
Privacy-preserving Ranked Multi-Keyword Search

Leveraging Polynomial Function in Cloud

Computing

Yanzhi Ren1, Yingying Chen1, Jie Yang2, Bin Xie3

1Department of ECE, Stevens Institute of Technology, Hoboken, NJ 07030
{yren2, yingying.chen}@stevens.edu

2Department of CS, Florida State University, Tallahassee, FL 32306

jyang5@fsu.edu
3InfoBeyond Technology LLC, Louisville, KY 40223

Bin.Xie@InfoBeyonds.com

Abstract—The rapid deployment of cloud computing provides
users with the ability to outsource their data to public cloud for
economic savings and flexibility. To protect data privacy, users
have to encrypt the data before outsourcing to the cloud, which
makes the data utilization, such as data retrieval, a challenging
task. It is thus desirable to enable the search service over
encrypted cloud data for supporting effective and efficient data
retrieval over a large number of data users and documents in
the cloud. Existing approaches on encrypted cloud data search
either focus on single keyword search or become inefficient
when a large amount of documents are present, and thus have
little support for the efficient multi-keyword search. In this
paper, we propose a light-weight search approach that supports
efficient multi-keyword ranked search in cloud computing system.
Specifically, we first propose a basic scheme using polynomial
function to hide the encrypted keyword and search patterns for
efficient multi-keyword ranked search. To enhance the search
privacy, we propose a privacy-preserving scheme which utilizes
the secure inner product method for protecting the privacy of the
searched multi-keywords. We analyze the privacy guarantee of
our proposed scheme and conduct extensive experiments based
on the real-world dataset. The experiment results demonstrate
that our scheme can enable the encrypted multi-keyword ranked
search service with high efficiency in cloud computing.

I. INTRODUCTION

Cloud computing becomes more and more popular and

plays an increasingly important role in our daily lives. In

particular, cloud users can remotely outsource their data into

the cloud and enjoy the on-demand services from the shared

computing resources [1]. Cloud computing brings users with

many benefits such as the relief of the storage load and

flexible data access, which motivate users to store their local

data into the cloud. As the cloud services become prevalent,

more and more sensitive information, such as personal photos,

government records and finance data, are outsourced into

the cloud. To protect the privacy of the sensitive data in

the cloud, the data has to be encrypted by the data owner

before outsourcing to the cloud [2]. However, data encryption

makes effective data utilization a challenging task when a large

amount of data files are present: users may have to download

the whole data set from the cloud and then decrypt it to

conduct keyword search over the data, which is very inefficient

when the number of data files is large. Thus, effective keyword

searching over encrypted data is of paramount importance,

especially need to provide efficient ranked multiple keyword

search, which supports a set of input keywords and achieves

high efficiency simultaneously in user’s search behaviors.

Nevertheless, enabling the keyword search over encrypted

data is not an easy task. Some techniques [3]–[5] allow the user

to search over encrypted data securely through single keyword

to retrieve documents of interest. This is insufficient as many

users may tend to provide multiple keywords instead of one

as their search interest. Recently, methods have been proposed

for multiple keyword search in cloud computing [6], [7]. In

these methods, a binary index vector needs to be built for

each document and each bit denotes whether the corresponding

keyword is included in the document. The storing and updating

index can be of substantial overhead, especially when the

number of keywords is large. Thus, the efficiency of secure

multiple keyword search has large room for improvement for

enhancing the system usability in cloud computing.

In this paper, we perform multi-keyword search over

encrypted data in clouds leveraging polynomial functions.

Specifically, we exploit the number of query keywords appear-

ing in the document index to evaluate the similarity between

the query and the document. Our scheme eliminates the pre-

defined binary index vector used in existing multiple keyword

search scheme [6] and enables efficient index update, making

it scalable to a large number of searching keywords. To meet

the challenge of keyword search without privacy leakage, we

first propose a multi-keyword search scheme by exploiting

the polynomial functions to hide the encrypted keywords.

With this approach, the search query can be described as the

coefficient vector of polynomial functions which can prevent

the adversary from learning the input keywords. To combat

the adversary equipped with powerful computation resources,

we integrate our polynomial function based approach with

the existing secure inner product scheme adapted from the

secure k-nearest neighbor (kNN) technique [8]. To validate

U.S. Government work not protected by U.S. copyright

Globecom 2014 - Communication and Information System Security Symposium

594



the feasibility of our approach, we conducted extensive exper-

iments using real world dataset called Enron Email Dataset.

