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Abstract 

Within t k  Department of Defense, a climate of budget 
cuts, personnel reductions, and renewed emphasis on 
research coordination and collaboration among the 
Services makes effective transition of developed 
technologyfiom the research laboratory to the operational 
military more critical than ever before. This paper 
describes three cast? studies in expert or knowledge-based 
system technology development and transition at the Navy 
Center for  Applied Research in Artificial intelligence. 
Although quite different in methodological approach, the 
systems share a common development philosophy -- to 
construct prototypes as specialized, reusable tools or 
shells rather than as simple technology demonstrations 
tailored to a particular application. The paper concludes 
with the identification and discussion of a number of 
critical issues in technology transition &awn from our 
eqeriences with and lessons leanredfrom these @om. 

1. Introduction 

Since its inception eleven years ago, the Navy Center 
for Applied Research in Artifkial Intelligence (NCARAI) 
at the Naval Research Laboratory has been engaged in 
research and development specifically designed to address 
the application of artificial intelligence (AI) technology 
and techniques to critical Navy and national needs. The 
emphasis at NCARAI is on applied research with the 
specific aim of demonstrating the applicability and 
effectiveness of artificial intelligence methods to practical 
problems. As part of the Navy’s corporate research 
laboratory, the NCARAI pursues an in-house AI research 
program that is the broadest in technological scope within 
the Department of Defense (DoD), ranging from basic 
research and exploratory development in natural language 
unhtanding and machine learning to advanced decision 
aids and intelligent systems including image understanding 
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and adaptive control [1,2]. However, significant AI 
development is also performed by other DoD research 
centers [31, and in today’s climate of budget cuts, 
personnel reductions, and renewed emphasis on nsernch 
coordination and collaboration among the Services, 
effective transition of developed technology from the 
research laboratory to the operational military is more 
critical than ever before. Additionally, the end of the Cold 
War has sparked increased interest by DoD and. national 
labomturies in seeking industrial partners for potential 
technology transition as well. 

This paper focuses on three case studies in expert or 
knowledge-based system technology development and 
transition at NCARAI. Although quite different in 
methodological approach, the systems share a common 
development philosophy. In NCARAI’s early years, two 
problem domains of particular interest to the Navy were 
identified as good targets for research in knowledge-based 
system technology: equipment fault diagnosis and 
classification problem solving under uncertainty. Each 
had the advantage of being of high interest to particular 
Naval system development communities as well as having 
relatively broad application potential. and both involved 
interesting research issues with a supportive sponsor. An 
investigation of these particular problem domains quickly 
led to the conclusion that none of the available 
commercial tools was fully satisfactory for these 
applications. 
The Navy has purchased and used a substantial number 

of general purpose expert system development tools, and 
NCARAI has made use of such commercial tools 
wherever appropriate. While these tools are powerful and 
useful in many circumstances, they are not well suited to 
a number of situations of interest to the Navy. including 
the two problem domains identified above. In particular, 
the representational paradigms available did not provide 
means for temporal and spatial reasoning, nor did they 
facilitate causal modeling; additionally, they failed to 
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accommodate the implementation of alternative 
methodologes for dealing with u" 'nty, and they were 
relatively inefficient aomputationally. 

Early in the planning process the decision was made to 
build system Ppototypes in the fonn of domain-specific, 
reusable tools ctr shells rather than as simple technology 
demonstratioas tailored to a particular application. This 
deckion meant that the systems developed had to include 
not only appqxkw features for knowledge representation 
and infcrencjng in the selected domain, but also well- 
developed knowledge acquisition and human interfaces, 
usex manuals and Qcumentah. with special attention to 
code quality. This clevelopment philosophy still pails, 
and ongoing e€€- such 8s those m machine learning are 
investing the a d d i t i a n r d  time and effort nxpinxi to follow 
this strategy. 

