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Abstract—We model Mode 2 direct discovery in Device-to-
Device (D2D) Long Term Evolution (LTE) networks and derive
the optimal value of the discovery message transmission proba-
bility that minimizes the mean number of periods required for a
successful discovery message transmission. We use Monte Carlo
simulations to validate our analytical results and to show that
optimizing the transmission probability produces nearly optimal
performance with respect to the time required for all members
of a group of User Equipments (UEs) to discover each other.

I. INTRODUCTION

As an enhancement of Long Term Evolution (LTE) systems
beyond Release 12, Device-to-Device (D2D) communications
allow User Equipments (UEs) to exchange data directly with
other D2D-capable UEs, rather than by routing data from
one UE over an uplink connection to a base station, which
forwards the data over a downlink to the destination UE. The
D2D connection from one UE to another UE, defined as a
sidelink (SL) as an extension of the uplink/downlink (UL/DL)
nomenclature, consists of a set of resources that can be used in
Time Division Duplex (TDD) or Frequency Division Duplex
(FDD) LTE deployments [1].

D2D was originally proposed as an underlay network that
would offload intracell traffic from base stations while mini-
mally interfering with intercell traffic, thus increasing network
throughput by as much as 65 % [2], but the concept has since
expanded. D2D-capable devices can support cell coverage
extension by serving as relays for UEs that are outside the
coverage area of any cellular base station [3]. Future D2D use
cases include spectrum reuse, communication between UEs on
opposite sides of the coverage boundary between two cells,
and communication among UEs that are all outside any base
station’s coverage area and which therefore must be capable of
self-organization [4, Fig. 1]. The last scenario is of particular
interest to the public safety community [5].

An important D2D function is discovery, the process by
which D2D UEs identify themselves to each other, using
a specific set of time and frequency resources contained in
a Physical Sidelink Discovery Channel (PSDCH). UEs that
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transmit announcements over the PSDCH randomly choose
resources from a shared pool when they are not in the coverage
of a base station, which can happen in public safety deploy-
ment scenarios, for example. Since multiple UEs can choose
a given resource simultaneously, collisions between discovery
messages may prevent them from being received by other
D2D UEs. To address this problem, UEs use a transmission
probability to throttle their use of the PSDCH; however, if this
parameter is set too low, it will needlessly hinder UEs from
quickly disseminating discovery information. We therefore
need to find the optimal value for the transmission probability.

In this paper, we develop a closed-form expression for the
optimal transmission probability that depends on the resource
pool size, the number of subframes in the pool, and the number
of UEs that use the pool. We discuss prior work in this area in
Section II; we describe the SL discovery process in Section III,
and then develop the mathematical model. In Section IV, we
validate the model and examine its sensitivity to variations in
the input parameters. We use Monte Carlo simulations to show
that the optimal transmission probability also approximately
minimizes the mean number of transmission periods for every
UE to receive a discovery message from every other UE,
which further demonstrates its usefulness. In Section V, we
summarize our results and discuss future work.

II. SURVEY OF PRIOR WORK

Several recent studies have addressed issues related to
discovery transmission; we describe these and their relation to
our work in the following. Park et al. developed a scheme to
reduce what they call the “participation delay,” the time from a
UE’s entry to the network to its first beacon transmission [6].
They define temporary discovery resources, which are a small
subset of the discovery resource pool and are reserved for the
exclusive use of newcomers to the network. They show that
this approach reduces the participation delay for new arrivals
while having little impact on UEs already in the network. It is
possible to use our model to optimize the size of the temporary
pool, which we are undertaking as part of our ongoing work.

Kang and Kang used a stochastic geometry approach to
determine how many devices can be discovered in a given
number of PSDCH periods [7], but their approach is sub-
stantially different from ours. They modeled the population
of devices using a non-homogeneous Poisson Point Process
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(PPP) and used the Signal to Interference and Noise Ratio
(SINR) to determine whether a signal could be received by
a UE that was a given distance from the transmitting UE,
using a simple path loss model that incorporates fading. While
they considered the effect of half-duplex devices, they did not
model the transmission probability.

Finally, the work by Bagheri et al. uses a model that obtains
the probability of a collision in a given discovery resource [8].
However, their analysis fails to account for the half-duplex
effect. They also do not consider the probabilistic transmission
mechanism. Baghari et al., like Kang and Kang, examines the
effect of the SINR on the collision rate, assuming uniformly
distributed UEs. We do not consider the possibility of a high
SINR’s allowing reception of a discovery message in this
paper; instead, we use the more conservative assumption that
collisions result in the loss of all colliding messages. We are
including SINR and channel effects in an expanded model.