The results show that our scheme is effective and efficient for

conducting ranked multiple keyword search.

The rest of the paper is organized as follows. We first

present related work in Section II. We then present the system

model, threat model and system design goals in Section III.

Next, we present our detailed multi-keyword searching scheme

in Section IV. In Section V, we evaluate proposed searching

scheme using real world dataset. Finally, we conclude our

work in Section VI.

II. RELATED WORK

There have been active studies [3], [4], [9], [10] in designing

schemes for keyword search over encrypted data. In these

studies, the symmetric key settings are used for keyword

search. Keyword search over encrypted data is first studied

by Song et al [3] and improvements are provided by Goh

et al. [9], Chang et al. [4] and Wang et al. [10]. These

methods are developed as crypto primitives and are not able

to support high service requirements like searching experience

and system usability. Furthermore, these works only allow

single keyword search, which is insufficient as many users may

provide multiple keywords instead of one as their search input.

Thus, it is desirable to seek search schemes that support high

service requirements for keyword searching over encrypted

data.

Along this direction, some subsequent works [11]–[13]

try to solve the conjunctive and disjunctive keyword search.

However, they incur large computational overhead since most

of them are based on public-key cryptography. An effective

multi-keyword ranked search scheme [6], [7] is proposed.

In this scheme, users send search requests to the server,

who searches over the keyword indexes generated by the

data owner. The server then returns a subset of encrypted

documents to the user without revealing the keywords in

the query and the index. However, in this scheme, a binary

vector needs to be built for each document as an index where

each bit denotes whether corresponding keyword is included

in the document. This means that the user has to know the

keyword list and the keywords’ positions in the binary vector

to generate a query. The index storing and updating can be of

substantial overhead, especially when the number of keywords

is large. [14]–[17] propose a privacy-preserving multi-keyword

text search scheme with similarity-based ranking. However,

in [14]–[16], a tree-based index structure is used to improve

the search efficiency, and they cannot handle the data updates

efficiently: the data owner needs to update the whole search

index when inserting or deleting a document. In [17], an

additional trusted server is needed to support the index and

trapdoor generation.

In our work, we design an efficient secure ranked multiple

keyword search by employing polynomial functions to hide the

encrypted keywords. Our approach eliminates the requirement

of building pre-defined binary index vector in the keyword

search, and can handle the data updates efficiently.

Cloud Servers
Data Owner

In
dex

Encrypted

File
s

SearchRequest

Data Users

FileRetrieval

Fig. 1. Architecture of keyword search over encrypted data in cloud
computing.

III. DATA SEARCH MODEL

In this section, we first describe the system model of cloud

computing system that is used in this work. We then present

threat models we considered in the cloud computing system.

We next provide an overview of design goals for the multiple

keywords search scheme.

A. System Model

As illustrated in Figure 1, we consider a cloud data host-

ing system which consists of three different entities: the

data owner, the data user, and the cloud server. The data

owner has n data documents F = (F1, F2, ..., Fn) that

he wants to outsource to the cloud in the encrypted form

C = (C1, C2, ..., Cn). The data owner is also responsible

for building an encrypted searchable index I to enable the

keyword searching over C. Both the encrypted index I and

encrypted files C are then outsourced to the cloud server by

the data owner.

We assume that the authorizations have been appropriately

done between the data owner and the users. To search the

data documents stored in the server, the user will first specify

a keyword set W ′ which consists of u keywords. The user then

generates and submits a search request in the secret form (i.e,

the trapdoor TW ′ of keyword set W ′) to the cloud server. We

consider the ranked multi-keyword search problem as follows:

upon receiving TW ′ from the data user, cloud server returns

the corresponding encrypted documents after searching the

encrypted index I . To improve the usability of the system,

the cloud server should rank the search results according to

certain criteria instead of returning undifferentiated results.

Moreover, to reduce the communication overhead, the cloud

server only sends back the top k most relevant documents

for the user’s search request. Finally, the user decrypts the

documents received through the access control mechanism.

B. Threat Model

In the cloud computing system, the system is not maintained

by the data owner and thus it is vulnerable to security threats.

We consider an adversary which can intercept the network

traffic between data user (or data owner) and the server [18].