The following two sections describe the first and 
second of the three case studies to be reviewed -- our most 
mature systems that address the problem domains 
identified early on as being of great inmest to the Navy. 
In particular, Section 2 discusses the Fault Isolation Shell 
(FIS), a pioneering expat system in the application of 
causal-based modeling to the diagnosis of multiple faults 
in elecaonic equipmat.. Then in Section 3, we describe 
the Bayesian Reasoning Tool (BaRT), a framework for 
uncertainty management that uses belief networks and 
other Bayesian techniques to compute the impact of 
uncertain evidence in classificatory problem solving. 
Section 4 descri i  the third case study, which represents a 
more recent emphasis on adaptive software to address the 
knowledge acquisition bottleneck, that plagues the 
knowledge engimaing of mare traditional expert systems, 
and to enhance robusaess as well. It discusses a machine 
learning system, SAMUEL, that uses powerful. adaptive 
search techniques called genetic algorithms to learn high 
performance decision rules from a simulation of the 
operational environment. In section 5, we identify and 
discuss a number of critical issues in technology 
transition drawn from our experiences with and lessons 
learned from these systems, and our conclusions follow in 
section 6. 

2. Intelligent Fault Diagnosis 

The troubleshooting and maintenance of complex 
electronic systems has been a critical military and 
industrid problem for a number of years, and has attracted 
considerable intcrest as a problem domain amenable to 
expert system technology. However, for a number of 
reasons early fault isolation systems employing 
straightforward rule-based approaches have not proved 
successful in coping with the troubleshooting demands of 
large-scale electronic systems in use in the Navy and 
elsewhere. First, with several hundred different systems 
currently in use in the Navy, many large and complex, it 
is infeasible in terms of time and cost to consider the 
independent development of a traditional expert system for 

each. In addition, for some systems and subsystems, t&re 
are no human diagnostic "experts" available from whom 
to capture troubleshooting expertise to embed in a set of 
associative rules in the traditional knowledge engineering 
process. Mareover. even when experts are available, it is 
impractical to auempt to unambiguously map symptoms 
to causes exhaudvely for very large systems. Inevitable 
gaps in the knowledge base result in performance 
uncertainty, large ambiguity groups of potential fault 
sources, and diagnostic inflexibility. Since 
troubleshooting technicians for many of these systems 
tend todepend on the functional and structural descriptions 
found in the technical manuals of the systems and 
subsystems they attempt to maintain. simple rule-based 
architectures alone may be inherently insufficient for the 
task. 

The Fault Isolation Shell (FIS) was developed to 
address these issues. LlS is acausal model-based approach 
to the fault diagnosis of electronic equipment [4]. It is 
able to diagnose. accurately multiple faults using a 
qualitative behavior model of a complex analog/digital 
system without simulation. A FIS-based system can be 
used in a variety of diagnostic settings. A primary use is 
as an interactive technician's aid, in which the 
troubleshooter and RS work together to isolate system 
faults. A key to this mode of operation is a mixed 
initiative interface to FIS. through which it can accept and 
integrate input and actions by the technician as well as 
recommend actions of its own when queried by the 
troubleshooter. A second important use of FIS, 
particularly in the Navy, is in conjunction with automatic 
test equipment (ATE). In an attempt to reduce costs by 
automating the maintenance and troubleshooting process 
as much as possible, the military has made a substantial 
investment in ATE for avionics fault diagnosis. 

Typically, ATE stations make tests, interpret test 
results, and recommend replacements by using software 
test program sets (TPS) b a d  on decision trees designed 
when the equipment was built. Unfortunately, the TPS 
are very expensive to develop and keep up-to-date, and 
have proven rigid and inflexible in operation. FIS c ~ n  
help address these problems in several ways. First, if the 
ATE station has sufficient computing power, FIS can run 
directly on the unit and act as an ATE controller to 
provide dynamic decision making. Alternatively, FIS can 
be used by test engineers to help generate the test program 
sets used by the ATE in their standard mode of operation, 
thereby significantly reducing their cost and increasing 
their efficiency. 