III. THE MATHEMATICAL MODEL

A. The Sidelink Discovery Channel

Under Release 12, there are two D2D discovery modes for
resource allocation [9, Clause 9.1.2]. Mode 1 discovery uses a
base station to schedule and assign resources for transmitting
discovery messages to UEs. With dedicated resources, UEs can
operate without interference from other UEs that are associated
with the same base station. In Mode 2, UEs autonomously
choose resources from a pool; this reduces signaling but
introduces the risk of collisions due to UEs’ simultaneously
randomly selecting the same resource. For out-of-coverage
UEs, Mode 2 is the only possible option in the absence of
a base station. The following analysis focuses on Mode 2
discovery.

The notation associated with the PSDCH and its attributes
is listed in Table I. The PSDCH resource pool repeats period-
ically in the time domain; the period is given by the parame-
ter P , which is set by the Information Element (IE) discPeriod
[10, Clause 14.3.3]. The discPeriod IE is a parameter in the SL-
DiscResourcePool IE, which is defined in [11, Clause 6.3.8].

Within each period, the PSDCH configuration variables prb-
Start, prb-End, and prb-Num, which are respectively denoted
by the variables S1, S2, and M , determine the range of sub-
bands that the PSDCH occupies. The SL-OffsetIndicator IE
gives the displacement of the pool from the first subframe in
the period. The SL-TF-ResourceConfig IE [11, Clause 6.3.8]
contains these IEs. A Physical Resource Block (PRB) with
index m is part of the PSDCH if S1 ≤ m ≤ S1 + M or
S2−M ≤ m ≤ S2. In the time domain, the set of subframes
that compose the PSDCH is encoded in a bitmap defined by
the IE subframeBitmap, where a bit that is set high indicates
that the corresponding subframe is part of the PSDCH. The
bitmap is repeated numRepetition times; this IE is located in
the SL-DiscResourcePool IE [11, Clause 6.3.8]. In Fig. 1, we
show the PSDCH structure and periodicity, and illustrate the
role of the various PSDCH IEs.

A UE with a discovery message to send generates a uni-
formly distributed random value p1 ∈ (0, 1]. The UE sends
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Fig. 1. The structure of the PSDCH resource pool.

its message if p1 is less than a threshold value txProbabil-
ity, which is an IE within the SL-DiscResourcePool IE [12,
Clause 5.15.1.1]. The txProbability IE can take one of the
following four values: p25, p50, p75, and p100; these values
denote thresholds of 0.25, 0.50, 0.75, and 1.00 respectively.

UEs transmit discovery messages using pairs of PRBs
in the PSDCH1. A transport block occupies two PRBs per
slot in a single subframe [10, Clause 14.3.1]. The network
operator can select the number of times each transport block
is transmitted, 1 ≤ NTX

SLD ≤ 4. For Mode 2 SL discovery, the
PRBs of the jth transmission in the ith PSDCH period are in
subframe lPSDCH

NTX
SLDb

(i)
j +j−1

and occupy the PRB indices mPSDCH
2a

(i)
j

and mPSDCH
2a

(i)
j +1

, where

a
(i)
j =

(
(j − 1)⌊Nf/N

TX
SLD⌋+ ⌊nPSDCH/Nt⌋

)
modNf (1a)

b
(i)
j = nPSDCH modNt. (1b)

In Eq. (1), Nf = ⌊MPSDCH RP
RB /2⌋ is the number of PRB pairs

in the frequency domain, where MPSDCH RP
RB is the number of

PRBs in the PSDCH, Nt = ⌊LPSDCH/N
TX
SLD⌋ is the number

of subframe sets in the time domain, where LPSDCH is the
number of subframes spanned by the PSDCH, and nPSDCH

is the resource index. The sender chooses nPSDCH randomly
from the set of Nr = NfNt integers {0, 1, . . . , Nr − 1} [12,
Clause 5.15.1.1]. If two UEs choose the same value of nPSDCH,
all NTX

SLD of their transmissions will collide.
In Fig. 2, we show the placements of groups of PRB pairs

for a hypothetical PSDCH consisting of MPSDCH RP
RB = 8 PRBs

in the frequency domain and LPSDCH = 12 subframes in the
time domain for NTX

SLD = 2 and NTX
SLD = 4 transmissions.