Specifically, we assume the adversary is curious to infer

additional information from the transmission data (i.e., the

encrypted data C, encrypted index I and trapdoor TW ′ ). Based

on the information the adversary knows, similar as [6], we

consider two threat models for privacy-preserving search in

cloud computing system:

Known Ciphertext Attack. The cloud adversary knows the

encrypted data transmitted between data user (or data owner)

2

Globecom 2014 - Communication and Information System Security Symposium

595



and the server by intercepting the communication. In this case,

the adversary may generate new search requests by collecting

some valid search requests. Only performing hashing and

encryption are unable to prevent this type of attacks due to

their deterministic properties.

Known Background Attack. In this stronger model, the

adversary further possess some background information on the

datasets, such as the subject of the dateaset and its statistical

information of the keywords. Thus, the adversary can infer

keywords by utilizing the captured encrypted keyword fre-

quency and the background information. Therefore, the search

pattern is not well protected, while it is a privacy leakage

problem in searchable encryption schemes because of the

deterministic property of the search request generation.

C. Design Goals.

In this paper, we design a ranked multi-keyword search

scheme to achieve efficient yet privacy-preserving keyword

search over encrypted data in cloud computing system. Spe-

cially, several goals should be achieved simultaneously by our

system design:

Ranked Multi-keyword Search. Our search schemes over

encrypted data should support multi-keyword query and simi-

larity ranking simultaneously for data retrieval in cloud com-

puting.

Privacy-preserving. Our search schemes should meet pri-

vacy requirements by preventing the adversary from learning

additional information from the data intercepted.

High Efficiency. Our proposed functionality and privacy

goals should be achieved with low computation and commu-

nication cost. Additionally, the encrypted documents C and

searchable index I need to be updated efficiently when the

document insertion or deletion happens.

IV. MULTIPLE KEYWORDS SEARCH

To allow efficient multi-keyword search on the cloud server,

the data user must specify a set of keywords and submit the

search request to the server. To preserve the privacy, the input

keywords should not be exposed to the adversary. In this

section, we first propose a search scheme using polynomial

function to enable ranked multi-keyword search and hide input

keywords in cloud computing system, and then show how to

improve it to be privacy-preserving against different levels of

threat models in our framework.

A. Preliminary

1) Notations: The data user searches for the data files over

documents on the cloud server and we adopt the following

notations in this paper:

• F : the collection of n plaintext data documents is denoted

as:

F = {Fi, i = 1, ..., n} (1)

• C: the collection of n encrypted data documents stored

in the cloud server is denoted as:

C = {Ci, i = 1, ..., n} (2)

• W : n sets of keywords specified by the data owner for

the corresponding n data documents are denoted as:

W = {Wi, i = 1, ..., n} (3)

Where each keyword set Wi has mi keywords and they

are denoted as Wi = {wi,j , j = 1, ...,mi}.

• I and Ĩ: the searchable index I (Ĩ , resp) built for

each keyword from W in ranked multi-keyword search

scheme and privacy-preserving ranked multi-keyword

search scheme. They are denoted as:

I = {Ii, i = 1, ..., n} (4)

Ĩ = {Ĩi, i = 1, ..., n} (5)

Where each subindex Ii (Ĩi, resp) for Wi is denoted as

Ii = {Ii,j , j = 1, ...,mi} and Ĩi = {Ĩi,j , j = 1, ...,mi}.

• W ′: the data user specifies u keywords which are denoted

as:

W ′ = {w′

k, k = 1, ..., u} (6)

• TW ′ and T̃W ′ : the trapdoor generated for the search

query W ′ in ranked multi-keyword search scheme and

privacy-preserving ranked multi-keyword search scheme,

respectively.

• CW ′ : the ranked ID list of the top k encrypted data

documents returned to the data user for the trapdoor TW ′

or T̃W ′ .

2) Framework: Followed other works [6], [7], [14] on

keyword search over encrypted cloud data, our scheme also

contains four major procedures: Setup, BuildIndex, TrapDoor

and Query:

• Setup: The data owner randomly generates a secret key

SK and distributes it to the authorized data users.

• BuildIndex: Based on the keyword set W , the data owner

generates the searchable index I which is encrypted

by the key SK . The owner then encrypts the plaintext

data collection F into encrypted data collection C and

publishes the index I and C to the cloud server.

• TrapDoor: The data user generates a secure trapdoor

TW ′ corresponding to his/her input keyword set W ′ using

the key SK .