The FIS system architecture is illustrated in Figure 1. 
Of particular note is the system's unit under test 

knowledge acquisition capability, with a specialized 
interface by which test and design engineers, who may be 
quite familiar with the UUT at hand but not well versed in 
computer science, can describe the unit to the computer. 
Other specialized interfaces are provided for FIS system 
debugging, ATE test tree generation, and the 

309 



Figure 1. Fault Isolation Shell Architecture 

troubleshooting technician. Through the interactive fault 
isolation interface during a troubleshooting session, FIS 
can update current beliefs about the UUT based on the 
technician’s entry of test results, respond to such 
technician’s queries as the probability of a fault 
hypothesis or the merit of a test, and recommend the next 
best test to make or component to replace. FIS also 
features efficient methods both for evidential reasoning 
specialized for device troubleshooting based on Bayesian 
principles and for computing the entropy of a complex 
system for use in best test selection. The shell is written 
in Lisp and runs under Sun Common Lisp on Sun 
SPARCstations. 

System development and the initial implementation of 
FIS took approximately three years, with another year and 
a half devoted to rehosting, testing, evaluation, updating 
and refinement, and development of documentation and 
training materials [5 ] .  The major time and effort devoted 
to preparation for transition of this technology is unusual 
for research projects, particularly in government, and is 
probably most similar to commercial software practices. 
In order to reach the application community NCARAI 
participated in several large test industry conferences, 
including a special session of IEEE AUTOTESTCON 
devoted to the subject of artificial intelligence in testing. 
As part of this process a display booth and on-line 
demonstration of FIS were created. 

Evaluation of this domain-specific shell was also a 
concern. The sponsors of the effort in its latter stages 
organized a year-long beta test program involving five test 

sites. Each was provided with the FIS system resident in 
a transportable workstation to allow convenient 
evaluation. Each site was also fumished on-site training, 
manuals and other documentation, a working UUT 
example, and access to advice during the evaluation. The 
decision to provide the shell as a “turnkey” system 
resident in a computer was a direct result of experience 
gained during preliminary evaluation at several other sites. 
In these earlier evaluations most of the problems reported 
were installation- and operating system-related and 
secondary to system evaluation. Evaluations from the 
beta test sites proved useful and led to further refinements 
to FIS, and helped establish FIS as a forerunner to the 
now widely accepted causal model paradigm as state-of- 
the-art for intelligent fault diagnosis. 

3. Reasoning Under Uncertainty 

In dynamic military tactical environments, complex 
decisions must be made in short periods of time, with 
serious consequences for errors. Decision aids for use in 
such situations require rapid access to problem-relevant 
knowledge and inference procedures that ptoduce amptable 
solutions reliably. Of particular interest to the Navy are 
decision support systems for target classification problem 
solving. Crucial to these systems are efficient, reliable 
means for dealing with uncertainty. The uncertainty 
associated with sensor data and other evidence such as 
intelligence and archival information must be carefully 
accounted for to assure that inferences about the 
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implications of the evidence are plausible. Moreover, in 
military applications opponents are actively attempting to 
introduce uncertainty in the tactical environment, which 
also must be managed in the inference process. 

Uncertainty is inevitable in dealing with real-world 
applications, but many of the methods currently used in 
expert systems are inadequate for military problems since 
they lack a sound, logical foundation for the 
representation, combination and propagation of uncertain 
data, or presume independence among evidence [6]. These 
computational approaches to uncertainty are often built 
upon the fundamental assumption that uncertainty can 
simply be “added on” to rule-based representations, 
implying that uncertain inferences can always be 
modularized in the same way as logical inferences. 
However, uncertain reasoning must often handle 
dependencies among hypotheses that are not modular, and 
accounting for these dependencies can be difficult using 
sets of modular rules of inference. 

Another approach to this problem is to replace rule- 
based updating with an explicit representation of the 
relationships among hypotheses using probabilistic belief 
networks [7]. Such networks provide a graphical 
representation of dependencies among hypotheses. Each 
node in a belief network designates an uncertain variable; a 
probability distribution at each node characterizes at any 
time the belief for every potential value for that variable. 
Links between nodes use conditional probabilities to 
quantify how the belief in one node influences the belief 

in another. Since paths through the network summarize 
the direct and indirect relationships among hypotheses, 
belief networks provide a qualitative model of the inherent 
causal structure of a problem in uncertain reasoning. 
Furthermore, belief networks can be used as inference 
engines. As the information needed to update the belief 
distribution at a node is available locally from that node’s 
neighbors, distributed, message-passing computations can 
be used to propagate the effects of changes in belief in 
accordance with probability theory and Bayes’ rule [8]. 