Eq. (1) assigns resources to a set of transmissions such
that the NTX

SLD transmissions occur over a sequential series
of subframe indices, and also over a sequential series of
PRB pair indices, modulo Nf . Most importantly, the set
of resource index values associated with a given subframe
index i is identical to the set of resource index values in
subframes i + 1, i + 2, . . . , i + NTX

SLD − 1. Thus, half-duplex
UEs that choose values of nPSDCH that produce identical
values of b

(i)
j will be unable to receive any of one another’s

transmissions for all values of j in a given PSDCH period,
i. Because values of nPSDCH that produce identical subframe

1A PRB spans twelve 15 kHz subcarriers and occupies a slot that is half
of a 1 ms subframe.
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Fig. 2. Resources in PSDCH resource pool with MPSDCH RP
RB = 8 PRBs and

LPSDCH = 12 subframes, from Eqs. (1a) and (1b).

TABLE I
LIST OF SYMBOLS

Symbol Definition

N (A) Number of occurrences of event A
Pr{A} Probability that event A occurs
E{Z} Expected value of random variable Z

LPSDCH Number of subframes spanned by the PSDCH
MPSDCH RP

RB Number of PRBs occupied by the PSDCH
NTX

SLD Number of SL discovery transport block transmissions
lPSDCH
i ith subframe in the PSDCH, 0 ≤ i < LPSDCH

mPSDCH
j jth PRB slot in the PSDCH, 0 ≤ j < MPSDCH RP

RB
Nf Number of PRB pairs in discovery pool
Nt Number of subframe sets in discovery pool
Nr Number of resources in discovery pool, Nr = NfNt

nPSDCH Discovery resource index
P PSDCH period duration
θ UE transmission probability

θ∗, θ∗q Optimal and quantized optimal values of θ
G The set of UEs in a D2D group of interest
Nu Number of UEs in D2D group G
X , Y Randomly chosen UEs from D2D group G
δX Discovery message sent by UE X from D2D group G
SX Set of subframes occupied by δX

NY →X Number of PSDCH periods for UE X to discover UE Y

NG→G Number of PSDCH periods for discovery of all UEs in G
PY →X(θ) Pr{UE X receives UE Y ’s message in a given period}
P̂NY →X

(θ) Estimated value of PY →X(θ)

σ̂2
P̂Y →X (θ)

Sample variance of P̂NY →X
(θ)

∆µY →X Change in E{NY →X(θ∗)} due to quantizing θ

n Index indicating the nth PSDCH period

assignments for a given transmission attempt produce identical
subframe assignments for all other transmission attempts in the
same PSDCH period. Thus, we can treat all NTX

SLD subframes
associated with a particular value of nPSDCH as a single entity.

B. Model Description

We model the Discovery Resource Pool as a matrix with
Nf rows and Nt columns that consists of Nr = NfNt re-
sources as shown in Fig. 3. Each row corresponds to a PRB
pair, while each column corresponds to a subframe set. There
are Nu UEs in group G that use the resource pool. Each UE
transmits a discovery message during each period by choosing

a resource in the pool with uniform probability. We assume
that UEs choose resources independently of each other.

The ×’s in the boxes in Fig. 3 show the presence of
discovery messages; the number of ×’s indicates the number
of discovery messages. We assume that if more than one
discovery message occupies a resource, then all of the co-
located messages will be lost due to mutual interference. The
⊗ symbol indicates δX , the discovery message generated by
UE X , and the column containing δX , which corresponds to
SX , is highlighted. Let SX be the set of subframes occupied by
UE X’s discovery message. A half-duplex UE cannot transmit
and receive at the same time, and thus misses any discovery
messages that other UEs send in the subframes in which it is
transmitting. Thus any discovery messages transmitted in SX

by other UEs in G will not be received by UE X .

Nt

Nf

SX

δX

Fig. 3. A resource pool with Nr = NfNt discrete resources organized into
Nf frequency slots and Nt subframe sets, where SX , the set of subframes
used by UE X to transmit its discovery message, δX , is highlighted.

Let X and Y be two UEs chosen randomly from G.
Let {Y → X} be the event, “UE X successfully receives
discovery message δY from UE Y ,” and let {δY ∈ SX} be
the event, “UE Y sends discovery message δY in subframe
SX .” A UE uses the same value of the parameter p1 to
determine whether to transmit all NTX

SLD of its transmission
attempts in a PSDCH period. Thus, we can treat all of a
period’s transmissions by a UE as a single event and apply
the resource grid that we introduced in Fig. 3.