• Query: When the cloud server receives the search query

TW ′ , it performs the keyword search on the index I using

TW ′ and returns the ranked ID list of top k documents

CW ′ to the data user.

B. Polynomial Function Based Ranked Multi-keyword Search

1) Search Scheme: To provide a guarantee against violation

on privacy and security requirements, we have to hide the input

keyword set W ′ in the search query. To do so, we encrypt

these keywords and then construct a polynomial function to

hide them in search trapdoor generation. The detailed scheme

to achieve the ranked multi-keyword search over encrypted

data is as follows:

Setup: The data owner generates an encryption function

E() and a hash function H() to form the secret key as

3

Globecom 2014 - Communication and Information System Security Symposium

596



SK = {E(), H()}. The data owner then sends SK to

authorized users.

BuildIndex: The data owner extracts mi keywords

{wi,j , j = 1, ...,mi} from each data document (i.e., document

Fi) to build the search index. To prevent the adversary

from learning the index keywords, the data owner encrypts

each keyword with the key SK . The encrypted keywords

for document Fi are denoted as {H(E(wi,j)), j = 1, ...,mi}.

The data owner then computes different powers of each

encrypted keyword and builds its search index as: Ii,j =
(

(H(E(wi,j)))
0
, ..., (H(E(wi,j)))

d
)T

(d is the maximum

number of input keywords and we will describe it later).

Further, it creates an matrix to hold the index information

for mi keywords of document Fi as:

Ii = (Ii,1, ..., Ii,mi
)

=







(H(E(wi,1)))
0

. . . (H(E(wi,mi
)))

0

...
. . .

...

(H(E(wi,1)))
d · · · (H(E(wi,mi

)))d







(7)

The data owner then publishes encrypted data C and index

I = {Ii, i = 1, ..., n} for n data documents to the cloud server.

TrapDoor: The data user specifies a keyword set W ′ =
{w′

1, ..., w
′

u} which consists of u keywords as the search

input. Let d be the maximum number of input keywords

allowed in the cloud computing system. To make the number

of keywords consistent, the user then adds d − u dummy

keywords
{

w′

u+1, ..., w
′

d

}

to the set W ′ to make sure the total

number of input keywords is d:

W ′ =
{

w′

1, ..., w
′

u, w
′

u+1, ..., w
′

d

}

(8)

We note that each dummy keyword consists of a mixed

sequence of randomly generated characters and numbers and it

is different from any real dictionary words. Thus, these dummy

words will not impact the search results. The data user then

encrypts these d keywords by using the key SK = {E(), H()}
received from the data owner:

H(E (W ′)) = {H(E (w′

k)), k = 1, ..., d} (9)

Provided with the knowledge about the roots of polynomi-

als, we know that the factorization of polynomials is very com-

putationally intense, especially when the order of polynomials

becomes large [19]. With the aid of such clues, in this work,

we utilize the polynomial functions to hide the encrypted input

keywords. Specifically, the data user constructs a polynomial

function of degree d as:

f(x) = (x−H(E (w′

1)))× ...× (x−H(E (w′

d)))

= b0 + b1x+ ...+ bdx
d

(10)

It is obvious that the polynomial function meets the require-

ment that f(H(E (w))) = 0 if and only if the keyword

w ∈ W ′. The user thus utilizes the coefficients of polynomial

function to form a search request and sends them to the cloud

server:

TW ′ = {b0, ..., bd}
T (11)

Query: With the help of the trapdoor TW ′ and the index

Ii built for each data document Fi, cloud server computes the

Yi as:

Yi = (TW ′)T Ii

= (TW ′)T (Ii,1, ..., Ii,mi
)

= (b0, ..., bd)







(H(E(wi,1)))
0

. . . (H(E(wi,mi
)))

0

...
. . .

...

(H(E(wi,1)))
d · · · (H(E(wi,mi

)))d







= (Yi(1), ..., Yi(mi))
(12)

From the previous analysis, we know that if wi,j ∈ W ′, we

have Yi(j) = (TW ′)T Ii,j = 0. We define the similarity score

between the search query T ′

W and index Ii as the number

of word matches between them. Thus, the number of zero

values in vector Yi can be regarded as the similarity score

between the search query T ′

W and index Ii. The server then

computes similarity scores between search query and each

Ii (i = 1, .., n) by counting the number of zero values in

the corresponding Yi. After sorting all these similarity scores,

cloud server returns the top k ranked ID list CW ′ to the user,

in which k denotes the number of documents returned to the

user for his/her search request.