The Bayesian Reasoning Tool (BaRT) is a generic 
toolkit for hierarchical reasoning that makes belief 
networks and other probabilistic techniques available for 
the management of uncertainty in classificatory problem 
solving [9]. Figure 2 illustrates the BaRT system 
architecture. As with FIS, BaRT provides a knowledge 
acquisition facility with a specialized interface, through 
which the knowledge engineer or network designer here is 
able to focus on constructing a single node at a time, 
quantifying the relationship between the current node and 
its immediate antecedents. BaRT provides a collection of 
canonical descriptions of probabilistic interactions that the 
network designer can instantiate for any node in the 
network, and allows the designers to maintain libraries of 
their own predefined subnetworks and canonical 
interactions that can be described once and stored for 
repeated use. In addition to Bayesian networks, BaRT also 
supports influence diagrams and taxonomic hierarchies as 
alternative knowledge representations, providing an 

Figure 2. Bayesian Reasoning Tool Architecture 
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integrated capability for the system designer to “mix-and- 
match”, selecting representations that best reflect the 
inhemt structure of the problem being solved. 

The inference methods in BaRT can be invoked in two 
ways. When BaRT itself is the primary problem solver, 
the analyst or operator communicates with the system 
through the interactive interface. An example of BaRT as 
a primary problem solver is an early implementation for 
interactive classification of ship images [lo]. Far more 
prevalent, however, is for BaRT to perform inferences for 
some larger knowledge-based system that selectively 
makes use of its various belief maintenance capabilities 
through the subroutine interface. BaRT has been 
employed in this way in a system for situation assessment 
and target tracking [ll],  and is an integral part of a 
decision support system for tactical antisubmarine warfare 
battle management [12]. BaRT is written in Lisp and 
runs under Sun Common Lisp and X-windows on Sun 
SPARCstations, as well as on the older, Lisp-based 
Symbolics workstations. 

BaRT has been tested in-house at NCARAI and 
informally by several outside users who obtained and 
embedded earlier versions within their larger systems. 
Although the interest in and desire for preliminary 
versions was gratifying, requests from users for help and 
advice, minor enhancements, etc., consumed considerably 

more time than anticipated and slowed ongoing BaRT 
development. However, since these carefully selected 
initial users had reasonable expectations and were 
knowledgeable systems designers themselves, the benefits 
of their experience with preliminary versions of BaRT, 
which included a number of excellent suggestions for 
system features and enhancements now implemented (as 
well as the identification of a few bugs now fixed), 
outweighed the liabilities of premature distribution [13]. 

4. Adaptive Software 

In many problem domains of importance to the Navy, 
ranging from controllers for navigation by autonomous 
underwater vehicles to refinement of tactical doctrine, 
expertise can potentially be obtained directly through 
system problem solving experience, or precompiled 
expertise can be improved significantly based on actual 
system use. To produce software systems with adaptive 
behavior, researchers are developing machine learning 
techniques for automatic knowledge acquisition and 
system improvement through system experience or 
operation. A particularly interesting class of problems, 
sequential decision tasks, include the two Navy problem 
domains mentioned above. However, for many problems 
in this class, there exists neither a database of examples 

Figure 3. SAMUEL Learning System Archltecture 
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nor a complete and tractable domain theory that might 
support traditional machine learning methods such as 
inductive learning or explanation-based approaches. 

SAMUEL is a learning system shell that learns reactive 
behaviors, or strategies, for solving sequential decision 
problems [14]. It is based on genetic algorithms, a 
powerful search technique analogous to Darwinian 
evolution in which competition among strategies in the 
solution space is exploited to produce successive 
generations with improved performance [15]. SAMUEL 
is designed to interact with a task environment simulation 
or world model, in which it explores a range of agent 
behavior, and then uses feedback to revise its decision 
strategies over time. Strategies learned are sets of reactive 
production rules, the symbolic condition-action rules 
familiar to developers of traditional expert systems. An 
important aspect of the system is credit assignment, or 
more specifically the assessment of credit or blame to 
decision rules for an outcome [la]. This function is 
performed by the system critic module, which 
intermittently judges the agent’s overall effectiveness at 
the task tobe learned. 

