
Piraha: A Simplified Grammar Parser for Component Little Languages

Abstract—Software codes in scientific computing often im-
plement their own little languages for expressing configuration
data, interface definitions, and runtime parameters. Such
languages are of particular importance for component-based
frameworks. These languages can initially be somewhat ad-hoc
and then expand organically.

We describe how parsing expression grammars (PEG) can
provide the capabilities for scientific application developers
to easily construct appropriate parsers which will enable
improved and more robust little languages.

We show how a little language parser could be used with
the Cactus Configuration Language in the Cactus Framework.

I. INTRODUCTION

Little languages (defined as domain-specific languages
which lack many features found in general purpose lan-
guages, see [1]) are common in the high performance
community. They are used for a variety of purposes in-
cluding configuration files and interface definition languages
(Cactus, Babel, SIDL, and OnRamp [2]) as well as quality
of service enforcements [3]. For a larger listing of little and
domain-specific languages see [4].

More commonly, a number of scientific codes produce
their own unique output formats. This situation is, to a
degree, unavoidable as the data produced by simulations are
too numerous to completely classify.

Even if one settles on the use of standard data languages
as a medium for output, configuration, and initialization
(XML, JSON, INI, etc.), it may be that there is a need to
parse data extracted from these formats, e.g. a mathematical
expression (with correctly grouped sub expressions).

These tasks are easily handled by grammar engines such
as bison or javacc, but the trade-off is increased software
dependencies and (for the researcher who is only familiar
with regular expressions from Perl or Python) a significant
learning curve in making the transition to the more complex
tool (there is a new set of syntax to deal with, and a new set
of problems to understand such as shift reduce conflicts).

As a consequence, in a small subset cases, a set of
regular expressions is sometimes used as a quick and dirty
substitution for a formal grammar parser. Perhaps initially,
the use of a regular expression is easier and better if
the syntax is sufficiently trivial. If, for example, an input

parameter file for a science executable simply contains a
string of lines that match the format “name = value”. In
this case no special tool is required to parse the input.
Eventually, if the scientific program is successful and gains a
user base, these files may get larger and may become more
complex and feature creep may begin: comments, quoted
strings, multi-line values, imports, and so on. Things may
still work quite well for a while, but eventually the format
may become unwieldy. At this point, time must be taken to
refactor using a grammar parser such as yacc, or perhaps the
developers must move to a more standard framework (XML,
INI, etc.). Both of these options may be unattractive.

A Parsing Expression Grammar (PEG) [5] has the poten-
tial to answer this need. A PEG an analytic formal grammar
that represents a recursive descent parser and resembles a
set of regular expressions. Parsing expression grammars have
the potential to be extremely simple since they do not require
a separate step for tokenization; both the tokenization and the
grammar rules are described by the same regex-like syntax.

The Piraha PEG engine implementation described here is
designed to look and work in a manner similar to a regular
expression API, but to provide the full power of a grammar
parser. PEGs make this simplicity possible because they do
not require a separate tokenization step, and because they
use prioritized choice (the familiar grouping operation of a
regex) rather than unordered choice description commonly
used by context free grammars.

In this paper we report on the use of a PEG frame-
work named Piraha inside a component-based scientific
code named Cactus. The framework is a work-in-progress
experiment to see if a simplified parsing expression grammar
tool can ease the development and maintenance of little
languages within a non-computer science community.

Use of our Piraha PEG API makes it easy for a research
group to incrementally add functionality to the structure of
its little languages, and to do it without a major refactoring
or going through the learning curve required to master the
use of a more formal grammar tool.

In Section II we described related work in PEG parsing
packages and describe the differences between these and
our new implementation. In Section III we describe PEGs
in more details and use examples to illustrate the properties
of our parser. In Section IV we describe a prototype imple-

Steven R. Brandt 1, Gabrielle Allen 2

Center for Computation and Technology
Louisiana State University

Baton Rouge, LA 70816, USA
{1sbrandt, 2gallen}@cct.lsu.edu

U.S. Government work not protected by U.S. copyright 11th IEEE/ACM International Conference on Grid Computing379

mentation of a micro language using PEG for the Cactus
Framework.

II. PEG PARSING PACKAGES: RELATED WORK

There are a number of Parsing Expression Grammars
available, and all provide a number of benefits. Many of
these are so-called packrat parsers which use memoization to
parse any grammar in linear time. That is not our concern in
this work, as parsing the small grammars we are considering
rarely take significant time.

The Rats! parser [6] is a packrat parser designed to be
easily extensible. It is implemented in Java and systemati-
cally outperforms many non-PEG parsers. The Rats! parser
uses its own special grammar syntax file.