2) Analysis: From the descriptions above, the final sim-

ilarity score is defined as the number of query keywords

appearing in a data document index Ii. Therefore the order of

similarity is preserved for all the data documents. When the

server returns the top k ranked ID list CW ′ to the user, the

most similar documents to the query are included with clear

order. Additionally, our scheme eliminates the pre-defined

binary index vector built for keywords: when a new keyword

is added in the search index, the data owner only needs to

compute different powers of this encrypted keyword and adds

one new column in the search index as shown in Equation 7.

Thus, our scheme can handle dynamic data updates efficiently.

Our scheme also satisfies the privacy guarantee of searchable

encryption schemes as described below.

Known Ciphertext Attack: In this threat model, the adver-

sary can intercept the encrypted document collection C, the

index I and the query TW ′ . In this case, it is computationally

intensive for the adversary to conduct the factorization of

the polynomial function used in query TW ′ and guess the

encrypted keywords in H(E(W ′)). Thus, the adversary is not

able to generate new search request by collecting valid search

request. Additionally, the keywords in the query and index are

also encrypted: their privacy is also protected as long as the

secret key SK = {E(), H()} is kept confidential. Thus, our

multiple keyword search scheme is secure against this threat

model.

Known Background Attack: In this threat mode, the adver-

sary intends to deduce keywords from the search frequency by

using his background information on the dataset. One unique-

ness of our multiple keyword search scheme is that it can

generate two different query data for the same set of keywords

W ′ because of the randomly generated dummy keywords.

4

Globecom 2014 - Communication and Information System Security Symposium

597



Therefore, the query is not generated in a deterministic manner

and the adversary is not able to tell the search frequency

of any keywords. Consequently, the adversary cannot deduce

keywords due to the lack of keyword search frequency. Thus,

our multiple keyword search scheme is also secure against the

known background attack.

C. Integration with Secure Inner Product

Our proposed ranked multiple keyword search scheme hides

the keywords in the search query using polynomial functions,

which provides some the privacy guarantees over two threat

models. However, it still incurs some privacy leakages: the

adversary can deduce the encrypted keywords by conducting

factorization of the polynomial function in the query TW ′

given enough computation resources of the adversary. In

addition, the adversary can also get to know the encrypted

keywords from the search index I . Therefore, the adversary

may generate a new valid trapdoor or know the search patterns

using these deduced encrypted keywords. In this part, we

propose a more advanced scheme called privacy-preserving

ranked multi-keyword search to be privacy preserving under

such advanced adversaries.

1) Search Scheme: In our proposed ranked multi-keyword

search scheme, we compute the inner product of the trapdoor

TW ′ and each Ii,j in index Ii, and the number of zero values

in the result Yi is regarded as the number of query keywords

appearing in the corresponding document, which is used to

evaluate the similarity between them. However, the previous

analysis shows that the encrypted keywords in the trapdoor

TW ′ can be deduced by the adversary who is able to do

factorization of the polynomial function in the query TW ′ .

Therefore, it is necessary to further hide the inner product of

the trapdoor and search index to protect the privacy. In [8], the

secure k-nearest neighbor (kNN) technique has been proposed.

Similar as [6], [14], we tailor the secure kNN scheme as the

secure inner product method and propose privacy-preserving

ranked multi-keyword ranked search scheme. The details of

the improved search scheme are shown as follows.

Setup: To improve the security of our keyword search

scheme, we further encrypt the trapdoor and index using some

randomly generated matrices and vectors. Thus, besides the

encryption function E() and hash function H() generated in

ranked multi-keyword search scheme, the data owner further

generates: (1) Two random d× d invertible matrices M1 and

M2; (2) A random binary string S of d bits. We use S(k)
to denote the k-th bit in S. The data owner then forms the

key SK = {E(), H(),M1,M2, S} and sends it to authorized

users.

BuildIndex: To provide a guarantee against privacy vi-

olation, we further encrypt the search index by utiliz-

ing the parameters {M1,M2, S} generated in the setup

procedure. Consider each sub-index Ii,j built for key-

word wi,j in our ranked multi-keyword search: Ii,j =
(

(H(E(wi,j)))
0
, ..., (H(E(wi,j)))

d
)T

: (1) The data owner

splits Ii,j into two random vectors Iai,j and Ibi,j : for k = 1

to d, if S(k) = 1, the data owner randomly divides Ii,j(k)
into Iai,j(k) and Ibi,j(k) so that Iai,j(k) + Ibi,j(k) = Ii,j(k).