Let θ = Pr{p1 ≤ txProbability} = Pr{Y transmits}. We
define PY→X(θ) in Table I; and it follows that PY→X(θ) =
θ Pr{Y → X |Y transmits}. By Bayes’ Theorem,

Pr{Y → X |Y transmits} =

Pr{Y → X | δY ∈ SX}Pr{δY ∈ SX}
+ Pr{Y → X | δY ̸∈ SX}Pr{δY ̸∈ SX}. (2)

In this case, the event {δY ∈ SX} occurs when UE X
transmits (independently of all other UEs in the group, with
probability θ) and UE Y ’s message δY falls within the
subframe set SX . It follows that Pr{δY ∈ SX} = θ/Nt,
since UE X’s decision to transmit and UE Y ’s choice of a
subframe set are independent. As before, Pr{Y → X | δY ∈
SX} = 0 since UE X and UE Y will not receive each
others’ message if they transmit in the same subframes.
To determine Pr{Y → X | δY ̸∈ SX}, we condition on
how many of the remaining (Nu − 2) UEs transmit, which
has a binomial distribution with probability mass function
f(k;Nu−2, θ) =

(
Nu−2

k

)
θk(1−θ)(Nu−2)−k. The probability a



UE that transmits does not use UE Y ’s resource is (1−1/Nr).
Thus Eq. (2) becomes

Pr{Y → X |Y transmits}

= 0 · θ
Nt

+
(
1− θ

Nt

)Nu−2∑
k=0

(
1− 1

Nr

)k

f(k;Nu − 2, θ).

(3)

We recall that PY→X(θ) = θ Pr{Y → X |Y transmits}; we
simplify Eq. (3) and apply the Binomial Theorem, and get

PY→X(θ) = θ

(
1− θ

Nt

)(
1− θ

Nr

)Nu−2

. (4)

Assuming that the resource selection processes in different
periods are independent, it follows that the number of periods
for UE X to discover UE Y , NY→X(θ), has a geometric
distribution. Thus, the mean number of periods for UE X to
discover UE Y is E{NY→X(θ)} = 1/PY→X(θ).

C. Optimizing the Transmission Probability

We can determine the value of θ that maximizes PY→X(θ)
by differentiating Eq. (4):

dPY→X(θ)

dθ

=
(Nr − θ)Nu−3[Nr(Nt − 2θ) + θ(Nt −NtNu + θNu)]

NNu−2
r Nt

.

(5)

The derivative is zero when θ = Nr, but this is not a valid
solution. The polynomial in θ within the square brackets in the
numerator of Eq. (5), Nuθ

2 − (2Nr −Nt +NtNu)θ+NrNt,
is zero when

θ =
2Nr +Nt(Nu − 1)±

√
4Nr(Nr −Nt) +N2

t (Nu − 1)2

2Nu
.

(6)
Because Nt ≤ Nr, the expression under the radical is always
non-negative. Additionally, the positive branch is greater than
or equal to unity2. Thus the negative branch of Eq. (6) gives
θ∗, the optimal value of θ. We use the second derivative to
verify that θ∗ maximizes PY→X(θ) as follows:

P̈Y→X(θ∗)
def
=

d2PY→X(θ)

dθ2

∣∣∣∣
θ=θ∗

=
−A

NrNt

(
A+B

2NrNu

)Nu−3

,

(7)
where A =

√
4Nr(Nr −Nt) +N2

t (Nu − 1)2 and B =
(2Nr −Nt)(Nu − 1). Since Nt ≤ Nr, it follows that A > 0
and B > 0; thus, P̈Y→X(θ∗) < 0 and PY→X(θ∗) is a local
maximum.

Depending on the relative values of the parameters Nr,
Nt, and Nu, θ∗ may fall outside the unit interval, i.e., [0, 1].
Expanding and simplifying the expression θ > 1 using the
negative branch of θ in Eq. (6) gives

Nu <
Nr(Nt − 2) +Nt

Nt − 1
. (8)

2When Nr = Nt = 1, θ = 1; and, the numerator of θ is greater than
2Nu when 1 < Nt ≤ Nr .

Thus, θ∗ should be set to unity when the number of UEs is
sufficiently small for Eq. (8) to hold.