The pyPEG package [7] provides a simple framework in
which Python functions are the rule definitions and their
return values describe a token stream. Python regexes can
be used to add elements to the token stream.

Boost Spirit [8] implements a fully type-checked parser
that is constructed using the operator overloading mecha-
nism of C++. It thus provides a little language within C++
to do the parsing.

Pyparsing [9] is a package which targets Python users.
Pyparsing uses Python language objects to construct a PEG
parser. Like pyPEG, it works directly on Python code and
does not use a special syntax file.

The Piraha PEG parser we provide does not require a
grammar file with a special syntax and does not make use
of any special language features. It simply takes a sequence
of named expressions (each of which are sequences of
pattern elements that are familiar from other standard regular
expression packages) and compiles them into a grammar.
This framework minimizes the learning curve in moving
from regular expressions to grammars and forms the basis
of an API suitable for use in any programming language
(currently, we have only implemented it for Java, but plan
to make it available in Python and C++).

Note that while we do not require a specially formatted
grammar file, for grammars of significant complexity it is
useful to collect the patterns into a file that allows white
space in the pattern, similar to the extended legibility flag
(the “x” flag) compilation option familiar from Perl. This
allows comments to be inserted (using the hash symbol)
and maps white space to a pattern named “skipper” which
the user can define.

III. BASIC SYNTAX FOR THE PIRAHA PARSER

The notable differences between PEGs and regular expres-
sions are that groups are always independent non-capturing
groups, quantifiers are always possessive, and that patterns
are named. Because patterns are named, they can be called
recursively.

The pattern syntax we use for Piraha is similar to that used
in common regular expression engines, and a summary of

pattern elements is shown in Table V. Piraha is deliberately
simpler than other engines, and the interface is made very
similar to those used by Java’s standard regular expression
as this intends to be a tool for users who are not computer
scientists.

Based on this minimal scaffolding, a parser for a mathe-
matical expression can be constructed using just a few lines
of code. The expression understands order of operations,
grouping of parenthesis, and use of “**” as an exponentia-
tion operator.

1 Grammar math = new Grammar();
2 math.compile("num",
3 "([0-9]+\\.[0-9]+|[0-9]+\\.|"+
4 "\\.[0-9]+|[0-9]+)"+
5 "([eEdD](\\+|-|)[0-9]+|)"); // exponent
6

7 // The basic operators
8 math.compile("addop","\\+|-");
9 math.compile("mulop","*|/");

10 math.compile("powop","**");
11

12 math.compile("neg","-");
13

14 // Note: left recursion is not supported
15 math.compile("expr",
16 "{mulexp}{addop}{expr}|"+
17 "{mulexp}|\\({-expr}\\)");
18 math.compile("mulexp",
19 "{powexp}{mulop}{mulexp}|"+
20 "{powexp}|\\({-expr}\\)");
21 math.compile("powexp",
22 "{num}{powop}{powexp}|{neg}{num}|"+
23 "{num}|\\({-expr}\\)");
24

25 Matcher m = math.matcher(
26 "expr", "3.0*2.0+1.0e1*(2+4)");
27 if(m.matches()) {
28 // do something with result
29 }

This will produce an easily handled tree of data that can
be traversed as in the example above.

In order to facilitate use in component based systems,
grammars can be imported one inside the other. This allows
one syntax to be embedded inside another, similar to the
way javascript is embedded in script tags, or PHP switches
between code and html elements. Here is a simple example
that imports the math grammar above.

1 Grammar g = new Grammar();
2 g.importGrammar("math", Calc.makeMath());
3 g.compile("vector",
4 "{math:expr}(,{math:expr})*");
5 Matcher m =
6 g.matcher("vector","1+2,(8+3)*9-4,4,9+7");
7 if(m.matches()) {
8 System.out.println(
9 "match: "+m.substring());

10 // prints: match: 1+2,(8+3)*9-4,4,9+7
11 }

IV. EXAMPLE APPLICATION: CACTUS FRAMEWORK

In this Section we illustrate how PEG could be used
with an existing component framework. The Cactus frame-
work [10] is an open source component framework with
a large number of developers and users in the fields of
numerical relativity, quantum gravity, computational fluid

380

dynamics and coastal modeling. For example, in the field
of numerical relativity, over 140 Cactus components have
recently been released as the Einstein Toolkit [11] which
provide a community resource for researchers investigating
systems such as black holes and neutron stars which are
governed by Einstein’s theory of general relativity.

Cactus components (called thorns) interact with the
framework (called the flesh) via a set of configuration
(CCL) files provided by each thorn. These files describe
the interface of the thorn via its variables, parameters,
functions and capabilities. The configuration files are parsed
by Cactus at compile time to generate source code that is
then compiled into the final Cactus executable. Additional
tools have been developed that also parse the CCL files
to provide information needed to more easily assemble or
debug codes.