If S(k) = 0, the data owner sets both Iai,j(k) and Ibi,j(k)
to Ii,j(k). (2) The data owner then encrypts Ii,j as MT

1 Iai,j
and MT

2 Ibi,j . Thus, the index for each keyword wi,j is built

as Ĩi,j = {MT
1 Iai,j ,M

T
2 Ibi,j} in our privacy-preserving ranked

multi-keyword search scheme.

TrapDoor: To protect the privacy, we have to eliminate the

relationships in search query TW ′ so that the adversary is not

able to deduce the encrypted keywords using factorization of

the polynomial function. To do so, we utilize the parameters

{M1,M2, S} to further encrypt the query TW ′ used in ranked

multi-keyword search scheme.

Consider the query TW ′ = {b0, ..., bd}
T built in ranked

multi-keyword search: (1) The data user then splits TW ′ into

two random vectors T a
W ′ and T b

W ′ with similar procedures.

The difference is that for k = 1 to d, if S(k) = 0, the data

user randomly divides TW ′(k) into T a
W ′(k) and T b

W ′(k) so

that T a
W ′(k) + T b

W ′(k) = TW ′(k). If S(k) = 1, the data user

sets both T a
W ′(k) and T b

W ′(k) to TW ′(k). (2) The data user

then encrypts TW ′ as M−1

1 T a
W ′ and M−1

2 T b
W ′ to generate the

trapdoor as T̃W ′ = {M−1

1 T a
W ′ ,M

−1

2 T b
W ′}.

Query: With the trapdoor T̃W ′ , cloud server searches

through each sub-index Ii,j for keyword wi,j and determines

whether it is included in the trapdoor by computing Ỹi(j) using

the trapdoor T̃W ′ and index Ĩi,j .

Ỹi(j) = (T̃W ′)T · Ĩi,j

= {M−1

1 T a
W ′ ,M

−1

2 T b
W ′}T · {MT

1 Iai,j ,M
T
2 Ibi,j}

= (T a
W ′)T (M−1

1 )TMT
1 Iai,j + (T b

W ′)T (M−1

2 )TMT
2 Ibi,j

= (T a
W ′)T Iai,j + (T b

W ′)T Ibi,j

= (TW ′)T · Ii,j

= Yi(j)
(13)

Thus, we have Ỹi(j) = 0 if wi,j ∈ W ′ and the number

of zero values in Ỹi = (Ỹi(1), ..., Ỹi(mi)) can be used as the

indicator for the number of word matches between the query

T̃W ′ and index Ĩi. Similarly, we compute the similarity scores

between the search query and each Ĩi using its corresponding

Ỹi (i = 1, .., n). Finally, the cloud server returns the top k

ranked ID list CW ′ back to the data user after sorting all

scores.

2) Analysis: The privacy-preserving ranked multi-keyword

search scheme can help to solve the privacy problems existed

in ranked multi-keyword scheme. The index and query vectors

are first randomly splitted into two vectors and encrypted using

the random matrices M1 and M2 in BuildIndex and TrapDoor

procedure. Thus, in privacy-preserving scheme, the adversary

is not able to deduce the encrypted keywords in the trapdoor

and the search index. The trapdoor and index privacy is well

protected by the secure inner product scheme as long as the

parameters {M1,M2, S} are kept confidential [8]. In addition,

our scheme can also generate two totally different trapdoors for

the same query W ′ because of the random dummy keywords.

Therefore, the search pattern is also well protected.

5

Globecom 2014 - Communication and Information System Security Symposium

598



100 200 300 400 500 600
0

0.5

1

1.5

2

Number of documents in dataset

T
im

e
 o

f 
b

u
il
d

in
g

 i
n

d
e
x
 (

s
)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(a)

10 20 40
0

0.5

1

1.5

2

Number of keywords for each document

T
im

e
 o

f 
b

u
il

d
in

g
 i

n
d

e
x

 (
s

)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(b)

Fig. 2. Time cost on index construction: (a) Under different number
of documents in dataset when the number of keywords extracted for each
document is set as 40. (b) Under different number of keywords extracted for
each document when the number of documents in dataset is 600.