IV. NUMERICAL RESULTS

A. Model Validation
We validated this model by running Monte Carlo simula-

tions to estimate PY→X(θ). The simulation consisted of a set
of runs; each run in turn was composed of a set of individual
trials. Each trial simulated the UE group’s resource selections
over a series of PSDCH periods, using a given value of θ for
all UEs in the group. In each period, the simulator generated
a Nf ×Nt matrix that represented the PSDCH resource pool,
and randomly placed UE Discovery messages in the matrix.

The simulator determines whether a successful transmission
from UE Y to UE X has occurred by examining the placement
of UE X’s transmission in relation to all other UEs. If UE X
transmits in the same subframe set as UE Y , then UE X cannot
receive UE Y ’s discovery message. If any of the other (Nu −
2) UEs transmits in the resource block chosen by UE Y , then
the transmissions collide and UE Y ’s message fails to reach
UE X . The simulator also models the transmission probability
θ, which is the same for all UEs, by having each UE generate
a uniform random variate 0 < p1 ≤ 1; if p1 ≤ θ, then the UE
chooses a resource for transmission. Thus UE Y ’s transmission
fails if UE Y generates a variate that is greater than θ. Also
note that if the variate that UE X generates is not less than θ,
the transmission succeeds as long as no other UE’s message
occupies the resource chosen by UE Y .

The simulator repeated this process until the occurrence of a
successful transmission, at which time it recorded NY→X(j),
the number of PSDCH periods required to achieve the suc-
cess in the jth trial, and started a new trial if there were
trials remaining in the run. Using the set of trial results
{NY→X(j)}Ntrials

j=1 , the estimate for PY→X(θ) from the ith run
is

P̂Y→X,i(θ) =
N (NY→X(θ) = n)

Ntrials
, (9)

where N (A) is the occurrence count of event A and Ntrials is
the number of trials per run. The estimated probability is

P̂Y→X(θ) =

∑Nruns
i=1 P̂Y→X,i(θ)

Nruns
=

∑Nruns
i=1 N (NY→X(θ) = n)

NrunsNtrials
(10)

and the estimator of the variance of P̂Y→X(θ) is

σ̂2
P̂Y →X(θ)

=
1

Nruns − 1

Nruns∑
i=1

(
P̂Y→X,i(θ)− P̂Y→X(θ)

)2

.

(11)
The simulation used 10 runs, with 50 trials per run. The

resource pool contained Nr = 50 resources, with Nf =
10 PRB pairs and Nt = 5 subframe sets. In Fig. 4, we
plot both the theoretical values of PY→X(θ) and the Monte
Carlo estimates with 95 % confidence intervals for Nu ∈
{5, 10, . . . , 50} UEs3. We used the four enumerated values

3In some scenarios, the UE population may be larger, but this analysis can
be readily extended to greater values of Nu and shows similar agreement
between theoretical and simulation results.



for txProbability for our θ values. The plots show good
agreement between the theoretical and Monte Carlo results.
Also, applying Eq. (8) indicates that we should set θ∗ = 1
when Nu < 38.75 UEs; the curves in the figure agree with
this result. We examined other values of Nf and Nt and found
similar agreement between the theoretical and Monte Carlo
values; we do not show these plots due to space limitations.

Nu
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θ = 0.50 (Monte Carlo)

θ = 0.25 (Monte Carlo)

Fig. 4. Theoretical and simulated values of PY →X(θ) plotted versus Nu,
where θ ∈ {0.25, 0.50, 0.75, 1.00}, for Nf = 10 PRB pairs and Nt =
5 subframe sets, with 95 % confidence intervals shown.

B. Sensitivity analysis

Next, we examine the effect of varying input parameters on
the mean time to receive a discovery message. In Fig. 5, we
show plots for two resource pool configurations, and examine
the effect of varying Nr, Nt, and Nu. The greatest impact is
due to reductions in Nr or Nt. E{NY→X(θ∗)} varies roughly
linearly with respect to the percentage change in Nu.

We are especially interested in the impact of variations in
Nu when θ∗ has been chosen based on a particular value for
the group size. In Fig. 6, we plot E{NY→X(θ∗)} versus Nu as
a discrete sequence of points4. Next, for each value of Nu, we
modify Nu by a fixed percentage, while keeping θ∗ fixed, and
recompute E{NY→X(θ)} using the new value of Nu. We plot
the resulting sets of values for ±10 % and ±50 % variations in
Nu in the figure; we show the envelopes traced by the modified
values rather than discrete points for the sake of clarity.

