convex combination of the leaders may be considered,
see e.g. [5], [16]. However, in what follows we consider one
leader in the network, i.e. 𝑠 = 1. We provide our main result
in the following theorem:

Theorem 2. Consider a network of 𝑛 followers and one leader
with the following update:

x(𝑘 + 1) = 𝑃𝑘x(𝑘) +𝐵𝑘𝑢, 𝑘 ≥ 0, (17)

in which 𝑢 is the state of the leader. With assumption A0-A2,
in addition to the following∑

𝑗

(𝑃𝑘)𝑖,𝑗 + (𝐵𝑘)𝑖,𝑗 = 1, ∀𝑘, (18)

all agents asymptotically converge to the state of the leader.

We refer the reader to [15] for the detailed proof. Instead, in
what follows we briefly give the intuition behind the proof
of Theorem 2. Using the slice notation, we first represent the
updates in Eq. (17) as

y(𝑡+ 1) = 𝑀𝑡y(𝑡) +𝑁𝑡𝑢, 𝑘 ≥ 0, (19)

where y(0) = x(0). We then use the fact that the spectral
radius of each slice is subunit, to show that Eq. (19) converges
to a limit, y∗. We further show that this limit is unique, and
for the limiting states of the followers, x∗, we have

x∗ = y∗ = 𝑀𝑡y
∗ +𝑁𝑡𝑢 = (𝐼𝑛 −𝑀𝑡)

−1
𝑁𝑡𝑢. (20)

Finally, we show the convergence of the network to the state
of the leader by proving that (𝐼𝑛 −𝑀𝑡)

−1
𝑁𝑡 = 1𝑛.

IV. SIMULATIONS

In this section, we present the key concepts of the theoret-
ical results described in this paper with simple illustrations.
In Fig. 2, we show the dynamic leader-follower algorithm,
with 𝑛 = 4 mobile agents, and 1 mobile leader. Each node
can only explore a restricted region, and the communication
radius of all agents is set to 𝑟 = 1.5. Fig. 2 (top left) shows
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the random trajectories of each node for the first 30 iterations.
In Fig. 2 (top right), we show an instance where none of
the agents can find the leader or other agents within their
communication radius, hence no update occurs. Fig. 2 (bottom
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Fig. 2. Updates and motion in a leader-follower network of size 5; red triangle
indicates the leader; blue circles represent the followers;

left) shows the case when only one follower communicates
with the leader; resulting in a sub-stochastic system matrix,
whereas Fig. 2 (bottom right) depicts the information exchange
between two follower nodes. This setup can be extended to
any scenario with arbitrary motion models, network sizes and
configurations, where the communication radii and random
motion models ensure that the information reaches from the
leader to each follower node. Also note that the setup can be
extended to the case where many followers are never in the
communication radius of the leader and the information must
be propagated within the followers.

Finally, Fig. 3 shows the state trajectories at the followers
converging to the state of the leader, chosen at 𝑢 = 3. The

50 100 150 200 250 300 350 400 450 500
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Leader with state u=3
Agent $1$
Agent $2$
Agent $3$
Agent $4$

Fig. 3. Convergence of 𝑛 = 4 agents in a dynamic leader-follower network;
blue line indicates the state of the leader. 500 iterations are shown for better
visibility of the transients.

convergence is guaranteed as long as (i) each sensor assigns a
non-zero weight to its past state, and (ii) no agent is assigns

an arbitrarily large weight on any neighboring node ensured
by Assumptions A0-A2.

V. CONCLUSION

In this paper, we study the leader-follower problem in
mobile multi-agent networks. In particular, we study the con-
vergence of an arbitrary number of mobile agents to the state
of one leader. We model the corresponding leader-follower
algorithm as an LTV system whose system matrices are
random and can be either identity, stochastic, or sub-stochastic.
We show that the network converges to the state of the leader,
if the infinite product of system matrices converges to zero,
which does not necessarily require bounded slice lengths.
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