V. PERFORMANCE EVALUATION

In this section, we first present our experimental method-

ology for evaluating the proposed multiple keyword search

schemes. We then show the experimental results to demon-

strate the effectiveness and efficiency of our proposed search

schemes.

A. Experimental Methodology

We use the real world dataset called Enron Email Dataset

which contains emails and messages from about 150 users [20]

to evaluate our approach. Different number of emails are ran-

domly selected from the Enron Email to build our experimental

dataset. For each set of input keywords randomly generated by

the user, the cloud server will search through the dataset and

retrieve the qualified files. We implement the whole system on

a computer with a 2.40GHz Core 2 P8600 Processor and 2G

DDR2 memory. To get the statistical results of our approach,

we repeat the simulations for 100 times. We use the following

metrics to evaluate our proposed schemes.

• Time Cost on Index Construction. The average time for

the data owner to build the search index, which consists

of extracting and encrypting the keyword set for each

data document.

• Time Cost on Trapdoor Generation. The average time

for the data user to prepare a search trapdoor, which

consists of encrypting the input keywords and generating

the search query.

• Time Cost on Query. The average time for the cloud

server to accomplish a search request, which consists of

computing and ranking the similarity scores for the data

documents.

B. Index Construction

In the first set of experiments, we evaluate the time cost on

building the search index using our two proposed schemes:

5 10 15 20 25 30
0

1

2

3

4

5
x 10

−3

Number of input keywords

T
im

e
 o

f 
g

e
n

e
ra

ti
n

g
 t

ra
p

d
o

o
r 

(s
)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(a)

10 20 30
0

1

2

3

4

5
x 10

−3

Maximum number of input keywords

T
im

e
 o

f 
g

e
n

e
ra

ti
n

g
 t

ra
p

d
o

o
r 

(s
)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(b)

Fig. 3. Time cost on trapdoor generation: (a) Under different number of
keywords input by the user when the maximum number of input keywords is
30. (b) Under different maximum number of input keywords when the number
of keywords input by the user is 10.

the ranked multi-keyword search scheme and the private-

preserving ranked multi-keyword search scheme. Specifically,

we first vary the number of documents in dataset from 100

to 600, with 40 keywords extracted from each document (i.e.,

mi = 40 for i = 1, ..., n). As shown in Figure 2 (a), we

observe that time cost of building the search index increases

as the number of documents increases. Further, we find that

the time cost is almost linear with the number of documents

in dataset due to the time cost for building a sub-index for

each document is almost fixed. Moreover, our basic ranked

multi-keyword search scheme achieves a lower time cost than

privacy-preserving version under each number of documents.

This observation is also inline with our analysis because

privacy-preserving scheme further encrypts the index using

two randomly generated matrices.

We then vary the number of keywords extracted from each

document (i.e., mi) to evaluate the efficiency of our scheme in

Figure 2 (b). We observe that the larger number of keywords

of each document results in higher time cost for building the

search index. This is because more sub-indexes need to be built

for larger number of keywords. Again, as we have observed

previously, the ranked multi-keyword search scheme achieves

a lower time cost than that of the privacy-preserving version

under different number of keywords.

C. Trapdoor Generation

We next evaluate the time cost on trapdoor generation of

our search schemes. Figure 3 (a) presents the time cost of

trapdoor generation under different number of input keywords

when the maximum number of input keywords is 30 (i.e.,

d = 30). We observe that the number of input keywords

specified by the user has little influence on the time cost of

trapdoor generation and the overall time cost is below 0.002

seconds. This is because dummy words are added to the input

keyword set to make sure the total number of keywords is d, no

6

Globecom 2014 - Communication and Information System Security Symposium

599



100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Number of documents in dataset

S
e
a
rc

h
in

g
 T

im
e
 (

s
)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(a)

10 20 30
0

0.2

0.4

0.6

0.8

1

Maximum number of input keywords

S
e

a
rc

h
in

g
 T

im
e

 (
s

)

 

 

Multi−keyword Search

Private−preserving Multi−keyword Search

(b)

Fig. 4. Time cost on query: (a) Under different number of documents
in dataset when the maximum number of input keywords is 30. (b) Under
different maximum number of input keywords when the number of documents
is 600.

matter what the number of keywords input by the data user is.