Here we investigate the use of PEG with the Cactus
schedule.ccl file which describes the functions pro-
vided by the thorn including which of the standard Cactus
time bins the function should be run in and when and how
variable storage should be allocated. The syntax for the
entries in the schedule.ccl file is shown in Fig. IV.

For grammars of this complexity, it is desirable to move
the definitions into a file (which uses a .peg suffix by con-
vention). Presence of white space between pattern elements
results in the insertion of a pattern named “skipper”. The
skipper pattern can be used to handle arbitrary amounts of
white space and comments between pattern elements.

For this reason, the space character needs to be escaped
in order to be matched (unless it is inside square brackets).

This particular file is interesting because of the fairly
general “if” clause it supports. It checks whether parameters
are set or not, allows for logical and, or, and not, as well as
parenthetical grouping.

The parser generated by this set of expressions is more
compact, robust, and flexible than the current Perl-based
parser in Cactus.

Notice the use of the pattern “\\[\r\n]” inside the
skipper. The Perl-based parser required the arguments of
the scheduler to all be placed on a single line, and the
escaped carriage return (a convention borrowed from the C-
preprocessor) was invoked to break up long lines. Because
the PEG is able to more cleanly express and parse the
required sequence of expressions, this syntactic artifact is
no longer needed (but can still be supported).

A more complex example of a grammar is the param.ccl
file used by Cactus (see Fig. IV). The grammar is over one
hundred thirty lines long. For this reason, we only show a
subset of it.

In the process of constructing and testing the grammar
above, we discovered a number of irregularities in the Cactus
component descriptions that the perl-based parsers failed to
detect (i.e. in some places the documented comment syntax
was violated but somehow passed validation, in another

1 skipper=\b({w}|{-ccom}|\#[ˆ\n]*|\\[\r\n])*
2

3 w = [\t\n\r\b]
4 any = [ˆ]
5 name = (?i:[a-z_][a-z0-9_\-]*\b)
6 vname = {name}(:: {name})*(\[{num} \]|)
7 quote = "(\\{any}|[ˆ"])*"
8 ccom = /*((?!*/){any})**/
9 num = [+\-]?[0-9]+

10 string = {name}|{quote}
11 term = {num}|{name}
12 par = \b(as|at|in|while|if|before|after|while)\b
13 pararg = ({vname}|\({vname}(,? {vname})+ \))
14

15 boolterm = (?i:\! {boolexpr} | \({boolexpr} \)
16 | CCTK_Equals \({string} , {string} \)
17 | CCTK_IsThornActive \({string} \)
18 | *? {name})
19

20 boolexpr = {boolterm} ((&&|\|\|) {boolexpr})+ |
21 | {term} (>=|<=|==|!=|<|>) {term}
22 | {boolterm}
23

24 schedule = (?i:
25 schedule (group|) {name} ({par} {pararg})* \{
26 (storage : {vname}(, {vname}|[\t]{vname})*
27 | lang(uage|) : {name}
28 | sync : {vname}(, {vname}|[\t]{vname})*
29 | options : {vname}(, {vname}|[\t]{vname})*
30 | triggers : {vname}(, {vname}|[\t]{vname})*
31 | trigger : {vname}(, {vname}|[\t]{vname})*
32)*
33 \} {quote}
34)
35 if = (?i:
36 if \({boolexpr} \) {block}
37 (else {if}|else {block}|)
38)
39 storage = (?i:storage: {vname}(,
40 {vname}|([\t]|\\\r?\n)+{vname})*)
41 block = \{ ({statement})* \} | {statement}
42

43 statement = ({schedule} |{if} |{storage})
44 sched = {-skipper}{statement}*$

Figure 1. Basic parser for a Cactus schedule.ccl file

a required parameter was missing). We also discovered
features that were in place but not widely known.

The reason for the length of the param.ccl grammar is that
it needs to parse a number of different kinds of parameters
(integer, real, string, keyword, and boolean), each repeated
with minor variations on its allowed syntax. This example
has been trimmed to only show the integer parameter for the
sake of brevity.

One of the advantages of the PEG framework is that it
would allow other types of parameters to be easily added,
say a complex number or vector.

Of interest here is the parsing of the range. There is a
lower and an upper range that can be specified in setting the
allowed values for each parameter, and the mathematical use
of [and (to specify whether the value given is inclusive or
exclusive.

