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ABSTRACT 
This paper is a compilation of several correlation functions 
which were developed by the author and have been used for 
the past several years in signal analysis applications The affine 
invariant pseudometric is a corrlation function nromalized to 
be independent of power, DC bias and phase rotation and was 
developed to track radar video sync pulses. I t  has recently 
been successfully used to track glottal pulses in voiced speech. 
The cross-power spectrum represents a significant improve- 
ment over standard power-spectral methods for recovering 
weak stationary tones in noise. The harmonic rejecting corre- 
lation function is a variant of the Wigner transform which 
resolves fundamentals from harmonic and subharmonic fea- 
tures produced by periodic waveforms. Each of these algo- 
rithms has been tested and used on a variety of data. Mast 
importantly, for each of the methods described here, closed 
form solutions are derived, which enable easy implementa- 
tions. 

1. THE AFFINE INVARIANT PSEUDOMETRIC 
In conventional correlation, the bulges are dependent 

on the signal power and DC bias. This can cause errors in 
detecting signals with fluctuating power. To overcome this 
problem, the approach of this paper is to construct a Euclid- 
ean pseudometric which is invariant under all complex 
affine transformations. This pseudometric properly extends 
the notion of Euclidean distance and is easily computed 
using standard fast convolution methods. The fact that it is 
invariant under affine transformations means that signal 
detection is truly independent of received signal power and 
DC bias. Detection is not a constant false alarm rate 
(CFAR) process since there is still a dependence on the 
received power, which is not estimated. 

We assume a continuous signal G ( t )  parameterized by 
time, and a matched filter F ( t )  which is the ideal waveform 
of the signal component of interest. We assume also that the 
function F has as its support region, the interval I = [ r e  t l ]  

and equals zero outside of its support interval. We define 
the length of the interval I to be 

LI = r ,  - t o *  (1.1) 

and, in a slight abuse of notation, the un-normalized mean 
of F (1) on the interval I is 

FI = I F ( t ) d t ,  (1.3) 

C I ( F , G , z )  = h(t)G(l+r)dr .  (1.4) 

d , ( F , G )  = I I F ( t )  -G( t )12dt  (1.5) 

I 
The un-normalized cross-correlation function of F and 

G is 

I 
and the Euclidean distance between F and G is 

I - -  
= j I F ( t ) 1 2 +  IG ( t ) l 2 - F ( r ) G  ( 1 )  - F ( r ) G ( r ) d t  

= PI(F) + P I ( G )  - 2 R e ( C I ( F , G , 0 ) ) .  
I 

We can now define the pseudometric invariant under a 
general affine transformation of G as 

r ( F , G )  = minA,,dI(F,AG+B) (1.6) 
= m i n A , , I [ F ( t )  - A G ( r )  - B ]  [ F ( t )  - A G ( t )  - B ] d r ,  

I 

where A = reie and B = pe" are arbitrary complex num- 
bers. Since d,(F,AG +B) is continuous in r , e , p  and cp,and 
A and B are bounded below, dI (F,  G )  exists. The quantity 
gI is a pseudometric, which is, in particular, non-negative. 
The expression (1.6) assumes the value zero if and only if 
G is equal to an affine transformation of F on the interval I 
except on a set of measure zero. 

In order to obtain a closed form representation for the 
pseudometric 4, we need only set the partial derivatives of 
dI (F,  AG + B )  with respect to r, p, 0 and cp equal to zero and 
solve the resulting system of equations. These partial deriv- 
atives are given by 

2 = ; . 4 G ( ? )  [ F ( r )  -AG(t )  - E ]  
. -  
+ A G ( ? )  [ F ( r )  -AG(r )  - E ] &  (1.7) 

$ = - c G ( t )  [ F ( r )  -AG(?)  -81-m [ F ( r )  - A G ( t )  - E ] &  

~ = - ' ~ [ F ( r ~ - A G ( f ) - E l + ~ [ F ( r ) - A G ( f ) - E ] d r  aP P I (1.9) 

g=-p[F(r) -AG(r )  - E ]  + z [ F ( r )  -AG(r )  - E ] d t  (1.10) 
acp I 

The un-normalized power of F (1) on the interval I is By setting the partial derivatives to zero, we obtain 
0 = A G ( t )  [ F  ( 1 )  -AG ( t )  - B ]  dt 