Figure 3 (b) demonstrates the time cost of trapdoor generation

under different maximum number of input keywords (i.e.,

d). We observe that the time cost increases as the number

of keywords increases. This is because when the number of

keywords becomes larger, the order of the polynomial function

used for trapdoor generation also increases. Again, we observe

that the ranked multi-keyword search scheme achieves a lower

time cost than that of privacy-preserving version, which is

consistent with our previous observations.

D. Query

Finally, we evaluate the effectiveness of our search scheme

in terms of the time cost on query. We first keep the maximum

number of input keywords as 30 (i.e., d = 30) and the

number of keywords extracted for each data document as 40

(i.e., mi = 40 for i = 1, ..., n) while varying the number

of documents in the dataset. Figure 4 (a) shows that the

query time increases as the number of documents increases.

The query time is dominated by the number of documents.

This is because with more documents, it takes longer time

for the server to search over the dataset. We then keep the

number of documents as 600 while varying the maximum

number of input keywords (i.e., d). Figure 4 (b) shows that the

similar query time is achieved even if the maximum number

of keywords in the query varies, indicating our scheme is not

sensitive to the maximum number of input keywords.

In summary, our experimental results indicate that our

schemes, both ranked multi-keyword search scheme and

privacy-preserving ranked multi-keyword search scheme, can

enable the multi-keyword searching with high efficiency in

cloud computing.

VI. CONCLUSION

In this paper, we propose a light-weight search approach

that supports efficient multi-keyword ranked search in cloud

computing system. Our basic scheme employs the polynomial

function to hide the encrypted keyword and search patterns

for efficient multi-keyword ranked search. We then improve

the basic scheme and propose a privacy-preserving scheme

which utilizes the secure inner product method for protecting

the privacy of the searched multi-keywords. Thorough analysis

on the privacy guarantee of our proposed schemes is given,

and extensive experiments based on the real-world dataset are

also conducted. The experiment results demonstrate that our

scheme can enable the encrypted multi-keyword ranked search

service with high efficiency in cloud computing.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” SIGCOMM Comput. Commun.
Rev., 2008.

[2] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proceedings

of the 14th international conference on Financial cryptograpy and data
security, 2010.

[3] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of the 2000 IEEE Symposium on

Security and Privacy, 2000.
[4] Y.-C. e. a. Chang, “Privacy preserving keyword searches on remote

encrypted data,” in Proceedings of ACNS, 2005.
[5] M. Abdalla and et al., “Searchable encryption revisited: Consistency

properties, relation to anonymous ibe, and extensions,” J. Cryptol., 2008.
[6] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-

keyword ranked search over encrypted cloud data,” in Proceedings of

IEEE INFOCOM, 2011.
[7] N. Cao and et al., “Privacy-preserving multi-keyword ranked search over

encrypted cloud data,” IEEE Transactions on Parallel and Distributed

Systems, Jan 2014.
[8] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure

knn computation on encrypted databases,” in Proceedings of the ACM

SIGMOD International Conference on Management of data, 2009.
[9] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, 2003.

[10] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proceedings of ICDCS, 2010.

[11] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in Proceedings
of International Conference on Pairing-Based Cryptography, 2007.

[12] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in Proceedings of 2nd International Conference
on Applied Cryptography and Network Security, 2004.

[13] S. Hou and et al., “Privacy preserving confidential forensic investigation
for shared or remote servers,” in Proceedings of IIH-MSP, 2011.

[14] W. Sun and et al., “Privacy-preserving multi-keyword text search in
the cloud supporting similarity-based ranking,” in Proceedings of ACM

SIGSAC, 2013.
[15] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li,

“Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” IEEE Transactions on Parallel and

Distributed Systems, 2014.
[16] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: Scalable multi-

dimensional range search over encrypted cloud data with tree-based
index,” in Proceedings of ACM ASIACCS, 2014.

[17] S. Zittrower and C. Zou, “Encrypted phrase searching in the cloud,” in
Proceedings of GLOBECOM, 2012.

[18] R. L. Krutz and R. D. Vines, Cloud Security: A Comprehensive Guide

to Secure Cloud Computing. Wiley, 2010.
[19] D. Starer and A. Nehorai, “High-order polynomial root tracking algo-

rithm,” in Proceedings of the IEEE ICASSP, 1992.
[20] W.W.Cohen, “Enron email dataset,” 2009. [Online]. Available:

www.cs.cmu.edu/~enron/

7

Globecom 2014 - Communication and Information System Security Symposium

600