The figure shows that E{NY→X(θ∗)}’s sensitivity to vari-
ations in Nu increases as Nu itself increases, with a dis-
continuity in the slope of each envelope curve visible at
Nu = 38.75 UEs, the threshold value given by Eq. (8). A
±10 % deviation in Nu results in a variation of about half of
a period when Nu = 60 UEs, and a variation of about one
period when Nu = 100 UEs. When the variation is very large
(±50 %), increases in Nu have more effect than decreases.

Next we consider the impact of quantizing θ. In Section III
we noted that θ can take only values that are multiples of
1/4. Let θ∗q = max

(
1/4, ⌈4(θ∗ − 1/8)⌉/4

)
be the value of

θ∗ rounded to the closest allowed value of txProbability. In
Fig. 7, we plot ∆µY→X

def
= E{NY→X(θ∗q )}−E{NY→X(θ∗)}

4We chose E{NY →X(θ∗)} rather than its reciprocal, PY →X(θ∗), be-
cause the effects of variations in Nu are easier to see in the plot.
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Fig. 5. Spider plots for two example PSDCH configurations.
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Fig. 6. Sensitivity plot of E{NY →X(θ∗)} versus Nu for Nf = 10 PRB
pairs and Nt = 5 subframe sets, showing the effect of 10 % and 50 % errors
in the value of Nu.

versus Nu, using the same resource pool dimensions as before.
Since θ∗q is suboptimal, E{NY→X(θ∗q )} ≥ E{NY→X(θ∗)}.
Note that θ∗ = 0.25, 0.5, 0.75 when Nu = 191, 90, 56 UEs,
respectively, and that θ∗ = 1 for Nu < 39 UEs; at these
values of Nu, ∆µY→X ≈ 0 periods. The discontinuities in
Fig. 7 are products of the step discontinuities in the mapping
that produces θ∗q (e.g., θ∗q = 1

2 for 70 UEs ≤ Nu ≤ 123 UEs
but θ∗q = 1

4 for Nu ≥ 124 UEs). The figure shows that
quantization introduces a penalty of at most half a period
for most values of Nu; the penalty increases to a period
only as Nu approaches 275 UEs. We examined other pool
configurations and observed similar behavior; a rule of thumb
appears to be that ∆µY→X > 1 period if Nu & 5Nr.

C. Impact of θ∗ on group discovery time

Finally, we use Monte Carlo simulations to determine
whether θ = θ∗ optimizes other performance metrics, particu-
larly E{NG→G(θ)}, the mean number of periods for every UE
in G to discover every other UE in G. Each Monte Carlo trial
used a Nu × Nu connectivity matrix to track the discovery
status of each UE in G. In each period, each UE chose a
resource randomly, the ability of each UE to detect other
UEs’ messages was checked, and the connectivity matrix was
updated. From these results we produced Ê{NG→G(θ)}.
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Fig. 7. Plot of E{NY →X(θ∗q )} − E{NY →X(θ∗)} versus Nu for Nf =
10 PRB pairs and Nt = 5 subframe sets, showing the effect of the
quantization of θ.

Fig. 8, shows simulation results for two pool sizes, with
Nu = 100 UEs and Nu = 200 UEs. We used 20 runs
of 50 trials each to plot Ê{NG→G(θ

∗)} vs. θ, with 95 %
confidence intervals. In each case, θ∗ is close to the value
of θ that minimizes E{NG→G(θ)}. Regarding the quantization
of θ, θ∗q tends to give the best possible discovery performance
for the whole group, although there are exceptions such as
the case Nu = 70 UEs as shown in Fig. 8a; in this case,
the quantization gives θ∗q = 0.5, although θ∗q = 0.75 is the
better choice. Our simulations have shown that θ∗ tends to
be less than the value of θ that optimizes group discovery
performance, so rounding up to the next higher multiple of
1/4 may give consistently near-optimal performance.
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Fig. 8. Ê{NG→G(θ)} versus θ, with 95 % confidence intervals shown.

V. SUMMARY AND FUTURE WORK

In this paper, we derived the optimal value for the UE
transmission probability while accounting for the half-duplex
nature of UE transmissions. We used this model to derive
the maximum UE group size for which the optimal value of
txProbability is unity. We validated this model and showed
that there is a small impact to performance when quantizing
θ∗ to multiples of 1/4, as allowed by the 3GPP standard.
We demonstrated that θ∗ appears to closely track the value
of θ that minimizes the mean number of periods for all UEs
in a group to discover each other, although this result needs
further confirmation. Our next steps include accounting for
channel effects in the model, and examining the effect of
synchronization errors on PSDCH performance.
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