V. CONCLUSION

We have demonstrated a simple and flexible framework
for parsing little languages that should prove useful in
component development work, enabling more powerful and

381

1 uses = (?i:uses|);
2

3 skipper = \b([\ \t\n\r\b]|\#[ˆ\n]*|\\[\r\n])*
4

5 any = [ˆ]
6 name = (?i:[a-z_][a-z0-9_]*)
7 accname = {-name}(::{-name})*
8 steerable = (?i:never|always|recover)
9 accumexpr = \(([ˆ()]+|{accumexpr}) \)

10

11 access = (?i: global : | restricted : |
12 private : | shares :([\ \t]*{name}|))
13 quote = "(\\{any}|[ˆ"])*"
14

15 num = [+\-]?[0-9]+
16 intbound = * | {num} |
17 intrange = [\[\(]?{intbound} :(?!:)
18 {intbound}[\]\)]? | {intbound}
19

20 intguts = (?i:
21 (CCTK_|)INT {name}(\[{num}\]|)
22 ({quote}|)
23 (as {name} |)
24 (steerable = {steerable}|)
25 (accumulator = {accumexpr} |)
26 (accumulator-base = {accname} |)
27)
28

29 intpar = (?i:
30 extends {intguts}
31 (\{
32 ({intrange} (:: {quote}|))*
33 \} |)|
34 {uses} {intguts}
35 (\{
36 ({intrange} (:: {quote}|))*
37 \} {num}|)
38)
39

40 ...
41

42 pars = ˆ ({+access}|{+intpar}|{+realpar}|
43 {+keywordpar}|{+stringpar}|{+boolpar})* $

Figure 2. A subset of the grammar required to parse the param.ccl file
used by Cactus.

correct parsing of configuration information or runtime
parameters, and have demonstrated its potential value for
the Cactus framework.

To make it more attractive in the high performance world
we plan to support implementations in both C++ and Python.
It is expected that these API’s can be generated automatically
by using the PEG framework itself to parse the core Java
code.

REFERENCES

[1] M. Mernik, J. Heering, and A. Sloane, “When and how to de-
velop domain-specific languages,” ACM Computing Surveys
(CSUR), vol. 37, no. 4, p. 344, 2005.

[2] G. Hulette, M. Sottile, B. Allan, and R. Armstrong, “OnRamp
to CCA: Annotation-driven static analysis and code genera-
tion,” 2009.

[3] L. Li, T. Dahlgren, L. McInnes, and B. Norris, “Interface con-
tract enforcement for improvement of computational quality
of service (CQoS) for scientific components,” in Proceedings
of the 2009 Workshop on Component-Based High Perfor-
mance Computing. ACM, 2009, pp. 1–5.

Table I
SUMMARY OF PIRAHA PATTERN SYNTAX

. Any character but but \n
[a-gx] Match an entity. Entities are ranges of charac-

ter or literals. This example matches characters
in the range a through g and x.

[ˆa-gx] Match an entity, but only if the character does
not fall within the ranges or literals specified.

[ˆ] Match any character.
x{n,m} The pattern x occurs a minimum of n times

and a maximum of m times
x{n,} The pattern x occurs a minimum of n times
x{,m} The pattern x occurs a maximum of m times

x* The pattern x occurs zero or more times
x+ The pattern x occurs one or more times
x? The pattern x occurs zero or one times

\1-\9 Match the nth backreference within this rule
{name} Match the pattern named “name” and capture

matching text in a backreference
{-name} Match the pattern named “name” and do cap-

ture
(x|y|z) Specifies a grouping of patterns and alternative

possible matches
(?=x) A zero-width lookahead assertion
(?!x) A zero-width negative lookahead assertion
\b A word boundary
$ Matches the end of input
ˆ Matches the start of input

(?i:x) Ignore case when matching x
(?-i:x) Don’t ignore case when matching x

[4] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific
languages: An annotated bibliography,” ACM Sigplan Notices,
vol. 35, no. 6, p. 36, 2000.

[5] B. Ford, “Parsing expression grammars: a recognition-based
syntactic foundation,” ACM SIGPLAN Notices, vol. 39, no. 1,
p. 122, 2004.

[6] R. Grimm, “Practical packrat parsing,” New York University
Technical Report, Dept. of Computer Science, TR2004-854,
2004.

[7] pyPEG, http://fdik.org/pyPEG/.

[8] J. de Guzman et al., “The Boost Spirit Library.”

[9] P. McGuire, “Pyparsing: a general parsing module for
Python,” URL http://pyparsing. wikispaces. com.

[10] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf, “The cactus framework and toolkit:
Design and applications,” High Performance Computing for
Computational Science VECPAR 2002, pp. 15–36, 2003.

[11] E. Schnetter, “Multi-physics coupling of Einstein and hydro-
dynamics evolution: a case study of the Einstein toolkit,” in
Proceedings of the 2008 compFrame/HPC-GECO workshop
on Component based high performance. ACM, 2008, p. 4.

382