The SAMUEL system architecture is illustrated in 
Figure 3. SAMUEL has demonstrated in several different 
domains, including mine avoidance and local navigation, 
tracking, and evasion, that robust reactive seategies can be 
learned via simulation of the appropriate environment 
[ l l .  Previous studies have shown that knowledge learned 
under simulation may be applicable to the real world if the 
simulation is more general -- in terms of having more 
noise, more varied conditions, etc., -- than the real world 
environment [18]. A particularly intriguing application of 
SAMUEL currently underway with the Naval Coastal 
Systems Center is the adaptive testing of more traditional 
control strategies for autonomous underwater vehicles 
(AUVs) in simulation. Here SAMUEL plays the devil’s 
advocate, probing for and then exploiting weaknesses in 
the AUV controllers by optimizing on those conditions 
that cause them to fail. SAMUEL is still very much a 
system under development; however, recent versions have 
been tested, fully documented [19] and distributed to 
selected users for informal testing, ever mindful of the 
lessons learned by the early distribution of BaRT. 
SAMUEL is written in C and runs under UNIX in X- 
windows on Sun SPARCstations. 

5. Issues 

Successful transition of expert system technology, as 
with any other marketable product, rarely happens by 
chance. From our experiences with these case studies we 
have identified a number of issues that influence the 
success or failure of technology transition from research 
prototypes to fielded systems. In this section we 
comment on each, relating lessons learned and our views 
on those issues yet to be resolved. 

5.1 Design 

Perhaps the most critical decision we have made 
relating to design in support of technology transfer was to 
adopt the philosophy of encapsulating our research 
developments in domain-specific, reusable shells. As 
related in our discussion of FIS, the initial system that 
tested this philosophy, much more time and effort than 
anticipated was required to provide the necessary software 
enhancements to support this strategy; in particular, much 
effort went into the knowledge acquisition modules and 
interfaces. However, our experience has been that these 
components can “make or break” the shell in the view of 
the design engineer using the tool to build a system 
application. We have received very favorable fee&& for 
example, on the knowledge acquisition component for 
BaRT, because of its support for implementing belief 
networks, even when the problem of management of 
uncertainty was not a major issue. Not surprisingly, the 
capabilities that the shell provides for the system 
application end-user interface are also an important factor. 
A current research effort at NCARAI is building a natural 
language interface to an expert system shell. Called 
InterFIS because of its initial application to FTS, this 
shell accommodates both typed and spoken natural 
language input and output and has attracted considerable 
interest among system design engineers [20]. 

5.2 Documentation 

As with any research laboratory, published papers and 
technical reports as well as presentations at conferences, 
symposia, and workshops are important ways to document 
research progress and exchange ideas, and such activities 
are encouraged at NCARAI. However, for successful 
software technology transition, careful attention must be 
given to code documentation and particularly to user 
guides. Each case study reviewed earlier involved the 
production of at least one version of a user’s manual. 
Researchers would much rather spend their time on 
technical papers than on user’s manuals, but a well- 
written manual along with an example software shell 
application can go far to support a successful transition of 
good technology, or in the terms of the considerably more 
experienced commercial software world, a good market 
share for a desirable product. 