(1.11) 
I I PI (0 = !IF (0  I 2dt,  ( 1 .a 
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waveform. In this process, the filter F can be modified to 
have complex mean equal to zero by subtracting the filter 
mean from the OrigiMl signal. If we assume th3t the filter F 
has zero mean then the minimum value of Q (F, G )  is given 
by formula (1.15a), which reduces to 

= A(CI(F,G,O) - A P , ( G )  -8Gl ) .  

From (1.9) and (l.lO), we obtain 

(1.12) 0 = B F ( t ) - A G ( f )  -Bdt I 
I 

= B(F,-AG,-BL,) .  
Combining (1.6), (l.ll), and (1.12), we obtain 

(1.13) df (F ,G)  = m i n A , B I F ( f )  [ F ( t ) - A G ( t )  - B ] d t  
I 

= minA,B { P ,  (F) -ZC, (F, G, 0) -BF,} 
We now solve (1.11) and (1.12) for A and B .  Clearly, 

there are four cases since A and B can assume the value 
zero or can be non-zero. In the non-degenerate case where 
A and B are not zero, 

FIG,- CI (F, G, 0) LI 
A =  (1.14a) 

pIl ' - P, (a L, 

and 
GIG, (F, G, 0) -FIP, (G 1 ) 

E =  (1.15a) 

If A = 0, and B + 0, we have the degenerate condition 

B = FI -. 
LI 

If B = 0 and A # 0, we have the degenerate condition 

I q2 - P ,  (a L, 

(1.1 5b) 

(1.14~) 

Finally, we can have the degenerate case in which 

Combining (1.13), (1.14), and (1.15), we obtain the 
following representations for the affine invariant pseudo- 
metric 

A = 0 and B = 0. 

Case3: A Z O  andB = 0 
- 

(1.15d) 

(1.16) 

which is the preferred form of the pseudometric for imple- 
mentation. 

Assume that 
(1.17) 

G ( t )  = F ( 1 )  + K .  (1.18) 

F ( 1 )  = F ( f ) + K  
and 

where ( 1 )  is mean zero on the interval I and _C ( 1 )  is the 
representative of the affine class for which the Euclidean 
distance to ~ ( r )  is minimized. The Euclidean distance 
between F and G is equal to the Euclidean distance 
between and G, therefore, representations (1.15b) and 
(1.1%) are invalid and the general form of the pseudomet- 
ric represented by equations (1.15) is given by (1.15a). 

Equations (1.15a) and (1.16) have all of the properties 
of pseudometric unless G ( 1 )  is constant on the interval I. 
In this case the denominator vanishes and the expression 
blows up. If G (1) is not constant, the denominator is posi- 
tive, and the pseudometric is non-negative, with the value 
zero occurring only if F and G differ by an affine transfor- 
mation. 

To implement the pseudometric, the ideal waveform F 
is estimated, and 17 computed by subtracting the mean of 
the function F from F. To be precise, for an arbitrary func- 
tion F. 

F ( f )  = F ( t )  -meanl(F) '  (1.19) 

where I is the interval of support of F. The un-normalized 
power of I; is calculated once. The cross-correlation of F 
and G is calculated using fast convolution, and the two 
terms in the denominator of (1.16) are computed using fast 
convolution or recursively using 

and 
G[r+e,r+L+e] = G[r,r+Ll +GLr+L,r+L+e] - G [ i , r + e ] .  (1.2') 

2. THE CROSS-POWER SPECTRUM (CPS) 
The Cross-Power Spectral (CPS) estimation algorithm 

is essentially channelized FM frequency estimation based 
on a time varying Fourier transform. The Fourier transform 
of the signal over the observation interval is given by 

(2.1) f (a) = IX (1) e-"'df 
I 

The value of the pseudometric $ ( F , G )  is the mini- 
mum of the expressions (1.15). Clearly, the value of (1.15d) 
is bounded below by the value of (1.15b), so (1.15d) does 
not apply. sequence as 

The most common correlation operation is a process of 
comparing a fixed nearly matched filter with an incoming 

We introduce a time dependency by partitioning time 
into contiguous non-overlapping intervals I,, each of length 
L . We can then define a time dependent Fourier transform 

(2.2) 
2. (a) = J X  ( t )  e-'"'dr 

1" 
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For each o the sequence (2.2) represents a signal 
which has been heterodyned by a complex phaser e'@', low- 
pass filtered by an FIR filter with frequency response 
S ~ ~ C ~ ( W L )  and sampled once in each interval I , .  It is this 
property which is exploited by the CPS algorithm. 

The CPS estimator can now be defined by 

n = l  

By contrast, the normal power spectral average is given by 

(2.4) 
l N -  

P (0) = E 2 L (0)  Z n  (0)  . 
n = l  

For stationary tones, the expected value of the magni- 
tudes of (2.3) and (2.4) are the same. The difference 
between the two functions is that the terms in (2.3) are all 
complex. If we assume that x ( t )  is a stationary tone in 
white Gaussian noise of the form 

X ( t )  = e'"'+N(t),  

the expected value of the argument of the n" term in 
expression (2.3) is dependent only on o' and not n .  The 
argument of g (o) now has a convenient interpretation. We 
note that the Fourier transform A n  (1) is the crosscorrelation 
of the signal X, ( r )  restricted to the interval I,, with a cosine 
wave with initial phase zero on that interval. The expected 
value of the argument of each term of (2.3) is the average 
phase advance of the function ei(cP'-cP)' over the interval I,, . 
Therefore, the CPS is precisely a channelized FM detector. 

In practice, the CPS is implemented using an FFT. In 
this case, the Fourier basis consists of complex phasers of 
the form 

b n = e  , 

which have an integer number of complete cycles in the 
interval of integration. By the preceding comments, if 

1On---'I < E *  1 (2.7) 

where the last term is a bias term which is dependent on the 
noise, and the argument function assumes values in the 
interval (-n, x )  . The equation (2.8) is the CPS interpolation 
formula. 

The standard implementation of the CPS algorithm is 
to compute 

where $ is a vector consisting of the CPS coefficients cal- 
culated by applying (2.3) to the FFT coefficients. The 
approximate frequenc of the signal is recovered from the 
magnitude vector IGr. the interpolation formula is then 
applied to improve the frequency estimate. 

The CPS algorithm has been tested extensively on a 
variety of data, The performance is much better than con- 
ventional spectral detection / estimation methods based on 

(2.9) 2 
g = ( @ ( a t ) ) .  

averages of short term power spectra. 
I 1 

1 i 1  

Typical 128-point power spectral average of tone in noise 
I I 

128-point cross-power spectral average of tone in noise 

3. THE "HARMONIC" REJECTING 
CORRELATION FUNCTION 

In the analysis of radar signals, bulges at multiples of 
the fundamental Pulse Repetition Interval (PRI) are fre- 
quently referred to by the term 'time harmonics'. Since 
these bulges occur at multiples of the periods of signals, 
they should properly be called subharmonics. In this sec- 
tion, we develop a complex valued correlation function 
which detects only fundamental periodicity and rejects both 
time and frequency harmonics. The argument of this func- 
tion is exactly the function normally refered to as the 'PRI 
phase' of the signal. In addition, this correlation process 
admits a CPS type interpopulation for accurate recovery of 
signal periodicity. 

We start by defining the correlation integrals which are 
the main result of this section. If F and x are two signals , 
the harmonic rejecting correlation functions are given by 

It is clear that the formulae in (3.1) are integrals along 
hyperbolae on the Wigner distribution surfaces. 