5.3 Distribution and Marketing 

Conference and workshop forums, as well as program 
reviews sponsored by the Office of Naval Technology, 
have provided opportunities for NCARAI to inform 
potential users of the availability of developed software 
tools. In addition, enterprising groups such as the 
Minnesota Project Innovation Inc. (MPI), a high 
technology small business development center supported 
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by the U.S. Small Business Administration and the State 
of Minnesota, have instituted a series of technology 
transfer symposia [21]. As part of its federal technology 
transfer program, MPI invites researchers from 
government laboratories to speak about their developed 
technology at focused symposia to an audience of small, 
high-technology oriented Minnesota businesses with 
potential interest in technology acquisition. However, 
with expanding distribution of a research product comes 
increased demands on the developer for assistance in 
answering questions on product functions and adaptation. 
Consideration has to be given to dedicating personnel to 
such technology transition activities or seeking support 
h m  a contracted intermedii to work with recipients of 
the products. The National Aeronautics and Space 
Administration (NASA), for example, has established the 
Computer Software Management and Information Center 
(COSMIC), to provide industry, other government 
agencies, and academia access to software technology 
developed for NASA projects. Operated for NASA by the 
University of Georgia, COSMIC currently has an 
inventory of over 1200 computer programs, which are 
available, with documentation, for a moderate fee. 
COSMIC maintains and advertises its software through 
two catalogs: one for those programs available for use 
within the United States 1223 and another for those 
available internationally . NCARAI is in the process of 
evaluating the merits of employing such a service for its 
own software distribution. (Software distribution through 
COSMIC, for example, is available to any member of the 
federal laboratory consortium; however, less than 10% of 
the programs currently available through COSMIC 
originated outside of NASA-sponsored projects.) 
However, it has become apparent that there are unresolved 
legal issues to be addressed in going this route -- issues 
regarding patents, licenses, and liability. 

5.4 Maintenance, Support, and Training 

As a research laboratory producing technology 
prototypes, NCARAI is not in a position to engage in 
extended maintenance and support of its developed 
software. On a case-by-case basis, particularly while the 
development of the technology was still underway, we 
have provided limited support to selected recipients. 
Collaborative efforts have provided opportunity for more 
extensive support as the technology is applied to 
particular problems; however, this support is necessarily 
limited to the application at hand. Early efforts in the 
case of FIS to transition the technology for advanced 
development (and subsequent maintenance and support of 
the shell) to a Navy mission-oriented laboratory were 
sound in theory and had promising beginnings, but were 
eventually thwarted by funding difficulties at the target 
site. Initial activities included FIS training pro- 

grams for target site personnel that ranged from two-day 
workshops to temporary detail to NRL for several 
months. 

5.5 Enhancements and Extensions 

As mentioned in the previous section, collaborative 
efforts with others, including those involving a 
challenging application of the developed technology, offer 
some opportunity for shell extensions and enhancements 
as well as maintenance and support. Perhaps the most 
promising avenue for enhancements and extensions, as 
well as longer range maintenance and support for such 
shells, is a particular type of collaborative effort -- the 
cooperative research and development agreement [231. In 
1986 Congress passed the Federal Tkhnology Transfer 
Act to improve the competitiveness of U. S. industry by 
promoting the transfer of technology from govemment 
laboratories to the private sector. The CRDA provides a 
vehicle for cooperative research between a federal 
laboratory and an industrial corporation, another federal 
agency, unit of state or local government, university, or 
other nonprofit organization, with the intent that the non- 
federal-lab CRDA partner will pursue the commercial- 
ization of the technology. Obviously, there are a number 
of legal issues to be solved in entering such an agreement, 
including intellectual property rights, patents, licensing. 
and liability. Although NRL has entered into several 
successful CRDAs with industry, none involves software 
technology. Indeed, it is for software technology and in 
particular for knowledge-based methodologies that the 
legal issues appear the most formidable. However, as the 
legal profession gains more experience in dealing with 
these issues, guidance should become available in 
executing such agreements. 

6.  Conclusion 

The NCARAI experience in transitioning expert 
systems technology has made clear the need to anticipate 
and address concerns along a number of dimensions: 
technical, administrative, and legal. In particular, the 
amount of time and effort required to identify and then 
assist potential technology recipients can easily be 
underestimated. Problems that arise once systems 
exchange hands can be particularly time-consuming in the 
areas of porting to new hardware, explaining and 
supplementing documentation, and training personnel 
through formal demonstrations or informally responding 
to queries. Research scientists who initially provide the 
technology may not be the best persons to oversee the 
transition process. On the other hand, they can be 
expected to benefit from user response in terms of 
obtaining important feedback on system limitations which 
can translate into exciting issues for further research. 
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