To derive the properties of the correlation functions, 
assume that F and x are periodic with minimum period p 
satisfying 

and 

The functions (3.1) vanish in the limit for all values of 7 
equal to non-unity integer multiples of p. To be precise, 

and 

where L is the length of the interval of integration lL. 
The proof of (3.3) follows immediately from the peri- 

odicity of F and X.. The factor e2nit'r effectively winds the 
integrand around the origin. If 7 = np and n >  1 then the 
expected complex mean of the integrand is zero, and (3.3) 
follows. To make this precise, we can rewrite the equations 

X ( r )  = X ( r + p ) .  (3.2) 

F ( t )  = F ( t + p ) .  

l imn,,C,,(F,X,np,IL) = O , ( n = 2 , 3 , 4  ,... ) ,  

l im,, ,A,,(F,X,np,IL) = O , ( n = 2 , 3 , 4  ,... ) ,  

(3.3) 
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(3.1), for example, as 
. n-1  
1 

Ch (F, X, np, I) = - c F ( t  + jp )  X (t + j p  + np) e2*i(r+jp)’”P dt 

“ P I ” j = o  (3.4) 
n-1 

= 1 j C F ( r ) X ( f ) e 2 ~ i ( r + j p ) / n p  dt,  
np’” j = 0 

where the original interval of integration was assumed to 
have length L equal to a multiple of np, and IL is the new 
interval of length L / n p  resulting from reparameterization. 
In this form, the integrand is identically zero, and the result 
is obvious. 

The PRI phase of a pulse train, with period is p ,  is 
given by 

(3.5) 

where T,, is the Time-Of-Arrival (TOA) of the nrh pulse and 
I P is the remainder after division by p.  With this defini- 

tion, we see that the argument of (3.1) is equivalent to the 
PRI phase. For perfectly basebanded signals, the argument 
of (3.1) measures the timing offset between the two signals. 
The two signals are in time sync if the argument of their 
crosscorrelation integral (3.1) is zero. 

For simplicity, we assume that the length of the inter- 
val I is an integral multiple of z and that the signals F and 
x have periods approximately equal to p .  These periods 
may be unequal and imprecisely known. With this, we note 
that a CPS-type interpolation may be performed to resolve 
slight differences in the periods of F and x. To do this, we 
compute the expression 

j =  1 

where xj ( t )  = x ( t  +jL) , and L is the length of the interval 
I. The argument of (3.6) measures the sum of the average 
relative carrier phase advance and the average relative PRI 
phase advance of the two signals over an interval of length 
L. The interpolation to reestimate the period of x is pre- 
cisely the same as that for the CPS algorithm previously 
discussed. 

If we now consider the autocorrealtion function 
defined by (3.1), we do not have to perform the delay-con- 
jugate-multiply to recover the interpolated frequency. In 
this case, we need only consider 

I n  
dh (x, ‘61) = - Ah (xj, 7, r) . (3.7) 

j= 1 

If we assume that the signal x has been perfectly base- 
banded, the argument of d,, is the average advance of the 
signal phase over an interval of length 2. If z = p  then 
arg (Ah(X,‘Lr)) = 0. 

Finally, we could crosscorrelate two functions F and 
X, fixing the interval over which F is defined, to produce 

j =  1 

For basebanded signals, the argument of (3.8) represents 

the average phase advance of the signal x alone over inter- 
vals of length L, and the resulting frequency interpolation 
provides an accurate estimate of the periodicity of x alone, 
even if there is a slight error in the estimate of the period of 
F 

I I I 

Sum of 4 Pulse Trains in Time Domain 

-I 
A A ! -J, 

I! 

Spectrum of 4 Pulse Trains (Ticks Show Fundamental Freqs.) 

P, A. d.  h I , ,  j b  b. h ,\.A,?. . A  4. I 
A A -  

I I 

Normal Automrr. of 4 Pulse Trains (Ticks Show Fundamentals) 

A A  A A 
Harmonic Rejecting Autocorrelation (Ticks Show Fundamentals) 

CONCLUSIONS 
All of the algorithms presented in this paper have 

proven to be quite effective signals analysis tools. In partic- 
ular, the CPS algorithm has been successfully used to 
recover tones in severe noise environments. To the best of 
the author’s knowledge, this is the only method which has 
been successful in blind recovery of carrier frequencies of 
complex QAM modem signals, and is currently the method 
of choice for that application. The interpolation methods 
used with the CPS and HRCF algorithms provide means for 
accurate estimations of periodicity / frequency of stable 
signals even in severe noise and interference conditions. 
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